1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
|
/*******************************************************************************
Intel 10 Gigabit PCI Express Linux driver
Copyright(c) 1999 - 2012 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/netdevice.h>
#include "ixgbe.h"
#include "ixgbe_common.h"
#include "ixgbe_phy.h"
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
u16 offset);
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
/**
* ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
* control
* @hw: pointer to hardware structure
*
* There are several phys that do not support autoneg flow control. This
* function check the device id to see if the associated phy supports
* autoneg flow control.
**/
s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
{
switch (hw->device_id) {
case IXGBE_DEV_ID_X540T:
case IXGBE_DEV_ID_X540T1:
case IXGBE_DEV_ID_82599_T3_LOM:
return 0;
default:
return IXGBE_ERR_FC_NOT_SUPPORTED;
}
}
/**
* ixgbe_setup_fc - Set up flow control
* @hw: pointer to hardware structure
*
* Called at init time to set up flow control.
**/
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
{
s32 ret_val = 0;
u32 reg = 0, reg_bp = 0;
u16 reg_cu = 0;
bool got_lock = false;
/*
* Validate the requested mode. Strict IEEE mode does not allow
* ixgbe_fc_rx_pause because it will cause us to fail at UNH.
*/
if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/*
* 10gig parts do not have a word in the EEPROM to determine the
* default flow control setting, so we explicitly set it to full.
*/
if (hw->fc.requested_mode == ixgbe_fc_default)
hw->fc.requested_mode = ixgbe_fc_full;
/*
* Set up the 1G and 10G flow control advertisement registers so the
* HW will be able to do fc autoneg once the cable is plugged in. If
* we link at 10G, the 1G advertisement is harmless and vice versa.
*/
switch (hw->phy.media_type) {
case ixgbe_media_type_fiber:
case ixgbe_media_type_backplane:
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
break;
case ixgbe_media_type_copper:
hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
MDIO_MMD_AN, ®_cu);
break;
default:
break;
}
/*
* The possible values of fc.requested_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.requested_mode) {
case ixgbe_fc_none:
/* Flow control completely disabled by software override. */
reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
if (hw->phy.media_type == ixgbe_media_type_backplane)
reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
IXGBE_AUTOC_ASM_PAUSE);
else if (hw->phy.media_type == ixgbe_media_type_copper)
reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
break;
case ixgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
reg |= IXGBE_PCS1GANA_ASM_PAUSE;
reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
if (hw->phy.media_type == ixgbe_media_type_backplane) {
reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
} else if (hw->phy.media_type == ixgbe_media_type_copper) {
reg_cu |= IXGBE_TAF_ASM_PAUSE;
reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
}
break;
case ixgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE, as such we fall
* through to the fc_full statement. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
case ixgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
if (hw->phy.media_type == ixgbe_media_type_backplane)
reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
IXGBE_AUTOC_ASM_PAUSE;
else if (hw->phy.media_type == ixgbe_media_type_copper)
reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
ret_val = IXGBE_ERR_CONFIG;
goto out;
break;
}
if (hw->mac.type != ixgbe_mac_X540) {
/*
* Enable auto-negotiation between the MAC & PHY;
* the MAC will advertise clause 37 flow control.
*/
IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
/* Disable AN timeout */
if (hw->fc.strict_ieee)
reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
}
/*
* AUTOC restart handles negotiation of 1G and 10G on backplane
* and copper. There is no need to set the PCS1GCTL register.
*
*/
if (hw->phy.media_type == ixgbe_media_type_backplane) {
/* Need the SW/FW semaphore around AUTOC writes if 82599 and
* LESM is on, likewise reset_pipeline requries the lock as
* it also writes AUTOC.
*/
if ((hw->mac.type == ixgbe_mac_82599EB) &&
ixgbe_verify_lesm_fw_enabled_82599(hw)) {
ret_val = hw->mac.ops.acquire_swfw_sync(hw,
IXGBE_GSSR_MAC_CSR_SM);
if (ret_val)
goto out;
got_lock = true;
}
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
if (hw->mac.type == ixgbe_mac_82599EB)
ixgbe_reset_pipeline_82599(hw);
if (got_lock)
hw->mac.ops.release_swfw_sync(hw,
IXGBE_GSSR_MAC_CSR_SM);
} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
(ixgbe_device_supports_autoneg_fc(hw) == 0)) {
hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
MDIO_MMD_AN, reg_cu);
}
hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
out:
return ret_val;
}
/**
* ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
* @hw: pointer to hardware structure
*
* Starts the hardware by filling the bus info structure and media type, clears
* all on chip counters, initializes receive address registers, multicast
* table, VLAN filter table, calls routine to set up link and flow control
* settings, and leaves transmit and receive units disabled and uninitialized
**/
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
{
u32 ctrl_ext;
/* Set the media type */
hw->phy.media_type = hw->mac.ops.get_media_type(hw);
/* Identify the PHY */
hw->phy.ops.identify(hw);
/* Clear the VLAN filter table */
hw->mac.ops.clear_vfta(hw);
/* Clear statistics registers */
hw->mac.ops.clear_hw_cntrs(hw);
/* Set No Snoop Disable */
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
IXGBE_WRITE_FLUSH(hw);
/* Setup flow control */
ixgbe_setup_fc(hw);
/* Clear adapter stopped flag */
hw->adapter_stopped = false;
return 0;
}
/**
* ixgbe_start_hw_gen2 - Init sequence for common device family
* @hw: pointer to hw structure
*
* Performs the init sequence common to the second generation
* of 10 GbE devices.
* Devices in the second generation:
* 82599
* X540
**/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
u32 i;
u32 regval;
/* Clear the rate limiters */
for (i = 0; i < hw->mac.max_tx_queues; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
}
IXGBE_WRITE_FLUSH(hw);
/* Disable relaxed ordering */
for (i = 0; i < hw->mac.max_tx_queues; i++) {
regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
}
for (i = 0; i < hw->mac.max_rx_queues; i++) {
regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
}
return 0;
}
/**
* ixgbe_init_hw_generic - Generic hardware initialization
* @hw: pointer to hardware structure
*
* Initialize the hardware by resetting the hardware, filling the bus info
* structure and media type, clears all on chip counters, initializes receive
* address registers, multicast table, VLAN filter table, calls routine to set
* up link and flow control settings, and leaves transmit and receive units
* disabled and uninitialized
**/
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
{
s32 status;
/* Reset the hardware */
status = hw->mac.ops.reset_hw(hw);
if (status == 0) {
/* Start the HW */
status = hw->mac.ops.start_hw(hw);
}
return status;
}
/**
* ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
* @hw: pointer to hardware structure
*
* Clears all hardware statistics counters by reading them from the hardware
* Statistics counters are clear on read.
**/
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
{
u16 i = 0;
IXGBE_READ_REG(hw, IXGBE_CRCERRS);
IXGBE_READ_REG(hw, IXGBE_ILLERRC);
IXGBE_READ_REG(hw, IXGBE_ERRBC);
IXGBE_READ_REG(hw, IXGBE_MSPDC);
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_MPC(i));
IXGBE_READ_REG(hw, IXGBE_MLFC);
IXGBE_READ_REG(hw, IXGBE_MRFC);
IXGBE_READ_REG(hw, IXGBE_RLEC);
IXGBE_READ_REG(hw, IXGBE_LXONTXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
} else {
IXGBE_READ_REG(hw, IXGBE_LXONRXC);
IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
}
for (i = 0; i < 8; i++) {
IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
} else {
IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
}
}
if (hw->mac.type >= ixgbe_mac_82599EB)
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
IXGBE_READ_REG(hw, IXGBE_PRC64);
IXGBE_READ_REG(hw, IXGBE_PRC127);
IXGBE_READ_REG(hw, IXGBE_PRC255);
IXGBE_READ_REG(hw, IXGBE_PRC511);
IXGBE_READ_REG(hw, IXGBE_PRC1023);
IXGBE_READ_REG(hw, IXGBE_PRC1522);
IXGBE_READ_REG(hw, IXGBE_GPRC);
IXGBE_READ_REG(hw, IXGBE_BPRC);
IXGBE_READ_REG(hw, IXGBE_MPRC);
IXGBE_READ_REG(hw, IXGBE_GPTC);
IXGBE_READ_REG(hw, IXGBE_GORCL);
IXGBE_READ_REG(hw, IXGBE_GORCH);
IXGBE_READ_REG(hw, IXGBE_GOTCL);
IXGBE_READ_REG(hw, IXGBE_GOTCH);
if (hw->mac.type == ixgbe_mac_82598EB)
for (i = 0; i < 8; i++)
IXGBE_READ_REG(hw, IXGBE_RNBC(i));
IXGBE_READ_REG(hw, IXGBE_RUC);
IXGBE_READ_REG(hw, IXGBE_RFC);
IXGBE_READ_REG(hw, IXGBE_ROC);
IXGBE_READ_REG(hw, IXGBE_RJC);
IXGBE_READ_REG(hw, IXGBE_MNGPRC);
IXGBE_READ_REG(hw, IXGBE_MNGPDC);
IXGBE_READ_REG(hw, IXGBE_MNGPTC);
IXGBE_READ_REG(hw, IXGBE_TORL);
IXGBE_READ_REG(hw, IXGBE_TORH);
IXGBE_READ_REG(hw, IXGBE_TPR);
IXGBE_READ_REG(hw, IXGBE_TPT);
IXGBE_READ_REG(hw, IXGBE_PTC64);
IXGBE_READ_REG(hw, IXGBE_PTC127);
IXGBE_READ_REG(hw, IXGBE_PTC255);
IXGBE_READ_REG(hw, IXGBE_PTC511);
IXGBE_READ_REG(hw, IXGBE_PTC1023);
IXGBE_READ_REG(hw, IXGBE_PTC1522);
IXGBE_READ_REG(hw, IXGBE_MPTC);
IXGBE_READ_REG(hw, IXGBE_BPTC);
for (i = 0; i < 16; i++) {
IXGBE_READ_REG(hw, IXGBE_QPRC(i));
IXGBE_READ_REG(hw, IXGBE_QPTC(i));
if (hw->mac.type >= ixgbe_mac_82599EB) {
IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
} else {
IXGBE_READ_REG(hw, IXGBE_QBRC(i));
IXGBE_READ_REG(hw, IXGBE_QBTC(i));
}
}
if (hw->mac.type == ixgbe_mac_X540) {
if (hw->phy.id == 0)
hw->phy.ops.identify(hw);
hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
}
return 0;
}
/**
* ixgbe_read_pba_string_generic - Reads part number string from EEPROM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the EEPROM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the EEPROM.
**/
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
s32 ret_val;
u16 data;
u16 pba_ptr;
u16 offset;
u16 length;
if (pba_num == NULL) {
hw_dbg(hw, "PBA string buffer was null\n");
return IXGBE_ERR_INVALID_ARGUMENT;
}
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
/*
* if data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (data != IXGBE_PBANUM_PTR_GUARD) {
hw_dbg(hw, "NVM PBA number is not stored as string\n");
/* we will need 11 characters to store the PBA */
if (pba_num_size < 11) {
hw_dbg(hw, "PBA string buffer too small\n");
return IXGBE_ERR_NO_SPACE;
}
/* extract hex string from data and pba_ptr */
pba_num[0] = (data >> 12) & 0xF;
pba_num[1] = (data >> 8) & 0xF;
pba_num[2] = (data >> 4) & 0xF;
pba_num[3] = data & 0xF;
pba_num[4] = (pba_ptr >> 12) & 0xF;
pba_num[5] = (pba_ptr >> 8) & 0xF;
pba_num[6] = '-';
pba_num[7] = 0;
pba_num[8] = (pba_ptr >> 4) & 0xF;
pba_num[9] = pba_ptr & 0xF;
/* put a null character on the end of our string */
pba_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (pba_num[offset] < 0xA)
pba_num[offset] += '0';
else if (pba_num[offset] < 0x10)
pba_num[offset] += 'A' - 0xA;
}
return 0;
}
ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
if (length == 0xFFFF || length == 0) {
hw_dbg(hw, "NVM PBA number section invalid length\n");
return IXGBE_ERR_PBA_SECTION;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
hw_dbg(hw, "PBA string buffer too small\n");
return IXGBE_ERR_NO_SPACE;
}
/* trim pba length from start of string */
pba_ptr++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
return ret_val;
}
pba_num[offset * 2] = (u8)(data >> 8);
pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
}
pba_num[offset * 2] = '\0';
return 0;
}
/**
* ixgbe_get_mac_addr_generic - Generic get MAC address
* @hw: pointer to hardware structure
* @mac_addr: Adapter MAC address
*
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
* A reset of the adapter must be performed prior to calling this function
* in order for the MAC address to have been loaded from the EEPROM into RAR0
**/
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
for (i = 0; i < 4; i++)
mac_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < 2; i++)
mac_addr[i+4] = (u8)(rar_high >> (i*8));
return 0;
}
/**
* ixgbe_get_bus_info_generic - Generic set PCI bus info
* @hw: pointer to hardware structure
*
* Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
**/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
struct ixgbe_adapter *adapter = hw->back;
struct ixgbe_mac_info *mac = &hw->mac;
u16 link_status;
hw->bus.type = ixgbe_bus_type_pci_express;
/* Get the negotiated link width and speed from PCI config space */
pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
&link_status);
switch (link_status & IXGBE_PCI_LINK_WIDTH) {
case IXGBE_PCI_LINK_WIDTH_1:
hw->bus.width = ixgbe_bus_width_pcie_x1;
break;
case IXGBE_PCI_LINK_WIDTH_2:
hw->bus.width = ixgbe_bus_width_pcie_x2;
break;
case IXGBE_PCI_LINK_WIDTH_4:
hw->bus.width = ixgbe_bus_width_pcie_x4;
break;
case IXGBE_PCI_LINK_WIDTH_8:
hw->bus.width = ixgbe_bus_width_pcie_x8;
break;
default:
hw->bus.width = ixgbe_bus_width_unknown;
break;
}
switch (link_status & IXGBE_PCI_LINK_SPEED) {
case IXGBE_PCI_LINK_SPEED_2500:
hw->bus.speed = ixgbe_bus_speed_2500;
break;
case IXGBE_PCI_LINK_SPEED_5000:
hw->bus.speed = ixgbe_bus_speed_5000;
break;
default:
hw->bus.speed = ixgbe_bus_speed_unknown;
break;
}
mac->ops.set_lan_id(hw);
return 0;
}
/**
* ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
struct ixgbe_bus_info *bus = &hw->bus;
u32 reg;
reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
bus->lan_id = bus->func;
/* check for a port swap */
reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
if (reg & IXGBE_FACTPS_LFS)
bus->func ^= 0x1;
}
/**
* ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
* @hw: pointer to hardware structure
*
* Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
* disables transmit and receive units. The adapter_stopped flag is used by
* the shared code and drivers to determine if the adapter is in a stopped
* state and should not touch the hardware.
**/
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
{
u32 reg_val;
u16 i;
/*
* Set the adapter_stopped flag so other driver functions stop touching
* the hardware
*/
hw->adapter_stopped = true;
/* Disable the receive unit */
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
/* Clear interrupt mask to stop interrupts from being generated */
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
/* Clear any pending interrupts, flush previous writes */
IXGBE_READ_REG(hw, IXGBE_EICR);
/* Disable the transmit unit. Each queue must be disabled. */
for (i = 0; i < hw->mac.max_tx_queues; i++)
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
/* Disable the receive unit by stopping each queue */
for (i = 0; i < hw->mac.max_rx_queues; i++) {
reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
reg_val &= ~IXGBE_RXDCTL_ENABLE;
reg_val |= IXGBE_RXDCTL_SWFLSH;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
}
/* flush all queues disables */
IXGBE_WRITE_FLUSH(hw);
usleep_range(1000, 2000);
/*
* Prevent the PCI-E bus from from hanging by disabling PCI-E master
* access and verify no pending requests
*/
return ixgbe_disable_pcie_master(hw);
}
/**
* ixgbe_led_on_generic - Turns on the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn on
**/
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn on the LED, set mode to ON. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_led_off_generic - Turns off the software controllable LEDs.
* @hw: pointer to hardware structure
* @index: led number to turn off
**/
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
{
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
/* To turn off the LED, set mode to OFF. */
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_init_eeprom_params_generic - Initialize EEPROM params
* @hw: pointer to hardware structure
*
* Initializes the EEPROM parameters ixgbe_eeprom_info within the
* ixgbe_hw struct in order to set up EEPROM access.
**/
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
{
struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
u32 eec;
u16 eeprom_size;
if (eeprom->type == ixgbe_eeprom_uninitialized) {
eeprom->type = ixgbe_eeprom_none;
/* Set default semaphore delay to 10ms which is a well
* tested value */
eeprom->semaphore_delay = 10;
/* Clear EEPROM page size, it will be initialized as needed */
eeprom->word_page_size = 0;
/*
* Check for EEPROM present first.
* If not present leave as none
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_PRES) {
eeprom->type = ixgbe_eeprom_spi;
/*
* SPI EEPROM is assumed here. This code would need to
* change if a future EEPROM is not SPI.
*/
eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
IXGBE_EEC_SIZE_SHIFT);
eeprom->word_size = 1 << (eeprom_size +
IXGBE_EEPROM_WORD_SIZE_SHIFT);
}
if (eec & IXGBE_EEC_ADDR_SIZE)
eeprom->address_bits = 16;
else
eeprom->address_bits = 8;
hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
"%d\n", eeprom->type, eeprom->word_size,
eeprom->address_bits);
}
return 0;
}
/**
* ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to write
* @words: number of words
* @data: 16 bit word(s) to write to EEPROM
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status = 0;
u16 i, count;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset + words > hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
/*
* The EEPROM page size cannot be queried from the chip. We do lazy
* initialization. It is worth to do that when we write large buffer.
*/
if ((hw->eeprom.word_page_size == 0) &&
(words > IXGBE_EEPROM_PAGE_SIZE_MAX))
ixgbe_detect_eeprom_page_size_generic(hw, offset);
/*
* We cannot hold synchronization semaphores for too long
* to avoid other entity starvation. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
count, &data[i]);
if (status != 0)
break;
}
out:
return status;
}
/**
* ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be written to
* @words: number of word(s)
* @data: 16 bit word(s) to be written to the EEPROM
*
* If ixgbe_eeprom_update_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status;
u16 word;
u16 page_size;
u16 i;
u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
/* Prepare the EEPROM for writing */
status = ixgbe_acquire_eeprom(hw);
if (status == 0) {
if (ixgbe_ready_eeprom(hw) != 0) {
ixgbe_release_eeprom(hw);
status = IXGBE_ERR_EEPROM;
}
}
if (status == 0) {
for (i = 0; i < words; i++) {
ixgbe_standby_eeprom(hw);
/* Send the WRITE ENABLE command (8 bit opcode ) */
ixgbe_shift_out_eeprom_bits(hw,
IXGBE_EEPROM_WREN_OPCODE_SPI,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_standby_eeprom(hw);
/*
* Some SPI eeproms use the 8th address bit embedded
* in the opcode
*/
if ((hw->eeprom.address_bits == 8) &&
((offset + i) >= 128))
write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
ixgbe_shift_out_eeprom_bits(hw, write_opcode,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
hw->eeprom.address_bits);
page_size = hw->eeprom.word_page_size;
/* Send the data in burst via SPI*/
do {
word = data[i];
word = (word >> 8) | (word << 8);
ixgbe_shift_out_eeprom_bits(hw, word, 16);
if (page_size == 0)
break;
/* do not wrap around page */
if (((offset + i) & (page_size - 1)) ==
(page_size - 1))
break;
} while (++i < words);
ixgbe_standby_eeprom(hw);
usleep_range(10000, 20000);
}
/* Done with writing - release the EEPROM */
ixgbe_release_eeprom(hw);
}
return status;
}
/**
* ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be written to
* @data: 16 bit word to be written to the EEPROM
*
* If ixgbe_eeprom_update_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
s32 status;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
out:
return status;
}
/**
* ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @words: number of word(s)
* @data: read 16 bit words(s) from EEPROM
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status = 0;
u16 i, count;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset + words > hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
/*
* We cannot hold synchronization semaphores for too long
* to avoid other entity starvation. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
count, &data[i]);
if (status != 0)
break;
}
out:
return status;
}
/**
* ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @words: number of word(s)
* @data: read 16 bit word(s) from EEPROM
*
* Reads 16 bit word(s) from EEPROM through bit-bang method
**/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
s32 status;
u16 word_in;
u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
u16 i;
/* Prepare the EEPROM for reading */
status = ixgbe_acquire_eeprom(hw);
if (status == 0) {
if (ixgbe_ready_eeprom(hw) != 0) {
ixgbe_release_eeprom(hw);
status = IXGBE_ERR_EEPROM;
}
}
if (status == 0) {
for (i = 0; i < words; i++) {
ixgbe_standby_eeprom(hw);
/*
* Some SPI eeproms use the 8th address bit embedded
* in the opcode
*/
if ((hw->eeprom.address_bits == 8) &&
((offset + i) >= 128))
read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
ixgbe_shift_out_eeprom_bits(hw, read_opcode,
IXGBE_EEPROM_OPCODE_BITS);
ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
hw->eeprom.address_bits);
/* Read the data. */
word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
/* End this read operation */
ixgbe_release_eeprom(hw);
}
return status;
}
/**
* ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be read
* @data: read 16 bit value from EEPROM
*
* Reads 16 bit value from EEPROM through bit-bang method
**/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
u16 *data)
{
s32 status;
hw->eeprom.ops.init_params(hw);
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
out:
return status;
}
/**
* ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @words: number of word(s)
* @data: 16 bit word(s) from the EEPROM
*
* Reads a 16 bit word(s) from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
u32 eerd;
s32 status = 0;
u32 i;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
IXGBE_EEPROM_RW_REG_START;
IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
if (status == 0) {
data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
IXGBE_EEPROM_RW_REG_DATA);
} else {
hw_dbg(hw, "Eeprom read timed out\n");
goto out;
}
}
out:
return status;
}
/**
* ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
* @hw: pointer to hardware structure
* @offset: offset within the EEPROM to be used as a scratch pad
*
* Discover EEPROM page size by writing marching data at given offset.
* This function is called only when we are writing a new large buffer
* at given offset so the data would be overwritten anyway.
**/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
u16 offset)
{
u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
s32 status = 0;
u16 i;
for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
data[i] = i;
hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
IXGBE_EEPROM_PAGE_SIZE_MAX, data);
hw->eeprom.word_page_size = 0;
if (status != 0)
goto out;
status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
if (status != 0)
goto out;
/*
* When writing in burst more than the actual page size
* EEPROM address wraps around current page.
*/
hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
hw_dbg(hw, "Detected EEPROM page size = %d words.",
hw->eeprom.word_page_size);
out:
return status;
}
/**
* ixgbe_read_eerd_generic - Read EEPROM word using EERD
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}
/**
* ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @words: number of words
* @data: word(s) write to the EEPROM
*
* Write a 16 bit word(s) to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
u16 words, u16 *data)
{
u32 eewr;
s32 status = 0;
u16 i;
hw->eeprom.ops.init_params(hw);
if (words == 0) {
status = IXGBE_ERR_INVALID_ARGUMENT;
goto out;
}
if (offset >= hw->eeprom.word_size) {
status = IXGBE_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
IXGBE_EEPROM_RW_REG_START;
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
if (status != 0) {
hw_dbg(hw, "Eeprom write EEWR timed out\n");
goto out;
}
IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
if (status != 0) {
hw_dbg(hw, "Eeprom write EEWR timed out\n");
goto out;
}
}
out:
return status;
}
/**
* ixgbe_write_eewr_generic - Write EEPROM word using EEWR
* @hw: pointer to hardware structure
* @offset: offset of word in the EEPROM to write
* @data: word write to the EEPROM
*
* Write a 16 bit word to the EEPROM using the EEWR register.
**/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}
/**
* ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
* @hw: pointer to hardware structure
* @ee_reg: EEPROM flag for polling
*
* Polls the status bit (bit 1) of the EERD or EEWR to determine when the
* read or write is done respectively.
**/
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
{
u32 i;
u32 reg;
s32 status = IXGBE_ERR_EEPROM;
for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
if (ee_reg == IXGBE_NVM_POLL_READ)
reg = IXGBE_READ_REG(hw, IXGBE_EERD);
else
reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
if (reg & IXGBE_EEPROM_RW_REG_DONE) {
status = 0;
break;
}
udelay(5);
}
return status;
}
/**
* ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
* @hw: pointer to hardware structure
*
* Prepares EEPROM for access using bit-bang method. This function should
* be called before issuing a command to the EEPROM.
**/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u32 eec;
u32 i;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
status = IXGBE_ERR_SWFW_SYNC;
if (status == 0) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Request EEPROM Access */
eec |= IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
if (eec & IXGBE_EEC_GNT)
break;
udelay(5);
}
/* Release if grant not acquired */
if (!(eec & IXGBE_EEC_GNT)) {
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
hw_dbg(hw, "Could not acquire EEPROM grant\n");
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
status = IXGBE_ERR_EEPROM;
}
/* Setup EEPROM for Read/Write */
if (status == 0) {
/* Clear CS and SK */
eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
}
return status;
}
/**
* ixgbe_get_eeprom_semaphore - Get hardware semaphore
* @hw: pointer to hardware structure
*
* Sets the hardware semaphores so EEPROM access can occur for bit-bang method
**/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
s32 status = IXGBE_ERR_EEPROM;
u32 timeout = 2000;
u32 i;
u32 swsm;
/* Get SMBI software semaphore between device drivers first */
for (i = 0; i < timeout; i++) {
/*
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI)) {
status = 0;
break;
}
udelay(50);
}
if (i == timeout) {
hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
"not granted.\n");
/*
* this release is particularly important because our attempts
* above to get the semaphore may have succeeded, and if there
* was a timeout, we should unconditionally clear the semaphore
* bits to free the driver to make progress
*/
ixgbe_release_eeprom_semaphore(hw);
udelay(50);
/*
* one last try
* If the SMBI bit is 0 when we read it, then the bit will be
* set and we have the semaphore
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (!(swsm & IXGBE_SWSM_SMBI))
status = 0;
}
/* Now get the semaphore between SW/FW through the SWESMBI bit */
if (status == 0) {
for (i = 0; i < timeout; i++) {
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Set the SW EEPROM semaphore bit to request access */
swsm |= IXGBE_SWSM_SWESMBI;
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
/*
* If we set the bit successfully then we got the
* semaphore.
*/
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
if (swsm & IXGBE_SWSM_SWESMBI)
break;
udelay(50);
}
/*
* Release semaphores and return error if SW EEPROM semaphore
* was not granted because we don't have access to the EEPROM
*/
if (i >= timeout) {
hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
"not granted.\n");
ixgbe_release_eeprom_semaphore(hw);
status = IXGBE_ERR_EEPROM;
}
} else {
hw_dbg(hw, "Software semaphore SMBI between device drivers "
"not granted.\n");
}
return status;
}
/**
* ixgbe_release_eeprom_semaphore - Release hardware semaphore
* @hw: pointer to hardware structure
*
* This function clears hardware semaphore bits.
**/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
u32 swsm;
swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ready_eeprom - Polls for EEPROM ready
* @hw: pointer to hardware structure
**/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 i;
u8 spi_stat_reg;
/*
* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
IXGBE_EEPROM_OPCODE_BITS);
spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
ixgbe_standby_eeprom(hw);
}
/*
* On some parts, SPI write time could vary from 0-20mSec on 3.3V
* devices (and only 0-5mSec on 5V devices)
*/
if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
hw_dbg(hw, "SPI EEPROM Status error\n");
status = IXGBE_ERR_EEPROM;
}
return status;
}
/**
* ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
* @hw: pointer to hardware structure
**/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/* Toggle CS to flush commands */
eec |= IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
eec &= ~IXGBE_EEC_CS;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
* @hw: pointer to hardware structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
**/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
u16 count)
{
u32 eec;
u32 mask;
u32 i;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
/*
* Mask is used to shift "count" bits of "data" out to the EEPROM
* one bit at a time. Determine the starting bit based on count
*/
mask = 0x01 << (count - 1);
for (i = 0; i < count; i++) {
/*
* A "1" is shifted out to the EEPROM by setting bit "DI" to a
* "1", and then raising and then lowering the clock (the SK
* bit controls the clock input to the EEPROM). A "0" is
* shifted out to the EEPROM by setting "DI" to "0" and then
* raising and then lowering the clock.
*/
if (data & mask)
eec |= IXGBE_EEC_DI;
else
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
ixgbe_raise_eeprom_clk(hw, &eec);
ixgbe_lower_eeprom_clk(hw, &eec);
/*
* Shift mask to signify next bit of data to shift in to the
* EEPROM
*/
mask = mask >> 1;
}
/* We leave the "DI" bit set to "0" when we leave this routine. */
eec &= ~IXGBE_EEC_DI;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
* @hw: pointer to hardware structure
**/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
u32 eec;
u32 i;
u16 data = 0;
/*
* In order to read a register from the EEPROM, we need to shift
* 'count' bits in from the EEPROM. Bits are "shifted in" by raising
* the clock input to the EEPROM (setting the SK bit), and then reading
* the value of the "DO" bit. During this "shifting in" process the
* "DI" bit should always be clear.
*/
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
for (i = 0; i < count; i++) {
data = data << 1;
ixgbe_raise_eeprom_clk(hw, &eec);
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec &= ~(IXGBE_EEC_DI);
if (eec & IXGBE_EEC_DO)
data |= 1;
ixgbe_lower_eeprom_clk(hw, &eec);
}
return data;
}
/**
* ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eec: EEC register's current value
**/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Raise the clock input to the EEPROM
* (setting the SK bit), then delay
*/
*eec = *eec | IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
* @hw: pointer to hardware structure
* @eecd: EECD's current value
**/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
/*
* Lower the clock input to the EEPROM (clearing the SK bit), then
* delay
*/
*eec = *eec & ~IXGBE_EEC_SK;
IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
}
/**
* ixgbe_release_eeprom - Release EEPROM, release semaphores
* @hw: pointer to hardware structure
**/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
u32 eec;
eec = IXGBE_READ_REG(hw, IXGBE_EEC);
eec |= IXGBE_EEC_CS; /* Pull CS high */
eec &= ~IXGBE_EEC_SK; /* Lower SCK */
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
IXGBE_WRITE_FLUSH(hw);
udelay(1);
/* Stop requesting EEPROM access */
eec &= ~IXGBE_EEC_REQ;
IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
/*
* Delay before attempt to obtain semaphore again to allow FW
* access. semaphore_delay is in ms we need us for usleep_range
*/
usleep_range(hw->eeprom.semaphore_delay * 1000,
hw->eeprom.semaphore_delay * 2000);
}
/**
* ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
* @hw: pointer to hardware structure
**/
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
u16 i;
u16 j;
u16 checksum = 0;
u16 length = 0;
u16 pointer = 0;
u16 word = 0;
/* Include 0x0-0x3F in the checksum */
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
if (hw->eeprom.ops.read(hw, i, &word) != 0) {
hw_dbg(hw, "EEPROM read failed\n");
break;
}
checksum += word;
}
/* Include all data from pointers except for the fw pointer */
for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
hw->eeprom.ops.read(hw, i, &pointer);
/* Make sure the pointer seems valid */
if (pointer != 0xFFFF && pointer != 0) {
hw->eeprom.ops.read(hw, pointer, &length);
if (length != 0xFFFF && length != 0) {
for (j = pointer+1; j <= pointer+length; j++) {
hw->eeprom.ops.read(hw, j, &word);
checksum += word;
}
}
}
}
checksum = (u16)IXGBE_EEPROM_SUM - checksum;
return checksum;
}
/**
* ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
* @hw: pointer to hardware structure
* @checksum_val: calculated checksum
*
* Performs checksum calculation and validates the EEPROM checksum. If the
* caller does not need checksum_val, the value can be NULL.
**/
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
u16 *checksum_val)
{
s32 status;
u16 checksum;
u16 read_checksum = 0;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
/*
* Verify read checksum from EEPROM is the same as
* calculated checksum
*/
if (read_checksum != checksum)
status = IXGBE_ERR_EEPROM_CHECKSUM;
/* If the user cares, return the calculated checksum */
if (checksum_val)
*checksum_val = checksum;
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
* @hw: pointer to hardware structure
**/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
s32 status;
u16 checksum;
/*
* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
status = hw->eeprom.ops.read(hw, 0, &checksum);
if (status == 0) {
checksum = hw->eeprom.ops.calc_checksum(hw);
status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
checksum);
} else {
hw_dbg(hw, "EEPROM read failed\n");
}
return status;
}
/**
* ixgbe_set_rar_generic - Set Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
* @addr: Address to put into receive address register
* @vmdq: VMDq "set" or "pool" index
* @enable_addr: set flag that address is active
*
* Puts an ethernet address into a receive address register.
**/
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
u32 enable_addr)
{
u32 rar_low, rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
return IXGBE_ERR_INVALID_ARGUMENT;
}
/* setup VMDq pool selection before this RAR gets enabled */
hw->mac.ops.set_vmdq(hw, index, vmdq);
/*
* HW expects these in little endian so we reverse the byte
* order from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) |
((u32)addr[3] << 24));
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
if (enable_addr != 0)
rar_high |= IXGBE_RAH_AV;
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
return 0;
}
/**
* ixgbe_clear_rar_generic - Remove Rx address register
* @hw: pointer to hardware structure
* @index: Receive address register to write
*
* Clears an ethernet address from a receive address register.
**/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
u32 rar_high;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (index >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", index);
return IXGBE_ERR_INVALID_ARGUMENT;
}
/*
* Some parts put the VMDq setting in the extra RAH bits,
* so save everything except the lower 16 bits that hold part
* of the address and the address valid bit.
*/
rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
/* clear VMDq pool/queue selection for this RAR */
hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
return 0;
}
/**
* ixgbe_init_rx_addrs_generic - Initializes receive address filters.
* @hw: pointer to hardware structure
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
**/
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
{
u32 i;
u32 rar_entries = hw->mac.num_rar_entries;
/*
* If the current mac address is valid, assume it is a software override
* to the permanent address.
* Otherwise, use the permanent address from the eeprom.
*/
if (!is_valid_ether_addr(hw->mac.addr)) {
/* Get the MAC address from the RAR0 for later reference */
hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
} else {
/* Setup the receive address. */
hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
/* clear VMDq pool/queue selection for RAR 0 */
hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
}
hw->addr_ctrl.overflow_promisc = 0;
hw->addr_ctrl.rar_used_count = 1;
/* Zero out the other receive addresses. */
hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
for (i = 1; i < rar_entries; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
}
/* Clear the MTA */
hw->addr_ctrl.mta_in_use = 0;
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
hw_dbg(hw, " Clearing MTA\n");
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
if (hw->mac.ops.init_uta_tables)
hw->mac.ops.init_uta_tables(hw);
return 0;
}
/**
* ixgbe_mta_vector - Determines bit-vector in multicast table to set
* @hw: pointer to hardware structure
* @mc_addr: the multicast address
*
* Extracts the 12 bits, from a multicast address, to determine which
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
* incoming rx multicast addresses, to determine the bit-vector to check in
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
* by the MO field of the MCSTCTRL. The MO field is set during initialization
* to mc_filter_type.
**/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector = 0;
switch (hw->mac.mc_filter_type) {
case 0: /* use bits [47:36] of the address */
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1: /* use bits [46:35] of the address */
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2: /* use bits [45:34] of the address */
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3: /* use bits [43:32] of the address */
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
default: /* Invalid mc_filter_type */
hw_dbg(hw, "MC filter type param set incorrectly\n");
break;
}
/* vector can only be 12-bits or boundary will be exceeded */
vector &= 0xFFF;
return vector;
}
/**
* ixgbe_set_mta - Set bit-vector in multicast table
* @hw: pointer to hardware structure
* @hash_value: Multicast address hash value
*
* Sets the bit-vector in the multicast table.
**/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
u32 vector;
u32 vector_bit;
u32 vector_reg;
hw->addr_ctrl.mta_in_use++;
vector = ixgbe_mta_vector(hw, mc_addr);
hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
/*
* The MTA is a register array of 128 32-bit registers. It is treated
* like an array of 4096 bits. We want to set bit
* BitArray[vector_value]. So we figure out what register the bit is
* in, read it, OR in the new bit, then write back the new value. The
* register is determined by the upper 7 bits of the vector value and
* the bit within that register are determined by the lower 5 bits of
* the value.
*/
vector_reg = (vector >> 5) & 0x7F;
vector_bit = vector & 0x1F;
hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
}
/**
* ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
* @hw: pointer to hardware structure
* @netdev: pointer to net device structure
*
* The given list replaces any existing list. Clears the MC addrs from receive
* address registers and the multicast table. Uses unused receive address
* registers for the first multicast addresses, and hashes the rest into the
* multicast table.
**/
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
struct net_device *netdev)
{
struct netdev_hw_addr *ha;
u32 i;
/*
* Set the new number of MC addresses that we are being requested to
* use.
*/
hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
hw->addr_ctrl.mta_in_use = 0;
/* Clear mta_shadow */
hw_dbg(hw, " Clearing MTA\n");
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* Update mta shadow */
netdev_for_each_mc_addr(ha, netdev) {
hw_dbg(hw, " Adding the multicast addresses:\n");
ixgbe_set_mta(hw, ha->addr);
}
/* Enable mta */
for (i = 0; i < hw->mac.mcft_size; i++)
IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
hw->mac.mta_shadow[i]);
if (hw->addr_ctrl.mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
return 0;
}
/**
* ixgbe_enable_mc_generic - Enable multicast address in RAR
* @hw: pointer to hardware structure
*
* Enables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
{
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_disable_mc_generic - Disable multicast address in RAR
* @hw: pointer to hardware structure
*
* Disables multicast address in RAR and the use of the multicast hash table.
**/
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
{
struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
if (a->mta_in_use > 0)
IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
return 0;
}
/**
* ixgbe_fc_enable_generic - Enable flow control
* @hw: pointer to hardware structure
*
* Enable flow control according to the current settings.
**/
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
{
s32 ret_val = 0;
u32 mflcn_reg, fccfg_reg;
u32 reg;
u32 fcrtl, fcrth;
int i;
/*
* Validate the water mark configuration for packet buffer 0. Zero
* water marks indicate that the packet buffer was not configured
* and the watermarks for packet buffer 0 should always be configured.
*/
if (!hw->fc.low_water ||
!hw->fc.high_water[0] ||
!hw->fc.pause_time) {
hw_dbg(hw, "Invalid water mark configuration\n");
ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
goto out;
}
/* Negotiate the fc mode to use */
ixgbe_fc_autoneg(hw);
/* Disable any previous flow control settings */
mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
/*
* The possible values of fc.current_mode are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but
* we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: Invalid.
*/
switch (hw->fc.current_mode) {
case ixgbe_fc_none:
/*
* Flow control is disabled by software override or autoneg.
* The code below will actually disable it in the HW.
*/
break;
case ixgbe_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is
* disabled by software override. Since there really
* isn't a way to advertise that we are capable of RX
* Pause ONLY, we will advertise that we support both
* symmetric and asymmetric Rx PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
mflcn_reg |= IXGBE_MFLCN_RFCE;
break;
case ixgbe_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled by software override.
*/
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
break;
case ixgbe_fc_full:
/* Flow control (both Rx and Tx) is enabled by SW override. */
mflcn_reg |= IXGBE_MFLCN_RFCE;
fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
ret_val = IXGBE_ERR_CONFIG;
goto out;
break;
}
/* Set 802.3x based flow control settings. */
mflcn_reg |= IXGBE_MFLCN_DPF;
IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
/* Set up and enable Rx high/low water mark thresholds, enable XON. */
for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
hw->fc.high_water[i]) {
IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
} else {
IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
/*
* In order to prevent Tx hangs when the internal Tx
* switch is enabled we must set the high water mark
* to the maximum FCRTH value. This allows the Tx
* switch to function even under heavy Rx workloads.
*/
fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
}
IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
}
/* Configure pause time (2 TCs per register) */
reg = hw->fc.pause_time * 0x00010001;
for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
out:
return ret_val;
}
/**
* ixgbe_negotiate_fc - Negotiate flow control
* @hw: pointer to hardware structure
* @adv_reg: flow control advertised settings
* @lp_reg: link partner's flow control settings
* @adv_sym: symmetric pause bit in advertisement
* @adv_asm: asymmetric pause bit in advertisement
* @lp_sym: symmetric pause bit in link partner advertisement
* @lp_asm: asymmetric pause bit in link partner advertisement
*
* Find the intersection between advertised settings and link partner's
* advertised settings
**/
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
{
if ((!(adv_reg)) || (!(lp_reg)))
return IXGBE_ERR_FC_NOT_NEGOTIATED;
if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == ixgbe_fc_full) {
hw->fc.current_mode = ixgbe_fc_full;
hw_dbg(hw, "Flow Control = FULL.\n");
} else {
hw->fc.current_mode = ixgbe_fc_rx_pause;
hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
}
} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ixgbe_fc_tx_pause;
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
!(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
hw->fc.current_mode = ixgbe_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
} else {
hw->fc.current_mode = ixgbe_fc_none;
hw_dbg(hw, "Flow Control = NONE.\n");
}
return 0;
}
/**
* ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
* @hw: pointer to hardware structure
*
* Enable flow control according on 1 gig fiber.
**/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* On multispeed fiber at 1g, bail out if
* - link is up but AN did not complete, or if
* - link is up and AN completed but timed out
*/
linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
(!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
goto out;
pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
IXGBE_PCS1GANA_ASM_PAUSE,
IXGBE_PCS1GANA_SYM_PAUSE,
IXGBE_PCS1GANA_ASM_PAUSE);
out:
return ret_val;
}
/**
* ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
u32 links2, anlp1_reg, autoc_reg, links;
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
/*
* On backplane, bail out if
* - backplane autoneg was not completed, or if
* - we are 82599 and link partner is not AN enabled
*/
links = IXGBE_READ_REG(hw, IXGBE_LINKS);
if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
goto out;
if (hw->mac.type == ixgbe_mac_82599EB) {
links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
goto out;
}
/*
* Read the 10g AN autoc and LP ability registers and resolve
* local flow control settings accordingly
*/
autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
out:
return ret_val;
}
/**
* ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
* @hw: pointer to hardware structure
*
* Enable flow control according to IEEE clause 37.
**/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
u16 technology_ability_reg = 0;
u16 lp_technology_ability_reg = 0;
hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
MDIO_MMD_AN,
&technology_ability_reg);
hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
MDIO_MMD_AN,
&lp_technology_ability_reg);
return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
(u32)lp_technology_ability_reg,
IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}
/**
* ixgbe_fc_autoneg - Configure flow control
* @hw: pointer to hardware structure
*
* Compares our advertised flow control capabilities to those advertised by
* our link partner, and determines the proper flow control mode to use.
**/
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
{
s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
ixgbe_link_speed speed;
bool link_up;
/*
* AN should have completed when the cable was plugged in.
* Look for reasons to bail out. Bail out if:
* - FC autoneg is disabled, or if
* - link is not up.
*
* Since we're being called from an LSC, link is already known to be up.
* So use link_up_wait_to_complete=false.
*/
if (hw->fc.disable_fc_autoneg)
goto out;
hw->mac.ops.check_link(hw, &speed, &link_up, false);
if (!link_up)
goto out;
switch (hw->phy.media_type) {
/* Autoneg flow control on fiber adapters */
case ixgbe_media_type_fiber:
if (speed == IXGBE_LINK_SPEED_1GB_FULL)
ret_val = ixgbe_fc_autoneg_fiber(hw);
break;
/* Autoneg flow control on backplane adapters */
case ixgbe_media_type_backplane:
ret_val = ixgbe_fc_autoneg_backplane(hw);
break;
/* Autoneg flow control on copper adapters */
case ixgbe_media_type_copper:
if (ixgbe_device_supports_autoneg_fc(hw) == 0)
ret_val = ixgbe_fc_autoneg_copper(hw);
break;
default:
break;
}
out:
if (ret_val == 0) {
hw->fc.fc_was_autonegged = true;
} else {
hw->fc.fc_was_autonegged = false;
hw->fc.current_mode = hw->fc.requested_mode;
}
}
/**
* ixgbe_disable_pcie_master - Disable PCI-express master access
* @hw: pointer to hardware structure
*
* Disables PCI-Express master access and verifies there are no pending
* requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
* bit hasn't caused the master requests to be disabled, else 0
* is returned signifying master requests disabled.
**/
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
{
struct ixgbe_adapter *adapter = hw->back;
s32 status = 0;
u32 i;
u16 value;
/* Always set this bit to ensure any future transactions are blocked */
IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
/* Exit if master requests are blocked */
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
goto out;
/* Poll for master request bit to clear */
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
udelay(100);
if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
goto out;
}
/*
* Two consecutive resets are required via CTRL.RST per datasheet
* 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
* of this need. The first reset prevents new master requests from
* being issued by our device. We then must wait 1usec or more for any
* remaining completions from the PCIe bus to trickle in, and then reset
* again to clear out any effects they may have had on our device.
*/
hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
/*
* Before proceeding, make sure that the PCIe block does not have
* transactions pending.
*/
for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
udelay(100);
pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
&value);
if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
goto out;
}
hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
out:
return status;
}
/**
* ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to acquire
*
* Acquires the SWFW semaphore through the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
u32 fwmask = mask << 5;
s32 timeout = 200;
while (timeout) {
/*
* SW EEPROM semaphore bit is used for access to all
* SW_FW_SYNC/GSSR bits (not just EEPROM)
*/
if (ixgbe_get_eeprom_semaphore(hw))
return IXGBE_ERR_SWFW_SYNC;
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
if (!(gssr & (fwmask | swmask)))
break;
/*
* Firmware currently using resource (fwmask) or other software
* thread currently using resource (swmask)
*/
ixgbe_release_eeprom_semaphore(hw);
usleep_range(5000, 10000);
timeout--;
}
if (!timeout) {
hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
return IXGBE_ERR_SWFW_SYNC;
}
gssr |= swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
return 0;
}
/**
* ixgbe_release_swfw_sync - Release SWFW semaphore
* @hw: pointer to hardware structure
* @mask: Mask to specify which semaphore to release
*
* Releases the SWFW semaphore through the GSSR register for the specified
* function (CSR, PHY0, PHY1, EEPROM, Flash)
**/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
u32 gssr;
u32 swmask = mask;
ixgbe_get_eeprom_semaphore(hw);
gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
gssr &= ~swmask;
IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
ixgbe_release_eeprom_semaphore(hw);
}
/**
* ixgbe_disable_rx_buff_generic - Stops the receive data path
* @hw: pointer to hardware structure
*
* Stops the receive data path and waits for the HW to internally
* empty the Rx security block.
**/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
int i;
int secrxreg;
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
break;
else
/* Use interrupt-safe sleep just in case */
udelay(1000);
}
/* For informational purposes only */
if (i >= IXGBE_MAX_SECRX_POLL)
hw_dbg(hw, "Rx unit being enabled before security "
"path fully disabled. Continuing with init.\n");
return 0;
}
/**
* ixgbe_enable_rx_buff - Enables the receive data path
* @hw: pointer to hardware structure
*
* Enables the receive data path
**/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
int secrxreg;
secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
IXGBE_WRITE_FLUSH(hw);
return 0;
}
/**
* ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
* @hw: pointer to hardware structure
* @regval: register value to write to RXCTRL
*
* Enables the Rx DMA unit
**/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
return 0;
}
/**
* ixgbe_blink_led_start_generic - Blink LED based on index.
* @hw: pointer to hardware structure
* @index: led number to blink
**/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
ixgbe_link_speed speed = 0;
bool link_up = false;
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
s32 ret_val = 0;
/*
* Link must be up to auto-blink the LEDs;
* Force it if link is down.
*/
hw->mac.ops.check_link(hw, &speed, &link_up, false);
if (!link_up) {
/* Need the SW/FW semaphore around AUTOC writes if 82599 and
* LESM is on.
*/
bool got_lock = false;
if ((hw->mac.type == ixgbe_mac_82599EB) &&
ixgbe_verify_lesm_fw_enabled_82599(hw)) {
ret_val = hw->mac.ops.acquire_swfw_sync(hw,
IXGBE_GSSR_MAC_CSR_SM);
if (ret_val)
goto out;
got_lock = true;
}
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
autoc_reg |= IXGBE_AUTOC_FLU;
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
IXGBE_WRITE_FLUSH(hw);
if (got_lock)
hw->mac.ops.release_swfw_sync(hw,
IXGBE_GSSR_MAC_CSR_SM);
usleep_range(10000, 20000);
}
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg |= IXGBE_LED_BLINK(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
out:
return ret_val;
}
/**
* ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
* @hw: pointer to hardware structure
* @index: led number to stop blinking
**/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
s32 ret_val = 0;
bool got_lock = false;
/* Need the SW/FW semaphore around AUTOC writes if 82599 and
* LESM is on.
*/
if ((hw->mac.type == ixgbe_mac_82599EB) &&
ixgbe_verify_lesm_fw_enabled_82599(hw)) {
ret_val = hw->mac.ops.acquire_swfw_sync(hw,
IXGBE_GSSR_MAC_CSR_SM);
if (ret_val)
goto out;
got_lock = true;
}
autoc_reg &= ~IXGBE_AUTOC_FLU;
autoc_reg |= IXGBE_AUTOC_AN_RESTART;
IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
if (hw->mac.type == ixgbe_mac_82599EB)
ixgbe_reset_pipeline_82599(hw);
if (got_lock)
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
led_reg &= ~IXGBE_LED_MODE_MASK(index);
led_reg &= ~IXGBE_LED_BLINK(index);
led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
IXGBE_WRITE_FLUSH(hw);
out:
return ret_val;
}
/**
* ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_offset: SAN MAC address offset
*
* This function will read the EEPROM location for the SAN MAC address
* pointer, and returns the value at that location. This is used in both
* get and set mac_addr routines.
**/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
u16 *san_mac_offset)
{
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available.
*/
hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
return 0;
}
/**
* ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
* @hw: pointer to hardware structure
* @san_mac_addr: SAN MAC address
*
* Reads the SAN MAC address from the EEPROM, if it's available. This is
* per-port, so set_lan_id() must be called before reading the addresses.
* set_lan_id() is called by identify_sfp(), but this cannot be relied
* upon for non-SFP connections, so we must call it here.
**/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
u16 san_mac_data, san_mac_offset;
u8 i;
/*
* First read the EEPROM pointer to see if the MAC addresses are
* available. If they're not, no point in calling set_lan_id() here.
*/
ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
/*
* No addresses available in this EEPROM. It's not an
* error though, so just wipe the local address and return.
*/
for (i = 0; i < 6; i++)
san_mac_addr[i] = 0xFF;
goto san_mac_addr_out;
}
/* make sure we know which port we need to program */
hw->mac.ops.set_lan_id(hw);
/* apply the port offset to the address offset */
(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
(san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
for (i = 0; i < 3; i++) {
hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
san_mac_addr[i * 2] = (u8)(san_mac_data);
san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
san_mac_offset++;
}
san_mac_addr_out:
return 0;
}
/**
* ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
* @hw: pointer to hardware structure
*
* Read PCIe configuration space, and get the MSI-X vector count from
* the capabilities table.
**/
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
{
struct ixgbe_adapter *adapter = hw->back;
u16 msix_count = 1;
u16 max_msix_count;
u16 pcie_offset;
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
break;
default:
return msix_count;
}
pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
/* MSI-X count is zero-based in HW */
msix_count++;
if (msix_count > max_msix_count)
msix_count = max_msix_count;
return msix_count;
}
/**
* ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to disassociate
* @vmdq: VMDq pool index to remove from the rar
**/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar_lo, mpsar_hi;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
return IXGBE_ERR_INVALID_ARGUMENT;
}
mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
if (!mpsar_lo && !mpsar_hi)
goto done;
if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
if (mpsar_lo) {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
mpsar_lo = 0;
}
if (mpsar_hi) {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
mpsar_hi = 0;
}
} else if (vmdq < 32) {
mpsar_lo &= ~(1 << vmdq);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
} else {
mpsar_hi &= ~(1 << (vmdq - 32));
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
}
/* was that the last pool using this rar? */
if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
hw->mac.ops.clear_rar(hw, rar);
done:
return 0;
}
/**
* ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @rar: receive address register index to associate with a VMDq index
* @vmdq: VMDq pool index
**/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
u32 mpsar;
u32 rar_entries = hw->mac.num_rar_entries;
/* Make sure we are using a valid rar index range */
if (rar >= rar_entries) {
hw_dbg(hw, "RAR index %d is out of range.\n", rar);
return IXGBE_ERR_INVALID_ARGUMENT;
}
if (vmdq < 32) {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
mpsar |= 1 << vmdq;
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
} else {
mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
mpsar |= 1 << (vmdq - 32);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
}
return 0;
}
/**
* This function should only be involved in the IOV mode.
* In IOV mode, Default pool is next pool after the number of
* VFs advertized and not 0.
* MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
*
* ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
* @hw: pointer to hardware struct
* @vmdq: VMDq pool index
**/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
u32 rar = hw->mac.san_mac_rar_index;
if (vmdq < 32) {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
} else {
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
}
return 0;
}
/**
* ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
* @hw: pointer to hardware structure
**/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
int i;
for (i = 0; i < 128; i++)
IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
return 0;
}
/**
* ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
*
* return the VLVF index where this VLAN id should be placed
*
**/
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
{
u32 bits = 0;
u32 first_empty_slot = 0;
s32 regindex;
/* short cut the special case */
if (vlan == 0)
return 0;
/*
* Search for the vlan id in the VLVF entries. Save off the first empty
* slot found along the way
*/
for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
if (!bits && !(first_empty_slot))
first_empty_slot = regindex;
else if ((bits & 0x0FFF) == vlan)
break;
}
/*
* If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
* in the VLVF. Else use the first empty VLVF register for this
* vlan id.
*/
if (regindex >= IXGBE_VLVF_ENTRIES) {
if (first_empty_slot)
regindex = first_empty_slot;
else {
hw_dbg(hw, "No space in VLVF.\n");
regindex = IXGBE_ERR_NO_SPACE;
}
}
return regindex;
}
/**
* ixgbe_set_vfta_generic - Set VLAN filter table
* @hw: pointer to hardware structure
* @vlan: VLAN id to write to VLAN filter
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
*
* Turn on/off specified VLAN in the VLAN filter table.
**/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
bool vlan_on)
{
s32 regindex;
u32 bitindex;
u32 vfta;
u32 bits;
u32 vt;
u32 targetbit;
bool vfta_changed = false;
if (vlan > 4095)
return IXGBE_ERR_PARAM;
/*
* this is a 2 part operation - first the VFTA, then the
* VLVF and VLVFB if VT Mode is set
* We don't write the VFTA until we know the VLVF part succeeded.
*/
/* Part 1
* The VFTA is a bitstring made up of 128 32-bit registers
* that enable the particular VLAN id, much like the MTA:
* bits[11-5]: which register
* bits[4-0]: which bit in the register
*/
regindex = (vlan >> 5) & 0x7F;
bitindex = vlan & 0x1F;
targetbit = (1 << bitindex);
vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
if (vlan_on) {
if (!(vfta & targetbit)) {
vfta |= targetbit;
vfta_changed = true;
}
} else {
if ((vfta & targetbit)) {
vfta &= ~targetbit;
vfta_changed = true;
}
}
/* Part 2
* If VT Mode is set
* Either vlan_on
* make sure the vlan is in VLVF
* set the vind bit in the matching VLVFB
* Or !vlan_on
* clear the pool bit and possibly the vind
*/
vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
if (vt & IXGBE_VT_CTL_VT_ENABLE) {
s32 vlvf_index;
vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
if (vlvf_index < 0)
return vlvf_index;
if (vlan_on) {
/* set the pool bit */
if (vind < 32) {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index*2));
bits |= (1 << vind);
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB(vlvf_index*2),
bits);
} else {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index*2)+1));
bits |= (1 << (vind-32));
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB((vlvf_index*2)+1),
bits);
}
} else {
/* clear the pool bit */
if (vind < 32) {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index*2));
bits &= ~(1 << vind);
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB(vlvf_index*2),
bits);
bits |= IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index*2)+1));
} else {
bits = IXGBE_READ_REG(hw,
IXGBE_VLVFB((vlvf_index*2)+1));
bits &= ~(1 << (vind-32));
IXGBE_WRITE_REG(hw,
IXGBE_VLVFB((vlvf_index*2)+1),
bits);
bits |= IXGBE_READ_REG(hw,
IXGBE_VLVFB(vlvf_index*2));
}
}
/*
* If there are still bits set in the VLVFB registers
* for the VLAN ID indicated we need to see if the
* caller is requesting that we clear the VFTA entry bit.
* If the caller has requested that we clear the VFTA
* entry bit but there are still pools/VFs using this VLAN
* ID entry then ignore the request. We're not worried
* about the case where we're turning the VFTA VLAN ID
* entry bit on, only when requested to turn it off as
* there may be multiple pools and/or VFs using the
* VLAN ID entry. In that case we cannot clear the
* VFTA bit until all pools/VFs using that VLAN ID have also
* been cleared. This will be indicated by "bits" being
* zero.
*/
if (bits) {
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
(IXGBE_VLVF_VIEN | vlan));
if (!vlan_on) {
/* someone wants to clear the vfta entry
* but some pools/VFs are still using it.
* Ignore it. */
vfta_changed = false;
}
}
else
IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
}
if (vfta_changed)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
return 0;
}
/**
* ixgbe_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to hardware structure
*
* Clears the VLAN filer table, and the VMDq index associated with the filter
**/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
u32 offset;
for (offset = 0; offset < hw->mac.vft_size; offset++)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
}
return 0;
}
/**
* ixgbe_check_mac_link_generic - Determine link and speed status
* @hw: pointer to hardware structure
* @speed: pointer to link speed
* @link_up: true when link is up
* @link_up_wait_to_complete: bool used to wait for link up or not
*
* Reads the links register to determine if link is up and the current speed
**/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
bool *link_up, bool link_up_wait_to_complete)
{
u32 links_reg, links_orig;
u32 i;
/* clear the old state */
links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
if (links_orig != links_reg) {
hw_dbg(hw, "LINKS changed from %08X to %08X\n",
links_orig, links_reg);
}
if (link_up_wait_to_complete) {
for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
if (links_reg & IXGBE_LINKS_UP) {
*link_up = true;
break;
} else {
*link_up = false;
}
msleep(100);
links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
}
} else {
if (links_reg & IXGBE_LINKS_UP)
*link_up = true;
else
*link_up = false;
}
if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_10G_82599)
*speed = IXGBE_LINK_SPEED_10GB_FULL;
else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_1G_82599)
*speed = IXGBE_LINK_SPEED_1GB_FULL;
else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
IXGBE_LINKS_SPEED_100_82599)
*speed = IXGBE_LINK_SPEED_100_FULL;
else
*speed = IXGBE_LINK_SPEED_UNKNOWN;
return 0;
}
/**
* ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
* the EEPROM
* @hw: pointer to hardware structure
* @wwnn_prefix: the alternative WWNN prefix
* @wwpn_prefix: the alternative WWPN prefix
*
* This function will read the EEPROM from the alternative SAN MAC address
* block to check the support for the alternative WWNN/WWPN prefix support.
**/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
u16 *wwpn_prefix)
{
u16 offset, caps;
u16 alt_san_mac_blk_offset;
/* clear output first */
*wwnn_prefix = 0xFFFF;
*wwpn_prefix = 0xFFFF;
/* check if alternative SAN MAC is supported */
hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
&alt_san_mac_blk_offset);
if ((alt_san_mac_blk_offset == 0) ||
(alt_san_mac_blk_offset == 0xFFFF))
goto wwn_prefix_out;
/* check capability in alternative san mac address block */
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
hw->eeprom.ops.read(hw, offset, &caps);
if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
goto wwn_prefix_out;
/* get the corresponding prefix for WWNN/WWPN */
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
hw->eeprom.ops.read(hw, offset, wwnn_prefix);
offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
hw->eeprom.ops.read(hw, offset, wwpn_prefix);
wwn_prefix_out:
return 0;
}
/**
* ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for anti-spoofing
* @pf: Physical Function pool - do not enable anti-spoofing for the PF
*
**/
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
{
int j;
int pf_target_reg = pf >> 3;
int pf_target_shift = pf % 8;
u32 pfvfspoof = 0;
if (hw->mac.type == ixgbe_mac_82598EB)
return;
if (enable)
pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
/*
* PFVFSPOOF register array is size 8 with 8 bits assigned to
* MAC anti-spoof enables in each register array element.
*/
for (j = 0; j < pf_target_reg; j++)
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
/*
* The PF should be allowed to spoof so that it can support
* emulation mode NICs. Do not set the bits assigned to the PF
*/
pfvfspoof &= (1 << pf_target_shift) - 1;
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
/*
* Remaining pools belong to the PF so they do not need to have
* anti-spoofing enabled.
*/
for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
}
/**
* ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
* @hw: pointer to hardware structure
* @enable: enable or disable switch for VLAN anti-spoofing
* @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
*
**/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
int vf_target_reg = vf >> 3;
int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
u32 pfvfspoof;
if (hw->mac.type == ixgbe_mac_82598EB)
return;
pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
if (enable)
pfvfspoof |= (1 << vf_target_shift);
else
pfvfspoof &= ~(1 << vf_target_shift);
IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
/**
* ixgbe_get_device_caps_generic - Get additional device capabilities
* @hw: pointer to hardware structure
* @device_caps: the EEPROM word with the extra device capabilities
*
* This function will read the EEPROM location for the device capabilities,
* and return the word through device_caps.
**/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
return 0;
}
/**
* ixgbe_set_rxpba_generic - Initialize RX packet buffer
* @hw: pointer to hardware structure
* @num_pb: number of packet buffers to allocate
* @headroom: reserve n KB of headroom
* @strategy: packet buffer allocation strategy
**/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
int num_pb,
u32 headroom,
int strategy)
{
u32 pbsize = hw->mac.rx_pb_size;
int i = 0;
u32 rxpktsize, txpktsize, txpbthresh;
/* Reserve headroom */
pbsize -= headroom;
if (!num_pb)
num_pb = 1;
/* Divide remaining packet buffer space amongst the number
* of packet buffers requested using supplied strategy.
*/
switch (strategy) {
case (PBA_STRATEGY_WEIGHTED):
/* pba_80_48 strategy weight first half of packet buffer with
* 5/8 of the packet buffer space.
*/
rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
pbsize -= rxpktsize * (num_pb / 2);
rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
for (; i < (num_pb / 2); i++)
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
/* Fall through to configure remaining packet buffers */
case (PBA_STRATEGY_EQUAL):
/* Divide the remaining Rx packet buffer evenly among the TCs */
rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
for (; i < num_pb; i++)
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
break;
default:
break;
}
/*
* Setup Tx packet buffer and threshold equally for all TCs
* TXPBTHRESH register is set in K so divide by 1024 and subtract
* 10 since the largest packet we support is just over 9K.
*/
txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
for (i = 0; i < num_pb; i++) {
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
}
/* Clear unused TCs, if any, to zero buffer size*/
for (; i < IXGBE_MAX_PB; i++) {
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
}
}
/**
* ixgbe_calculate_checksum - Calculate checksum for buffer
* @buffer: pointer to EEPROM
* @length: size of EEPROM to calculate a checksum for
*
* Calculates the checksum for some buffer on a specified length. The
* checksum calculated is returned.
**/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
u32 i;
u8 sum = 0;
if (!buffer)
return 0;
for (i = 0; i < length; i++)
sum += buffer[i];
return (u8) (0 - sum);
}
/**
* ixgbe_host_interface_command - Issue command to manageability block
* @hw: pointer to the HW structure
* @buffer: contains the command to write and where the return status will
* be placed
* @length: length of buffer, must be multiple of 4 bytes
*
* Communicates with the manageability block. On success return 0
* else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
**/
static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
u32 length)
{
u32 hicr, i, bi;
u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
u8 buf_len, dword_len;
s32 ret_val = 0;
if (length == 0 || length & 0x3 ||
length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
hw_dbg(hw, "Buffer length failure.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Check that the host interface is enabled. */
hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
if ((hicr & IXGBE_HICR_EN) == 0) {
hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs */
dword_len = length >> 2;
/*
* The device driver writes the relevant command block
* into the ram area.
*/
for (i = 0; i < dword_len; i++)
IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
i, cpu_to_le32(buffer[i]));
/* Setting this bit tells the ARC that a new command is pending. */
IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
if (!(hicr & IXGBE_HICR_C))
break;
usleep_range(1000, 2000);
}
/* Check command successful completion. */
if (i == IXGBE_HI_COMMAND_TIMEOUT ||
(!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
hw_dbg(hw, "Command has failed with no status valid.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs */
dword_len = hdr_size >> 2;
/* first pull in the header so we know the buffer length */
for (bi = 0; bi < dword_len; bi++) {
buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
le32_to_cpus(&buffer[bi]);
}
/* If there is any thing in data position pull it in */
buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
if (buf_len == 0)
goto out;
if (length < (buf_len + hdr_size)) {
hw_dbg(hw, "Buffer not large enough for reply message.\n");
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
goto out;
}
/* Calculate length in DWORDs, add 3 for odd lengths */
dword_len = (buf_len + 3) >> 2;
/* Pull in the rest of the buffer (bi is where we left off)*/
for (; bi <= dword_len; bi++) {
buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
le32_to_cpus(&buffer[bi]);
}
out:
return ret_val;
}
/**
* ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
* @hw: pointer to the HW structure
* @maj: driver version major number
* @min: driver version minor number
* @build: driver version build number
* @sub: driver version sub build number
*
* Sends driver version number to firmware through the manageability
* block. On success return 0
* else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
* semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
**/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
u8 build, u8 sub)
{
struct ixgbe_hic_drv_info fw_cmd;
int i;
s32 ret_val = 0;
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
ret_val = IXGBE_ERR_SWFW_SYNC;
goto out;
}
fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
fw_cmd.port_num = (u8)hw->bus.func;
fw_cmd.ver_maj = maj;
fw_cmd.ver_min = min;
fw_cmd.ver_build = build;
fw_cmd.ver_sub = sub;
fw_cmd.hdr.checksum = 0;
fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
fw_cmd.pad = 0;
fw_cmd.pad2 = 0;
for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
sizeof(fw_cmd));
if (ret_val != 0)
continue;
if (fw_cmd.hdr.cmd_or_resp.ret_status ==
FW_CEM_RESP_STATUS_SUCCESS)
ret_val = 0;
else
ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
break;
}
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
out:
return ret_val;
}
/**
* ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
* @hw: pointer to the hardware structure
*
* The 82599 and x540 MACs can experience issues if TX work is still pending
* when a reset occurs. This function prevents this by flushing the PCIe
* buffers on the system.
**/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
u32 gcr_ext, hlreg0;
/*
* If double reset is not requested then all transactions should
* already be clear and as such there is no work to do
*/
if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
return;
/*
* Set loopback enable to prevent any transmits from being sent
* should the link come up. This assumes that the RXCTRL.RXEN bit
* has already been cleared.
*/
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
/* initiate cleaning flow for buffers in the PCIe transaction layer */
gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
/* Flush all writes and allow 20usec for all transactions to clear */
IXGBE_WRITE_FLUSH(hw);
udelay(20);
/* restore previous register values */
IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
static const u8 ixgbe_emc_temp_data[4] = {
IXGBE_EMC_INTERNAL_DATA,
IXGBE_EMC_DIODE1_DATA,
IXGBE_EMC_DIODE2_DATA,
IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
IXGBE_EMC_INTERNAL_THERM_LIMIT,
IXGBE_EMC_DIODE1_THERM_LIMIT,
IXGBE_EMC_DIODE2_THERM_LIMIT,
IXGBE_EMC_DIODE3_THERM_LIMIT
};
/**
* ixgbe_get_ets_data - Extracts the ETS bit data
* @hw: pointer to hardware structure
* @ets_cfg: extected ETS data
* @ets_offset: offset of ETS data
*
* Returns error code.
**/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
u16 *ets_offset)
{
s32 status = 0;
status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
if (status)
goto out;
if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
if (status)
goto out;
if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
out:
return status;
}
/**
* ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
* @hw: pointer to hardware structure
*
* Returns the thermal sensor data structure
**/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 num_sensors;
u8 i;
struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
/* Only support thermal sensors attached to physical port 0 */
if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
if (status)
goto out;
num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
if (num_sensors > IXGBE_MAX_SENSORS)
num_sensors = IXGBE_MAX_SENSORS;
for (i = 0; i < num_sensors; i++) {
u8 sensor_index;
u8 sensor_location;
status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
&ets_sensor);
if (status)
goto out;
sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
IXGBE_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
IXGBE_ETS_DATA_LOC_SHIFT);
if (sensor_location != 0) {
status = hw->phy.ops.read_i2c_byte(hw,
ixgbe_emc_temp_data[sensor_index],
IXGBE_I2C_THERMAL_SENSOR_ADDR,
&data->sensor[i].temp);
if (status)
goto out;
}
}
out:
return status;
}
/**
* ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
* @hw: pointer to hardware structure
*
* Inits the thermal sensor thresholds according to the NVM map
* and save off the threshold and location values into mac.thermal_sensor_data
**/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
s32 status = 0;
u16 ets_offset;
u16 ets_cfg;
u16 ets_sensor;
u8 low_thresh_delta;
u8 num_sensors;
u8 therm_limit;
u8 i;
struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
/* Only support thermal sensors attached to physical port 0 */
if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
status = IXGBE_NOT_IMPLEMENTED;
goto out;
}
status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
if (status)
goto out;
low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
IXGBE_ETS_LTHRES_DELTA_SHIFT);
num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
if (num_sensors > IXGBE_MAX_SENSORS)
num_sensors = IXGBE_MAX_SENSORS;
for (i = 0; i < num_sensors; i++) {
u8 sensor_index;
u8 sensor_location;
hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
IXGBE_ETS_DATA_INDEX_SHIFT);
sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
IXGBE_ETS_DATA_LOC_SHIFT);
therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
hw->phy.ops.write_i2c_byte(hw,
ixgbe_emc_therm_limit[sensor_index],
IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
if (sensor_location == 0)
continue;
data->sensor[i].location = sensor_location;
data->sensor[i].caution_thresh = therm_limit;
data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
}
out:
return status;
}
|