summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/fsmc_nand.c
blob: 28c48dcc514e5425a9491dc928ccf9dec05135af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
/*
 * ST Microelectronics
 * Flexible Static Memory Controller (FSMC)
 * Driver for NAND portions
 *
 * Copyright © 2010 ST Microelectronics
 * Vipin Kumar <vipin.kumar@st.com>
 * Ashish Priyadarshi
 *
 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
 *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
 *  Copyright © 2009 Alessandro Rubini
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/resource.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/amba/bus.h>
#include <mtd/mtd-abi.h>

/* fsmc controller registers for NOR flash */
#define CTRL			0x0
	/* ctrl register definitions */
	#define BANK_ENABLE		(1 << 0)
	#define MUXED			(1 << 1)
	#define NOR_DEV			(2 << 2)
	#define WIDTH_8			(0 << 4)
	#define WIDTH_16		(1 << 4)
	#define RSTPWRDWN		(1 << 6)
	#define WPROT			(1 << 7)
	#define WRT_ENABLE		(1 << 12)
	#define WAIT_ENB		(1 << 13)

#define CTRL_TIM		0x4
	/* ctrl_tim register definitions */

#define FSMC_NOR_BANK_SZ	0x8
#define FSMC_NOR_REG_SIZE	0x40

#define FSMC_NOR_REG(base, bank, reg)		(base + \
						FSMC_NOR_BANK_SZ * (bank) + \
						reg)

/* fsmc controller registers for NAND flash */
#define PC			0x00
	/* pc register definitions */
	#define FSMC_RESET		(1 << 0)
	#define FSMC_WAITON		(1 << 1)
	#define FSMC_ENABLE		(1 << 2)
	#define FSMC_DEVTYPE_NAND	(1 << 3)
	#define FSMC_DEVWID_8		(0 << 4)
	#define FSMC_DEVWID_16		(1 << 4)
	#define FSMC_ECCEN		(1 << 6)
	#define FSMC_ECCPLEN_512	(0 << 7)
	#define FSMC_ECCPLEN_256	(1 << 7)
	#define FSMC_TCLR_1		(1)
	#define FSMC_TCLR_SHIFT		(9)
	#define FSMC_TCLR_MASK		(0xF)
	#define FSMC_TAR_1		(1)
	#define FSMC_TAR_SHIFT		(13)
	#define FSMC_TAR_MASK		(0xF)
#define STS			0x04
	/* sts register definitions */
	#define FSMC_CODE_RDY		(1 << 15)
#define COMM			0x08
	/* comm register definitions */
	#define FSMC_TSET_0		0
	#define FSMC_TSET_SHIFT		0
	#define FSMC_TSET_MASK		0xFF
	#define FSMC_TWAIT_6		6
	#define FSMC_TWAIT_SHIFT	8
	#define FSMC_TWAIT_MASK		0xFF
	#define FSMC_THOLD_4		4
	#define FSMC_THOLD_SHIFT	16
	#define FSMC_THOLD_MASK		0xFF
	#define FSMC_THIZ_1		1
	#define FSMC_THIZ_SHIFT		24
	#define FSMC_THIZ_MASK		0xFF
#define ATTRIB			0x0C
#define IOATA			0x10
#define ECC1			0x14
#define ECC2			0x18
#define ECC3			0x1C
#define FSMC_NAND_BANK_SZ	0x20

#define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)

struct fsmc_nand_timings {
	uint8_t tclr;
	uint8_t tar;
	uint8_t thiz;
	uint8_t thold;
	uint8_t twait;
	uint8_t tset;
};

enum access_mode {
	USE_DMA_ACCESS = 1,
	USE_WORD_ACCESS,
};

/**
 * struct fsmc_nand_data - structure for FSMC NAND device state
 *
 * @pid:		Part ID on the AMBA PrimeCell format
 * @mtd:		MTD info for a NAND flash.
 * @nand:		Chip related info for a NAND flash.
 * @partitions:		Partition info for a NAND Flash.
 * @nr_partitions:	Total number of partition of a NAND flash.
 *
 * @bank:		Bank number for probed device.
 * @clk:		Clock structure for FSMC.
 *
 * @read_dma_chan:	DMA channel for read access
 * @write_dma_chan:	DMA channel for write access to NAND
 * @dma_access_complete: Completion structure
 *
 * @data_pa:		NAND Physical port for Data.
 * @data_va:		NAND port for Data.
 * @cmd_va:		NAND port for Command.
 * @addr_va:		NAND port for Address.
 * @regs_va:		Registers base address for a given bank.
 */
struct fsmc_nand_data {
	u32			pid;
	struct nand_chip	nand;

	unsigned int		bank;
	struct device		*dev;
	enum access_mode	mode;
	struct clk		*clk;

	/* DMA related objects */
	struct dma_chan		*read_dma_chan;
	struct dma_chan		*write_dma_chan;
	struct completion	dma_access_complete;

	struct fsmc_nand_timings *dev_timings;

	dma_addr_t		data_pa;
	void __iomem		*data_va;
	void __iomem		*cmd_va;
	void __iomem		*addr_va;
	void __iomem		*regs_va;
};

static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
				   struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * 16) + 2;
	oobregion->length = 3;

	return 0;
}

static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;

	if (section < chip->ecc.steps - 1)
		oobregion->length = 8;
	else
		oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
	.ecc = fsmc_ecc1_ooblayout_ecc,
	.free = fsmc_ecc1_ooblayout_free,
};

/*
 * ECC placement definitions in oobfree type format.
 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 * consecutively and immediately after the 512 byte data block for hardware to
 * generate the error bit offsets in 512 byte data.
 */
static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
				   struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->length = chip->ecc.bytes;

	if (!section && mtd->writesize <= 512)
		oobregion->offset = 0;
	else
		oobregion->offset = (section * 16) + 2;

	return 0;
}

static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
				    struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * 16) + 15;

	if (section < chip->ecc.steps - 1)
		oobregion->length = 3;
	else
		oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
	.ecc = fsmc_ecc4_ooblayout_ecc,
	.free = fsmc_ecc4_ooblayout_free,
};

static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
}

/*
 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 *
 * This routine initializes timing parameters related to NAND memory access in
 * FSMC registers
 */
static void fsmc_nand_setup(struct fsmc_nand_data *host,
			    struct fsmc_nand_timings *tims)
{
	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
	uint32_t tclr, tar, thiz, thold, twait, tset;

	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;

	if (host->nand.options & NAND_BUSWIDTH_16)
		writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC);
	else
		writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC);

	writel_relaxed(readl(host->regs_va + PC) | tclr | tar,
		       host->regs_va + PC);
	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
}

static int fsmc_calc_timings(struct fsmc_nand_data *host,
			     const struct nand_sdr_timings *sdrt,
			     struct fsmc_nand_timings *tims)
{
	unsigned long hclk = clk_get_rate(host->clk);
	unsigned long hclkn = NSEC_PER_SEC / hclk;
	uint32_t thiz, thold, twait, tset;

	if (sdrt->tRC_min < 30000)
		return -EOPNOTSUPP;

	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
	if (tims->tar > FSMC_TAR_MASK)
		tims->tar = FSMC_TAR_MASK;
	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
	if (tims->tclr > FSMC_TCLR_MASK)
		tims->tclr = FSMC_TCLR_MASK;

	thiz = sdrt->tCS_min - sdrt->tWP_min;
	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);

	thold = sdrt->tDH_min;
	if (thold < sdrt->tCH_min)
		thold = sdrt->tCH_min;
	if (thold < sdrt->tCLH_min)
		thold = sdrt->tCLH_min;
	if (thold < sdrt->tWH_min)
		thold = sdrt->tWH_min;
	if (thold < sdrt->tALH_min)
		thold = sdrt->tALH_min;
	if (thold < sdrt->tREH_min)
		thold = sdrt->tREH_min;
	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
	if (tims->thold == 0)
		tims->thold = 1;
	else if (tims->thold > FSMC_THOLD_MASK)
		tims->thold = FSMC_THOLD_MASK;

	twait = max(sdrt->tRP_min, sdrt->tWP_min);
	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
	if (tims->twait == 0)
		tims->twait = 1;
	else if (tims->twait > FSMC_TWAIT_MASK)
		tims->twait = FSMC_TWAIT_MASK;

	tset = max(sdrt->tCS_min - sdrt->tWP_min,
		   sdrt->tCEA_max - sdrt->tREA_max);
	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
	if (tims->tset == 0)
		tims->tset = 1;
	else if (tims->tset > FSMC_TSET_MASK)
		tims->tset = FSMC_TSET_MASK;

	return 0;
}

static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
				     const struct nand_data_interface *conf)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct fsmc_nand_data *host = nand_get_controller_data(nand);
	struct fsmc_nand_timings tims;
	const struct nand_sdr_timings *sdrt;
	int ret;

	sdrt = nand_get_sdr_timings(conf);
	if (IS_ERR(sdrt))
		return PTR_ERR(sdrt);

	ret = fsmc_calc_timings(host, sdrt, &tims);
	if (ret)
		return ret;

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	fsmc_nand_setup(host, &tims);

	return 0;
}

/*
 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 */
static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);

	writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256,
		       host->regs_va + PC);
	writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN,
		       host->regs_va + PC);
	writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN,
		       host->regs_va + PC);
}

/*
 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 * max of 8-bits)
 */
static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
				uint8_t *ecc)
{
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
	uint32_t ecc_tmp;
	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;

	do {
		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
			break;
		else
			cond_resched();
	} while (!time_after_eq(jiffies, deadline));

	if (time_after_eq(jiffies, deadline)) {
		dev_err(host->dev, "calculate ecc timed out\n");
		return -ETIMEDOUT;
	}

	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
	ecc[0] = (uint8_t) (ecc_tmp >> 0);
	ecc[1] = (uint8_t) (ecc_tmp >> 8);
	ecc[2] = (uint8_t) (ecc_tmp >> 16);
	ecc[3] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
	ecc[4] = (uint8_t) (ecc_tmp >> 0);
	ecc[5] = (uint8_t) (ecc_tmp >> 8);
	ecc[6] = (uint8_t) (ecc_tmp >> 16);
	ecc[7] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
	ecc[8] = (uint8_t) (ecc_tmp >> 0);
	ecc[9] = (uint8_t) (ecc_tmp >> 8);
	ecc[10] = (uint8_t) (ecc_tmp >> 16);
	ecc[11] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl_relaxed(host->regs_va + STS);
	ecc[12] = (uint8_t) (ecc_tmp >> 16);

	return 0;
}

/*
 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 * max of 1-bit)
 */
static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
				uint8_t *ecc)
{
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
	uint32_t ecc_tmp;

	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
	ecc[0] = (uint8_t) (ecc_tmp >> 0);
	ecc[1] = (uint8_t) (ecc_tmp >> 8);
	ecc[2] = (uint8_t) (ecc_tmp >> 16);

	return 0;
}

/* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(uint8_t *buff, int size, int max_bits)
{
	int k, written_bits = 0;

	for (k = 0; k < size; k++) {
		written_bits += hweight8(~buff[k]);
		if (written_bits > max_bits)
			break;
	}

	return written_bits;
}

static void dma_complete(void *param)
{
	struct fsmc_nand_data *host = param;

	complete(&host->dma_access_complete);
}

static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
		enum dma_data_direction direction)
{
	struct dma_chan *chan;
	struct dma_device *dma_dev;
	struct dma_async_tx_descriptor *tx;
	dma_addr_t dma_dst, dma_src, dma_addr;
	dma_cookie_t cookie;
	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	int ret;
	unsigned long time_left;

	if (direction == DMA_TO_DEVICE)
		chan = host->write_dma_chan;
	else if (direction == DMA_FROM_DEVICE)
		chan = host->read_dma_chan;
	else
		return -EINVAL;

	dma_dev = chan->device;
	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);

	if (direction == DMA_TO_DEVICE) {
		dma_src = dma_addr;
		dma_dst = host->data_pa;
	} else {
		dma_src = host->data_pa;
		dma_dst = dma_addr;
	}

	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
			len, flags);
	if (!tx) {
		dev_err(host->dev, "device_prep_dma_memcpy error\n");
		ret = -EIO;
		goto unmap_dma;
	}

	tx->callback = dma_complete;
	tx->callback_param = host;
	cookie = tx->tx_submit(tx);

	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(host->dev, "dma_submit_error %d\n", cookie);
		goto unmap_dma;
	}

	dma_async_issue_pending(chan);

	time_left =
	wait_for_completion_timeout(&host->dma_access_complete,
				msecs_to_jiffies(3000));
	if (time_left == 0) {
		dmaengine_terminate_all(chan);
		dev_err(host->dev, "wait_for_completion_timeout\n");
		ret = -ETIMEDOUT;
		goto unmap_dma;
	}

	ret = 0;

unmap_dma:
	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);

	return ret;
}

/*
 * fsmc_write_buf - write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 */
static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
	int i;

	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
			IS_ALIGNED(len, sizeof(uint32_t))) {
		uint32_t *p = (uint32_t *)buf;
		len = len >> 2;
		for (i = 0; i < len; i++)
			writel_relaxed(p[i], host->data_va);
	} else {
		for (i = 0; i < len; i++)
			writeb_relaxed(buf[i], host->data_va);
	}
}

/*
 * fsmc_read_buf - read chip data into buffer
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 */
static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
	int i;

	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
			IS_ALIGNED(len, sizeof(uint32_t))) {
		uint32_t *p = (uint32_t *)buf;
		len = len >> 2;
		for (i = 0; i < len; i++)
			p[i] = readl_relaxed(host->data_va);
	} else {
		for (i = 0; i < len; i++)
			buf[i] = readb_relaxed(host->data_va);
	}
}

/*
 * fsmc_read_buf_dma - read chip data into buffer
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 */
static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);

	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
}

/*
 * fsmc_write_buf_dma - write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 */
static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
		int len)
{
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);

	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
}

/* fsmc_select_chip - assert or deassert nCE */
static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
	u32 pc;

	/* Support only one CS */
	if (chipnr > 0)
		return;

	pc = readl(host->regs_va + PC);
	if (chipnr < 0)
		writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC);
	else
		writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC);

	/* nCE line must be asserted before starting any operation */
	mb();
}

/*
 * fsmc_exec_op - hook called by the core to execute NAND operations
 *
 * This controller is simple enough and thus does not need to use the parser
 * provided by the core, instead, handle every situation here.
 */
static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
			bool check_only)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
	const struct nand_op_instr *instr = NULL;
	int ret = 0;
	unsigned int op_id;
	int i;

	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
	for (op_id = 0; op_id < op->ninstrs; op_id++) {
		instr = &op->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			pr_debug("  ->CMD      [0x%02x]\n",
				 instr->ctx.cmd.opcode);

			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
			break;

		case NAND_OP_ADDR_INSTR:
			pr_debug("  ->ADDR     [%d cyc]",
				 instr->ctx.addr.naddrs);

			for (i = 0; i < instr->ctx.addr.naddrs; i++)
				writeb_relaxed(instr->ctx.addr.addrs[i],
					       host->addr_va);
			break;

		case NAND_OP_DATA_IN_INSTR:
			pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
				 instr->ctx.data.force_8bit ?
				 ", force 8-bit" : "");

			if (host->mode == USE_DMA_ACCESS)
				fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
						  instr->ctx.data.len);
			else
				fsmc_read_buf(mtd, instr->ctx.data.buf.in,
					      instr->ctx.data.len);
			break;

		case NAND_OP_DATA_OUT_INSTR:
			pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
				 instr->ctx.data.force_8bit ?
				 ", force 8-bit" : "");

			if (host->mode == USE_DMA_ACCESS)
				fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
						   instr->ctx.data.len);
			else
				fsmc_write_buf(mtd, instr->ctx.data.buf.out,
					       instr->ctx.data.len);
			break;

		case NAND_OP_WAITRDY_INSTR:
			pr_debug("  ->WAITRDY  [max %d ms]\n",
				 instr->ctx.waitrdy.timeout_ms);

			ret = nand_soft_waitrdy(chip,
						instr->ctx.waitrdy.timeout_ms);
			break;
		}
	}

	return ret;
}

/*
 * fsmc_read_page_hwecc
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 * @oob_required:	caller expects OOB data read to chip->oob_poi
 * @page:	page number to read
 *
 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 * performed in a strict sequence as follows:
 * data(512 byte) -> ecc(13 byte)
 * After this read, fsmc hardware generates and reports error data bits(up to a
 * max of 8 bits)
 */
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required, int page)
{
	int i, j, s, stat, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	int off, len, group = 0;
	/*
	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
	 * end up reading 14 bytes (7 words) from oob. The local array is
	 * to maintain word alignment
	 */
	uint16_t ecc_oob[7];
	uint8_t *oob = (uint8_t *)&ecc_oob[0];
	unsigned int max_bitflips = 0;

	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);

		for (j = 0; j < eccbytes;) {
			struct mtd_oob_region oobregion;
			int ret;

			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
			if (ret)
				return ret;

			off = oobregion.offset;
			len = oobregion.length;

			/*
			 * length is intentionally kept a higher multiple of 2
			 * to read at least 13 bytes even in case of 16 bit NAND
			 * devices
			 */
			if (chip->options & NAND_BUSWIDTH_16)
				len = roundup(len, 2);

			nand_read_oob_op(chip, page, off, oob + j, len);
			j += len;
		}

		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}

	return max_bitflips;
}

/*
 * fsmc_bch8_correct_data
 * @mtd:	mtd info structure
 * @dat:	buffer of read data
 * @read_ecc:	ecc read from device spare area
 * @calc_ecc:	ecc calculated from read data
 *
 * calc_ecc is a 104 bit information containing maximum of 8 error
 * offset informations of 13 bits each in 512 bytes of read data.
 */
static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
			     uint8_t *read_ecc, uint8_t *calc_ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
	uint32_t err_idx[8];
	uint32_t num_err, i;
	uint32_t ecc1, ecc2, ecc3, ecc4;

	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;

	/* no bit flipping */
	if (likely(num_err == 0))
		return 0;

	/* too many errors */
	if (unlikely(num_err > 8)) {
		/*
		 * This is a temporary erase check. A newly erased page read
		 * would result in an ecc error because the oob data is also
		 * erased to FF and the calculated ecc for an FF data is not
		 * FF..FF.
		 * This is a workaround to skip performing correction in case
		 * data is FF..FF
		 *
		 * Logic:
		 * For every page, each bit written as 0 is counted until these
		 * number of bits are greater than 8 (the maximum correction
		 * capability of FSMC for each 512 + 13 bytes)
		 */

		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
		int bits_data = count_written_bits(dat, chip->ecc.size, 8);

		if ((bits_ecc + bits_data) <= 8) {
			if (bits_data)
				memset(dat, 0xff, chip->ecc.size);
			return bits_data;
		}

		return -EBADMSG;
	}

	/*
	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
	 *
	 * calc_ecc is a 104 bit information containing maximum of 8 error
	 * offset informations of 13 bits each. calc_ecc is copied into a
	 * uint64_t array and error offset indexes are populated in err_idx
	 * array
	 */
	ecc1 = readl_relaxed(host->regs_va + ECC1);
	ecc2 = readl_relaxed(host->regs_va + ECC2);
	ecc3 = readl_relaxed(host->regs_va + ECC3);
	ecc4 = readl_relaxed(host->regs_va + STS);

	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);

	i = 0;
	while (num_err--) {
		change_bit(0, (unsigned long *)&err_idx[i]);
		change_bit(1, (unsigned long *)&err_idx[i]);

		if (err_idx[i] < chip->ecc.size * 8) {
			change_bit(err_idx[i], (unsigned long *)dat);
			i++;
		}
	}
	return i;
}

static bool filter(struct dma_chan *chan, void *slave)
{
	chan->private = slave;
	return true;
}

static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
				     struct fsmc_nand_data *host,
				     struct nand_chip *nand)
{
	struct device_node *np = pdev->dev.of_node;
	u32 val;
	int ret;

	nand->options = 0;

	if (!of_property_read_u32(np, "bank-width", &val)) {
		if (val == 2) {
			nand->options |= NAND_BUSWIDTH_16;
		} else if (val != 1) {
			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
			return -EINVAL;
		}
	}

	if (of_get_property(np, "nand-skip-bbtscan", NULL))
		nand->options |= NAND_SKIP_BBTSCAN;

	host->dev_timings = devm_kzalloc(&pdev->dev,
				sizeof(*host->dev_timings), GFP_KERNEL);
	if (!host->dev_timings)
		return -ENOMEM;
	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
						sizeof(*host->dev_timings));
	if (ret)
		host->dev_timings = NULL;

	/* Set default NAND bank to 0 */
	host->bank = 0;
	if (!of_property_read_u32(np, "bank", &val)) {
		if (val > 3) {
			dev_err(&pdev->dev, "invalid bank %u\n", val);
			return -EINVAL;
		}
		host->bank = val;
	}
	return 0;
}

/*
 * fsmc_nand_probe - Probe function
 * @pdev:       platform device structure
 */
static int __init fsmc_nand_probe(struct platform_device *pdev)
{
	struct fsmc_nand_data *host;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	struct resource *res;
	void __iomem *base;
	dma_cap_mask_t mask;
	int ret = 0;
	u32 pid;
	int i;

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
	if (!host)
		return -ENOMEM;

	nand = &host->nand;

	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
	if (ret)
		return ret;

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
	host->data_va = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->data_va))
		return PTR_ERR(host->data_va);

	host->data_pa = (dma_addr_t)res->start;

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->addr_va))
		return PTR_ERR(host->addr_va);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(host->cmd_va))
		return PTR_ERR(host->cmd_va);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	host->regs_va = base + FSMC_NOR_REG_SIZE +
		(host->bank * FSMC_NAND_BANK_SZ);

	host->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "failed to fetch block clock\n");
		return PTR_ERR(host->clk);
	}

	ret = clk_prepare_enable(host->clk);
	if (ret)
		return ret;

	/*
	 * This device ID is actually a common AMBA ID as used on the
	 * AMBA PrimeCell bus. However it is not a PrimeCell.
	 */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
	host->pid = pid;
	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
		 "revision %02x, config %02x\n",
		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));

	host->dev = &pdev->dev;

	if (host->mode == USE_DMA_ACCESS)
		init_completion(&host->dma_access_complete);

	/* Link all private pointers */
	mtd = nand_to_mtd(&host->nand);
	nand_set_controller_data(nand, host);
	nand_set_flash_node(nand, pdev->dev.of_node);

	mtd->dev.parent = &pdev->dev;
	nand->exec_op = fsmc_exec_op;
	nand->select_chip = fsmc_select_chip;
	nand->chip_delay = 30;

	/*
	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
	 * can overwrite this value if the DT provides a different value.
	 */
	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.hwctl = fsmc_enable_hwecc;
	nand->ecc.size = 512;
	nand->badblockbits = 7;

	if (host->mode == USE_DMA_ACCESS) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_MEMCPY, mask);
		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
		if (!host->read_dma_chan) {
			dev_err(&pdev->dev, "Unable to get read dma channel\n");
			goto err_req_read_chnl;
		}
		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
		if (!host->write_dma_chan) {
			dev_err(&pdev->dev, "Unable to get write dma channel\n");
			goto err_req_write_chnl;
		}
	}

	if (host->dev_timings)
		fsmc_nand_setup(host, host->dev_timings);
	else
		nand->setup_data_interface = fsmc_setup_data_interface;

	if (AMBA_REV_BITS(host->pid) >= 8) {
		nand->ecc.read_page = fsmc_read_page_hwecc;
		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
		nand->ecc.correct = fsmc_bch8_correct_data;
		nand->ecc.bytes = 13;
		nand->ecc.strength = 8;
	}

	/*
	 * Scan to find existence of the device
	 */
	ret = nand_scan_ident(mtd, 1, NULL);
	if (ret) {
		dev_err(&pdev->dev, "No NAND Device found!\n");
		goto err_scan_ident;
	}

	if (AMBA_REV_BITS(host->pid) >= 8) {
		switch (mtd->oobsize) {
		case 16:
		case 64:
		case 128:
		case 224:
		case 256:
			break;
		default:
			dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
				 mtd->oobsize);
			ret = -EINVAL;
			goto err_probe;
		}

		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
	} else {
		switch (nand->ecc.mode) {
		case NAND_ECC_HW:
			dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
			nand->ecc.calculate = fsmc_read_hwecc_ecc1;
			nand->ecc.correct = nand_correct_data;
			nand->ecc.bytes = 3;
			nand->ecc.strength = 1;
			break;

		case NAND_ECC_SOFT:
			if (nand->ecc.algo == NAND_ECC_BCH) {
				dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
				break;
			}

		case NAND_ECC_ON_DIE:
			break;

		default:
			dev_err(&pdev->dev, "Unsupported ECC mode!\n");
			goto err_probe;
		}

		/*
		 * Don't set layout for BCH4 SW ECC. This will be
		 * generated later in nand_bch_init() later.
		 */
		if (nand->ecc.mode == NAND_ECC_HW) {
			switch (mtd->oobsize) {
			case 16:
			case 64:
			case 128:
				mtd_set_ooblayout(mtd,
						  &fsmc_ecc1_ooblayout_ops);
				break;
			default:
				dev_warn(&pdev->dev,
					 "No oob scheme defined for oobsize %d\n",
					 mtd->oobsize);
				ret = -EINVAL;
				goto err_probe;
			}
		}
	}

	/* Second stage of scan to fill MTD data-structures */
	ret = nand_scan_tail(mtd);
	if (ret)
		goto err_probe;

	mtd->name = "nand";
	ret = mtd_device_register(mtd, NULL, 0);
	if (ret)
		goto err_probe;

	platform_set_drvdata(pdev, host);
	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
	return 0;

err_probe:
err_scan_ident:
	if (host->mode == USE_DMA_ACCESS)
		dma_release_channel(host->write_dma_chan);
err_req_write_chnl:
	if (host->mode == USE_DMA_ACCESS)
		dma_release_channel(host->read_dma_chan);
err_req_read_chnl:
	clk_disable_unprepare(host->clk);
	return ret;
}

/*
 * Clean up routine
 */
static int fsmc_nand_remove(struct platform_device *pdev)
{
	struct fsmc_nand_data *host = platform_get_drvdata(pdev);

	if (host) {
		nand_release(nand_to_mtd(&host->nand));

		if (host->mode == USE_DMA_ACCESS) {
			dma_release_channel(host->write_dma_chan);
			dma_release_channel(host->read_dma_chan);
		}
		clk_disable_unprepare(host->clk);
	}

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int fsmc_nand_suspend(struct device *dev)
{
	struct fsmc_nand_data *host = dev_get_drvdata(dev);
	if (host)
		clk_disable_unprepare(host->clk);
	return 0;
}

static int fsmc_nand_resume(struct device *dev)
{
	struct fsmc_nand_data *host = dev_get_drvdata(dev);
	if (host) {
		clk_prepare_enable(host->clk);
		if (host->dev_timings)
			fsmc_nand_setup(host, host->dev_timings);
	}
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);

static const struct of_device_id fsmc_nand_id_table[] = {
	{ .compatible = "st,spear600-fsmc-nand" },
	{ .compatible = "stericsson,fsmc-nand" },
	{}
};
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);

static struct platform_driver fsmc_nand_driver = {
	.remove = fsmc_nand_remove,
	.driver = {
		.name = "fsmc-nand",
		.of_match_table = fsmc_nand_id_table,
		.pm = &fsmc_nand_pm_ops,
	},
};

module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
OpenPOWER on IntegriCloud