summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/chips/cfi_cmdset_0002.c
blob: bf313be6ee265ce90486bd92bbe90db32030a287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
/*
 * Common Flash Interface support:
 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
 *
 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
 *
 * 2_by_8 routines added by Simon Munton
 *
 * 4_by_16 work by Carolyn J. Smith
 *
 * XIP support hooks by Vitaly Wool (based on code for Intel flash
 * by Nicolas Pitre)
 *
 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
 *
 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
 *
 * This code is GPL
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/byteorder.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/xip.h>

#define AMD_BOOTLOC_BUG
#define FORCE_WORD_WRITE 0

#define MAX_WORD_RETRIES 3

#define SST49LF004B	        0x0060
#define SST49LF040B	        0x0050
#define SST49LF008A		0x005a
#define AT49BV6416		0x00d6

static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
static int cfi_amdstd_suspend (struct mtd_info *);
static void cfi_amdstd_resume (struct mtd_info *);
static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
					 size_t *, struct otp_info *);
static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
					 size_t *, struct otp_info *);
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
					 size_t *, u_char *);
static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
					 size_t *, u_char *);
static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
					  size_t *, u_char *);
static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);

static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
				  size_t *retlen, const u_char *buf);

static void cfi_amdstd_destroy(struct mtd_info *);

struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"

static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);

static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);

static struct mtd_chip_driver cfi_amdstd_chipdrv = {
	.probe		= NULL, /* Not usable directly */
	.destroy	= cfi_amdstd_destroy,
	.name		= "cfi_cmdset_0002",
	.module		= THIS_MODULE
};


/* #define DEBUG_CFI_FEATURES */


#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
{
	const char* erase_suspend[3] = {
		"Not supported", "Read only", "Read/write"
	};
	const char* top_bottom[6] = {
		"No WP", "8x8KiB sectors at top & bottom, no WP",
		"Bottom boot", "Top boot",
		"Uniform, Bottom WP", "Uniform, Top WP"
	};

	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
	printk("  Address sensitive unlock: %s\n",
	       (extp->SiliconRevision & 1) ? "Not required" : "Required");

	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
	else
		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);

	if (extp->BlkProt == 0)
		printk("  Block protection: Not supported\n");
	else
		printk("  Block protection: %d sectors per group\n", extp->BlkProt);


	printk("  Temporary block unprotect: %s\n",
	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
	printk("  Burst mode: %s\n",
	       extp->BurstMode ? "Supported" : "Not supported");
	if (extp->PageMode == 0)
		printk("  Page mode: Not supported\n");
	else
		printk("  Page mode: %d word page\n", extp->PageMode << 2);

	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
	       extp->VppMin >> 4, extp->VppMin & 0xf);
	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
	       extp->VppMax >> 4, extp->VppMax & 0xf);

	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
	else
		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
}
#endif

#ifdef AMD_BOOTLOC_BUG
/* Wheee. Bring me the head of someone at AMD. */
static void fixup_amd_bootblock(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
	__u8 major = extp->MajorVersion;
	__u8 minor = extp->MinorVersion;

	if (((major << 8) | minor) < 0x3131) {
		/* CFI version 1.0 => don't trust bootloc */

		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
			map->name, cfi->mfr, cfi->id);

		/* AFAICS all 29LV400 with a bottom boot block have a device ID
		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
		 * These were badly detected as they have the 0x80 bit set
		 * so treat them as a special case.
		 */
		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&

			/* Macronix added CFI to their 2nd generation
			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
			 * Fujitsu, Spansion, EON, ESI and older Macronix)
			 * has CFI.
			 *
			 * Therefore also check the manufacturer.
			 * This reduces the risk of false detection due to
			 * the 8-bit device ID.
			 */
			(cfi->mfr == CFI_MFR_MACRONIX)) {
			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
				" detected\n", map->name);
			extp->TopBottom = 2;	/* bottom boot */
		} else
		if (cfi->id & 0x80) {
			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
			extp->TopBottom = 3;	/* top boot */
		} else {
			extp->TopBottom = 2;	/* bottom boot */
		}

		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
			" deduced %s from Device ID\n", map->name, major, minor,
			extp->TopBottom == 2 ? "bottom" : "top");
	}
}
#endif

static void fixup_use_write_buffers(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	if (cfi->cfiq->BufWriteTimeoutTyp) {
		pr_debug("Using buffer write method\n" );
		mtd->_write = cfi_amdstd_write_buffers;
	}
}

/* Atmel chips don't use the same PRI format as AMD chips */
static void fixup_convert_atmel_pri(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
	struct cfi_pri_atmel atmel_pri;

	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
	memset((char *)extp + 5, 0, sizeof(*extp) - 5);

	if (atmel_pri.Features & 0x02)
		extp->EraseSuspend = 2;

	/* Some chips got it backwards... */
	if (cfi->id == AT49BV6416) {
		if (atmel_pri.BottomBoot)
			extp->TopBottom = 3;
		else
			extp->TopBottom = 2;
	} else {
		if (atmel_pri.BottomBoot)
			extp->TopBottom = 2;
		else
			extp->TopBottom = 3;
	}

	/* burst write mode not supported */
	cfi->cfiq->BufWriteTimeoutTyp = 0;
	cfi->cfiq->BufWriteTimeoutMax = 0;
}

static void fixup_use_secsi(struct mtd_info *mtd)
{
	/* Setup for chips with a secsi area */
	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
}

static void fixup_use_erase_chip(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	if ((cfi->cfiq->NumEraseRegions == 1) &&
		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
		mtd->_erase = cfi_amdstd_erase_chip;
	}

}

/*
 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 * locked by default.
 */
static void fixup_use_atmel_lock(struct mtd_info *mtd)
{
	mtd->_lock = cfi_atmel_lock;
	mtd->_unlock = cfi_atmel_unlock;
	mtd->flags |= MTD_POWERUP_LOCK;
}

static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	/*
	 * These flashes report two separate eraseblock regions based on the
	 * sector_erase-size and block_erase-size, although they both operate on the
	 * same memory. This is not allowed according to CFI, so we just pick the
	 * sector_erase-size.
	 */
	cfi->cfiq->NumEraseRegions = 1;
}

static void fixup_sst39vf(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	fixup_old_sst_eraseregion(mtd);

	cfi->addr_unlock1 = 0x5555;
	cfi->addr_unlock2 = 0x2AAA;
}

static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	fixup_old_sst_eraseregion(mtd);

	cfi->addr_unlock1 = 0x555;
	cfi->addr_unlock2 = 0x2AA;

	cfi->sector_erase_cmd = CMD(0x50);
}

static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	fixup_sst39vf_rev_b(mtd);

	/*
	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
	 * it should report a size of 8KBytes (0x0020*256).
	 */
	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
}

static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
		pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
	}
}

static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
		pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
	}
}

static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	/*
	 *  S29NS512P flash uses more than 8bits to report number of sectors,
	 * which is not permitted by CFI.
	 */
	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
	pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
}

/* Used to fix CFI-Tables of chips without Extended Query Tables */
static struct cfi_fixup cfi_nopri_fixup_table[] = {
	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
	{ 0, 0, NULL }
};

static struct cfi_fixup cfi_fixup_table[] = {
	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
#ifdef AMD_BOOTLOC_BUG
	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
#endif
	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
#if !FORCE_WORD_WRITE
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
#endif
	{ 0, 0, NULL }
};
static struct cfi_fixup jedec_fixup_table[] = {
	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
	{ 0, 0, NULL }
};

static struct cfi_fixup fixup_table[] = {
	/* The CFI vendor ids and the JEDEC vendor IDs appear
	 * to be common.  It is like the devices id's are as
	 * well.  This table is to pick all cases where
	 * we know that is the case.
	 */
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
	{ 0, 0, NULL }
};


static void cfi_fixup_major_minor(struct cfi_private *cfi,
				  struct cfi_pri_amdstd *extp)
{
	if (cfi->mfr == CFI_MFR_SAMSUNG) {
		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
			/*
			 * Samsung K8P2815UQB and K8D6x16UxM chips
			 * report major=0 / minor=0.
			 * K8D3x16UxC chips report major=3 / minor=3.
			 */
			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
			       " Extended Query version to 1.%c\n",
			       extp->MinorVersion);
			extp->MajorVersion = '1';
		}
	}

	/*
	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
	 */
	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
		extp->MajorVersion = '1';
		extp->MinorVersion = '0';
	}
}

static int is_m29ew(struct cfi_private *cfi)
{
	if (cfi->mfr == CFI_MFR_INTEL &&
	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
		return 1;
	return 0;
}

/*
 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 * Some revisions of the M29EW suffer from erase suspend hang ups. In
 * particular, it can occur when the sequence
 * Erase Confirm -> Suspend -> Program -> Resume
 * causes a lockup due to internal timing issues. The consequence is that the
 * erase cannot be resumed without inserting a dummy command after programming
 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 * that writes an F0 command code before the RESUME command.
 */
static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
					  unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
	if (is_m29ew(cfi))
		map_write(map, CMD(0xF0), adr);
}

/*
 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 *
 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 * command is issued after an ERASE RESUME operation without waiting for a
 * minimum delay.  The result is that once the ERASE seems to be completed
 * (no bits are toggling), the contents of the Flash memory block on which
 * the erase was ongoing could be inconsistent with the expected values
 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 * values), causing a consequent failure of the ERASE operation.
 * The occurrence of this issue could be high, especially when file system
 * operations on the Flash are intensive.  As a result, it is recommended
 * that a patch be applied.  Intensive file system operations can cause many
 * calls to the garbage routine to free Flash space (also by erasing physical
 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 * commands can occur.  The problem disappears when a delay is inserted after
 * the RESUME command by using the udelay() function available in Linux.
 * The DELAY value must be tuned based on the customer's platform.
 * The maximum value that fixes the problem in all cases is 500us.
 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 * in most cases.
 * We have chosen 500µs because this latency is acceptable.
 */
static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
{
	/*
	 * Resolving the Delay After Resume Issue see Micron TN-13-07
	 * Worst case delay must be 500µs but 30-50µs should be ok as well
	 */
	if (is_m29ew(cfi))
		cfi_udelay(500);
}

struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct device_node __maybe_unused *np = map->device_node;
	struct mtd_info *mtd;
	int i;

	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
	if (!mtd)
		return NULL;
	mtd->priv = map;
	mtd->type = MTD_NORFLASH;

	/* Fill in the default mtd operations */
	mtd->_erase   = cfi_amdstd_erase_varsize;
	mtd->_write   = cfi_amdstd_write_words;
	mtd->_read    = cfi_amdstd_read;
	mtd->_sync    = cfi_amdstd_sync;
	mtd->_suspend = cfi_amdstd_suspend;
	mtd->_resume  = cfi_amdstd_resume;
	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
	mtd->flags   = MTD_CAP_NORFLASH;
	mtd->name    = map->name;
	mtd->writesize = 1;
	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;

	pr_debug("MTD %s(): write buffer size %d\n", __func__,
			mtd->writebufsize);

	mtd->_panic_write = cfi_amdstd_panic_write;
	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;

	if (cfi->cfi_mode==CFI_MODE_CFI){
		unsigned char bootloc;
		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
		struct cfi_pri_amdstd *extp;

		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
		if (extp) {
			/*
			 * It's a real CFI chip, not one for which the probe
			 * routine faked a CFI structure.
			 */
			cfi_fixup_major_minor(cfi, extp);

			/*
			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
			 */
			if (extp->MajorVersion != '1' ||
			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
				       "version %c.%c (%#02x/%#02x).\n",
				       extp->MajorVersion, extp->MinorVersion,
				       extp->MajorVersion, extp->MinorVersion);
				kfree(extp);
				kfree(mtd);
				return NULL;
			}

			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
			       extp->MajorVersion, extp->MinorVersion);

			/* Install our own private info structure */
			cfi->cmdset_priv = extp;

			/* Apply cfi device specific fixups */
			cfi_fixup(mtd, cfi_fixup_table);

#ifdef DEBUG_CFI_FEATURES
			/* Tell the user about it in lots of lovely detail */
			cfi_tell_features(extp);
#endif

#ifdef CONFIG_OF
			if (np && of_property_read_bool(
				    np, "use-advanced-sector-protection")
			    && extp->BlkProtUnprot == 8) {
				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
				mtd->_lock = cfi_ppb_lock;
				mtd->_unlock = cfi_ppb_unlock;
				mtd->_is_locked = cfi_ppb_is_locked;
			}
#endif

			bootloc = extp->TopBottom;
			if ((bootloc < 2) || (bootloc > 5)) {
				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
				       "bank location (%d). Assuming bottom.\n",
				       map->name, bootloc);
				bootloc = 2;
			}

			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);

				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
					int j = (cfi->cfiq->NumEraseRegions-1)-i;
					__u32 swap;

					swap = cfi->cfiq->EraseRegionInfo[i];
					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
					cfi->cfiq->EraseRegionInfo[j] = swap;
				}
			}
			/* Set the default CFI lock/unlock addresses */
			cfi->addr_unlock1 = 0x555;
			cfi->addr_unlock2 = 0x2aa;
		}
		cfi_fixup(mtd, cfi_nopri_fixup_table);

		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
			kfree(mtd);
			return NULL;
		}

	} /* CFI mode */
	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
		/* Apply jedec specific fixups */
		cfi_fixup(mtd, jedec_fixup_table);
	}
	/* Apply generic fixups */
	cfi_fixup(mtd, fixup_table);

	for (i=0; i< cfi->numchips; i++) {
		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
		cfi->chips[i].ref_point_counter = 0;
		init_waitqueue_head(&(cfi->chips[i].wq));
	}

	map->fldrv = &cfi_amdstd_chipdrv;

	return cfi_amdstd_setup(mtd);
}
struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
EXPORT_SYMBOL_GPL(cfi_cmdset_0701);

static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
	unsigned long offset = 0;
	int i,j;

	printk(KERN_NOTICE "number of %s chips: %d\n",
	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
	/* Select the correct geometry setup */
	mtd->size = devsize * cfi->numchips;

	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
				    * mtd->numeraseregions, GFP_KERNEL);
	if (!mtd->eraseregions)
		goto setup_err;

	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
		unsigned long ernum, ersize;
		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;

		if (mtd->erasesize < ersize) {
			mtd->erasesize = ersize;
		}
		for (j=0; j<cfi->numchips; j++) {
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
		}
		offset += (ersize * ernum);
	}
	if (offset != devsize) {
		/* Argh */
		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
		goto setup_err;
	}

	__module_get(THIS_MODULE);
	register_reboot_notifier(&mtd->reboot_notifier);
	return mtd;

 setup_err:
	kfree(mtd->eraseregions);
	kfree(mtd);
	kfree(cfi->cmdset_priv);
	kfree(cfi->cfiq);
	return NULL;
}

/*
 * Return true if the chip is ready.
 *
 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 * non-suspended sector) and is indicated by no toggle bits toggling.
 *
 * Note that anything more complicated than checking if no bits are toggling
 * (including checking DQ5 for an error status) is tricky to get working
 * correctly and is therefore not done	(particularly with interleaved chips
 * as each chip must be checked independently of the others).
 */
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
{
	map_word d, t;

	d = map_read(map, addr);
	t = map_read(map, addr);

	return map_word_equal(map, d, t);
}

/*
 * Return true if the chip is ready and has the correct value.
 *
 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 * non-suspended sector) and it is indicated by no bits toggling.
 *
 * Error are indicated by toggling bits or bits held with the wrong value,
 * or with bits toggling.
 *
 * Note that anything more complicated than checking if no bits are toggling
 * (including checking DQ5 for an error status) is tricky to get working
 * correctly and is therefore not done	(particularly with interleaved chips
 * as each chip must be checked independently of the others).
 *
 */
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
{
	map_word oldd, curd;

	oldd = map_read(map, addr);
	curd = map_read(map, addr);

	return	map_word_equal(map, oldd, curd) &&
		map_word_equal(map, curd, expected);
}

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
	DECLARE_WAITQUEUE(wait, current);
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo;
	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;

 resettime:
	timeo = jiffies + HZ;
 retry:
	switch (chip->state) {

	case FL_STATUS:
		for (;;) {
			if (chip_ready(map, adr))
				break;

			if (time_after(jiffies, timeo)) {
				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
				return -EIO;
			}
			mutex_unlock(&chip->mutex);
			cfi_udelay(1);
			mutex_lock(&chip->mutex);
			/* Someone else might have been playing with it. */
			goto retry;
		}

	case FL_READY:
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
		return 0;

	case FL_ERASING:
		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
		    !(mode == FL_READY || mode == FL_POINT ||
		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
			goto sleep;

		/* We could check to see if we're trying to access the sector
		 * that is currently being erased. However, no user will try
		 * anything like that so we just wait for the timeout. */

		/* Erase suspend */
		/* It's harmless to issue the Erase-Suspend and Erase-Resume
		 * commands when the erase algorithm isn't in progress. */
		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
		chip->oldstate = FL_ERASING;
		chip->state = FL_ERASE_SUSPENDING;
		chip->erase_suspended = 1;
		for (;;) {
			if (chip_ready(map, adr))
				break;

			if (time_after(jiffies, timeo)) {
				/* Should have suspended the erase by now.
				 * Send an Erase-Resume command as either
				 * there was an error (so leave the erase
				 * routine to recover from it) or we trying to
				 * use the erase-in-progress sector. */
				put_chip(map, chip, adr);
				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
				return -EIO;
			}

			mutex_unlock(&chip->mutex);
			cfi_udelay(1);
			mutex_lock(&chip->mutex);
			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
			   So we can just loop here. */
		}
		chip->state = FL_READY;
		return 0;

	case FL_XIP_WHILE_ERASING:
		if (mode != FL_READY && mode != FL_POINT &&
		    (!cfip || !(cfip->EraseSuspend&2)))
			goto sleep;
		chip->oldstate = chip->state;
		chip->state = FL_READY;
		return 0;

	case FL_SHUTDOWN:
		/* The machine is rebooting */
		return -EIO;

	case FL_POINT:
		/* Only if there's no operation suspended... */
		if (mode == FL_READY && chip->oldstate == FL_READY)
			return 0;

	default:
	sleep:
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		mutex_unlock(&chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		mutex_lock(&chip->mutex);
		goto resettime;
	}
}


static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;

	switch(chip->oldstate) {
	case FL_ERASING:
		cfi_fixup_m29ew_erase_suspend(map,
			chip->in_progress_block_addr);
		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
		cfi_fixup_m29ew_delay_after_resume(cfi);
		chip->oldstate = FL_READY;
		chip->state = FL_ERASING;
		break;

	case FL_XIP_WHILE_ERASING:
		chip->state = chip->oldstate;
		chip->oldstate = FL_READY;
		break;

	case FL_READY:
	case FL_STATUS:
		break;
	default:
		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
	}
	wake_up(&chip->wq);
}

#ifdef CONFIG_MTD_XIP

/*
 * No interrupt what so ever can be serviced while the flash isn't in array
 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 * enclosing any code path where the flash is known not to be in array mode.
 * And within a XIP disabled code path, only functions marked with __xipram
 * may be called and nothing else (it's a good thing to inspect generated
 * assembly to make sure inline functions were actually inlined and that gcc
 * didn't emit calls to its own support functions). Also configuring MTD CFI
 * support to a single buswidth and a single interleave is also recommended.
 */

static void xip_disable(struct map_info *map, struct flchip *chip,
			unsigned long adr)
{
	/* TODO: chips with no XIP use should ignore and return */
	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
	local_irq_disable();
}

static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
				unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;

	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xf0), adr);
		chip->state = FL_READY;
	}
	(void) map_read(map, adr);
	xip_iprefetch();
	local_irq_enable();
}

/*
 * When a delay is required for the flash operation to complete, the
 * xip_udelay() function is polling for both the given timeout and pending
 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 * pending then the flash erase operation is suspended, array mode restored
 * and interrupts unmasked.  Task scheduling might also happen at that
 * point.  The CPU eventually returns from the interrupt or the call to
 * schedule() and the suspended flash operation is resumed for the remaining
 * of the delay period.
 *
 * Warning: this function _will_ fool interrupt latency tracing tools.
 */

static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
				unsigned long adr, int usec)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
	map_word status, OK = CMD(0x80);
	unsigned long suspended, start = xip_currtime();
	flstate_t oldstate;

	do {
		cpu_relax();
		if (xip_irqpending() && extp &&
		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
			/*
			 * Let's suspend the erase operation when supported.
			 * Note that we currently don't try to suspend
			 * interleaved chips if there is already another
			 * operation suspended (imagine what happens
			 * when one chip was already done with the current
			 * operation while another chip suspended it, then
			 * we resume the whole thing at once).  Yes, it
			 * can happen!
			 */
			map_write(map, CMD(0xb0), adr);
			usec -= xip_elapsed_since(start);
			suspended = xip_currtime();
			do {
				if (xip_elapsed_since(suspended) > 100000) {
					/*
					 * The chip doesn't want to suspend
					 * after waiting for 100 msecs.
					 * This is a critical error but there
					 * is not much we can do here.
					 */
					return;
				}
				status = map_read(map, adr);
			} while (!map_word_andequal(map, status, OK, OK));

			/* Suspend succeeded */
			oldstate = chip->state;
			if (!map_word_bitsset(map, status, CMD(0x40)))
				break;
			chip->state = FL_XIP_WHILE_ERASING;
			chip->erase_suspended = 1;
			map_write(map, CMD(0xf0), adr);
			(void) map_read(map, adr);
			xip_iprefetch();
			local_irq_enable();
			mutex_unlock(&chip->mutex);
			xip_iprefetch();
			cond_resched();

			/*
			 * We're back.  However someone else might have
			 * decided to go write to the chip if we are in
			 * a suspended erase state.  If so let's wait
			 * until it's done.
			 */
			mutex_lock(&chip->mutex);
			while (chip->state != FL_XIP_WHILE_ERASING) {
				DECLARE_WAITQUEUE(wait, current);
				set_current_state(TASK_UNINTERRUPTIBLE);
				add_wait_queue(&chip->wq, &wait);
				mutex_unlock(&chip->mutex);
				schedule();
				remove_wait_queue(&chip->wq, &wait);
				mutex_lock(&chip->mutex);
			}
			/* Disallow XIP again */
			local_irq_disable();

			/* Correct Erase Suspend Hangups for M29EW */
			cfi_fixup_m29ew_erase_suspend(map, adr);
			/* Resume the write or erase operation */
			map_write(map, cfi->sector_erase_cmd, adr);
			chip->state = oldstate;
			start = xip_currtime();
		} else if (usec >= 1000000/HZ) {
			/*
			 * Try to save on CPU power when waiting delay
			 * is at least a system timer tick period.
			 * No need to be extremely accurate here.
			 */
			xip_cpu_idle();
		}
		status = map_read(map, adr);
	} while (!map_word_andequal(map, status, OK, OK)
		 && xip_elapsed_since(start) < usec);
}

#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)

/*
 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
 * the flash is actively programming or erasing since we have to poll for
 * the operation to complete anyway.  We can't do that in a generic way with
 * a XIP setup so do it before the actual flash operation in this case
 * and stub it out from INVALIDATE_CACHE_UDELAY.
 */
#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
	INVALIDATE_CACHED_RANGE(map, from, size)

#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
	UDELAY(map, chip, adr, usec)

/*
 * Extra notes:
 *
 * Activating this XIP support changes the way the code works a bit.  For
 * example the code to suspend the current process when concurrent access
 * happens is never executed because xip_udelay() will always return with the
 * same chip state as it was entered with.  This is why there is no care for
 * the presence of add_wait_queue() or schedule() calls from within a couple
 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
 * The queueing and scheduling are always happening within xip_udelay().
 *
 * Similarly, get_chip() and put_chip() just happen to always be executed
 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
 * is in array mode, therefore never executing many cases therein and not
 * causing any problem with XIP.
 */

#else

#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)

#define UDELAY(map, chip, adr, usec)  \
do {  \
	mutex_unlock(&chip->mutex);  \
	cfi_udelay(usec);  \
	mutex_lock(&chip->mutex);  \
} while (0)

#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
do {  \
	mutex_unlock(&chip->mutex);  \
	INVALIDATE_CACHED_RANGE(map, adr, len);  \
	cfi_udelay(usec);  \
	mutex_lock(&chip->mutex);  \
} while (0)

#endif

static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */
	cmd_addr = adr & ~(map_bankwidth(map)-1);

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, cmd_addr, FL_READY);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xf0), cmd_addr);
		chip->state = FL_READY;
	}

	map_copy_from(map, buf, adr, len);

	put_chip(map, chip, cmd_addr);

	mutex_unlock(&chip->mutex);
	return 0;
}


static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;

		ofs = 0;
		chipnum++;
	}
	return ret;
}

typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
			loff_t adr, size_t len, u_char *buf, size_t grouplen);

static inline void otp_enter(struct map_info *map, struct flchip *chip,
			     loff_t adr, size_t len)
{
	struct cfi_private *cfi = map->fldrv_priv;

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);

	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
}

static inline void otp_exit(struct map_info *map, struct flchip *chip,
			    loff_t adr, size_t len)
{
	struct cfi_private *cfi = map->fldrv_priv;

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);

	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
}

static inline int do_read_secsi_onechip(struct map_info *map,
					struct flchip *chip, loff_t adr,
					size_t len, u_char *buf,
					size_t grouplen)
{
	DECLARE_WAITQUEUE(wait, current);
	unsigned long timeo = jiffies + HZ;

 retry:
	mutex_lock(&chip->mutex);

	if (chip->state != FL_READY){
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);

		mutex_unlock(&chip->mutex);

		schedule();
		remove_wait_queue(&chip->wq, &wait);
		timeo = jiffies + HZ;

		goto retry;
	}

	adr += chip->start;

	chip->state = FL_READY;

	otp_enter(map, chip, adr, len);
	map_copy_from(map, buf, adr, len);
	otp_exit(map, chip, adr, len);

	wake_up(&chip->wq);
	mutex_unlock(&chip->mutex);

	return 0;
}

static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */
	/* 8 secsi bytes per chip */
	chipnum=from>>3;
	ofs=from & 7;

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> 3)
			thislen = (1<<3) - ofs;
		else
			thislen = len;

		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
					    thislen, buf, 0);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;

		ofs = 0;
		chipnum++;
	}
	return ret;
}

static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
				     unsigned long adr, map_word datum,
				     int mode);

static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
			size_t len, u_char *buf, size_t grouplen)
{
	int ret;
	while (len) {
		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
		int gap = adr - bus_ofs;
		int n = min_t(int, len, map_bankwidth(map) - gap);
		map_word datum;

		if (n != map_bankwidth(map)) {
			/* partial write of a word, load old contents */
			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
			datum = map_read(map, bus_ofs);
			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
		}

		datum = map_word_load_partial(map, datum, buf, gap, n);
		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
		if (ret)
			return ret;

		adr += n;
		buf += n;
		len -= n;
	}

	return 0;
}

static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
		       size_t len, u_char *buf, size_t grouplen)
{
	struct cfi_private *cfi = map->fldrv_priv;
	uint8_t lockreg;
	unsigned long timeo;
	int ret;

	/* make sure area matches group boundaries */
	if ((adr != 0) || (len != grouplen))
		return -EINVAL;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, chip->start, FL_LOCKING);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}
	chip->state = FL_LOCKING;

	/* Enter lock register command */
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);

	/* read lock register */
	lockreg = cfi_read_query(map, 0);

	/* set bit 0 to protect extended memory block */
	lockreg &= ~0x01;

	/* set bit 0 to protect extended memory block */
	/* write lock register */
	map_write(map, CMD(0xA0), chip->start);
	map_write(map, CMD(lockreg), chip->start);

	/* wait for chip to become ready */
	timeo = jiffies + msecs_to_jiffies(2);
	for (;;) {
		if (chip_ready(map, adr))
			break;

		if (time_after(jiffies, timeo)) {
			pr_err("Waiting for chip to be ready timed out.\n");
			ret = -EIO;
			break;
		}
		UDELAY(map, chip, 0, 1);
	}

	/* exit protection commands */
	map_write(map, CMD(0x90), chip->start);
	map_write(map, CMD(0x00), chip->start);

	chip->state = FL_READY;
	put_chip(map, chip, chip->start);
	mutex_unlock(&chip->mutex);

	return ret;
}

static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			       size_t *retlen, u_char *buf,
			       otp_op_t action, int user_regs)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ofs_factor = cfi->interleave * cfi->device_type;
	unsigned long base;
	int chipnum;
	struct flchip *chip;
	uint8_t otp, lockreg;
	int ret;

	size_t user_size, factory_size, otpsize;
	loff_t user_offset, factory_offset, otpoffset;
	int user_locked = 0, otplocked;

	*retlen = 0;

	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
		chip = &cfi->chips[chipnum];
		factory_size = 0;
		user_size = 0;

		/* Micron M29EW family */
		if (is_m29ew(cfi)) {
			base = chip->start;

			/* check whether secsi area is factory locked
			   or user lockable */
			mutex_lock(&chip->mutex);
			ret = get_chip(map, chip, base, FL_CFI_QUERY);
			if (ret) {
				mutex_unlock(&chip->mutex);
				return ret;
			}
			cfi_qry_mode_on(base, map, cfi);
			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
			cfi_qry_mode_off(base, map, cfi);
			put_chip(map, chip, base);
			mutex_unlock(&chip->mutex);

			if (otp & 0x80) {
				/* factory locked */
				factory_offset = 0;
				factory_size = 0x100;
			} else {
				/* customer lockable */
				user_offset = 0;
				user_size = 0x100;

				mutex_lock(&chip->mutex);
				ret = get_chip(map, chip, base, FL_LOCKING);

				/* Enter lock register command */
				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
						 chip->start, map, cfi,
						 cfi->device_type, NULL);
				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
						 chip->start, map, cfi,
						 cfi->device_type, NULL);
				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
						 chip->start, map, cfi,
						 cfi->device_type, NULL);
				/* read lock register */
				lockreg = cfi_read_query(map, 0);
				/* exit protection commands */
				map_write(map, CMD(0x90), chip->start);
				map_write(map, CMD(0x00), chip->start);
				put_chip(map, chip, chip->start);
				mutex_unlock(&chip->mutex);

				user_locked = ((lockreg & 0x01) == 0x00);
			}
		}

		otpsize = user_regs ? user_size : factory_size;
		if (!otpsize)
			continue;
		otpoffset = user_regs ? user_offset : factory_offset;
		otplocked = user_regs ? user_locked : 1;

		if (!action) {
			/* return otpinfo */
			struct otp_info *otpinfo;
			len -= sizeof(*otpinfo);
			if (len <= 0)
				return -ENOSPC;
			otpinfo = (struct otp_info *)buf;
			otpinfo->start = from;
			otpinfo->length = otpsize;
			otpinfo->locked = otplocked;
			buf += sizeof(*otpinfo);
			*retlen += sizeof(*otpinfo);
			from += otpsize;
		} else if ((from < otpsize) && (len > 0)) {
			size_t size;
			size = (len < otpsize - from) ? len : otpsize - from;
			ret = action(map, chip, otpoffset + from, size, buf,
				     otpsize);
			if (ret < 0)
				return ret;

			buf += size;
			len -= size;
			*retlen += size;
			from = 0;
		} else {
			from -= otpsize;
		}
	}
	return 0;
}

static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
					 size_t *retlen, struct otp_info *buf)
{
	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
				   NULL, 0);
}

static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
					 size_t *retlen, struct otp_info *buf)
{
	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
				   NULL, 1);
}

static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
					 size_t len, size_t *retlen,
					 u_char *buf)
{
	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
				   buf, do_read_secsi_onechip, 0);
}

static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
					 size_t len, size_t *retlen,
					 u_char *buf)
{
	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
				   buf, do_read_secsi_onechip, 1);
}

static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
					  size_t len, size_t *retlen,
					  u_char *buf)
{
	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
				   do_otp_write, 1);
}

static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
					 size_t len)
{
	size_t retlen;
	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
				   do_otp_lock, 1);
}

static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
				     unsigned long adr, map_word datum,
				     int mode)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo = jiffies + HZ;
	/*
	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
	 * have a max write time of a few hundreds usec). However, we should
	 * use the maximum timeout value given by the chip at probe time
	 * instead.  Unfortunately, struct flchip does have a field for
	 * maximum timeout, only for typical which can be far too short
	 * depending of the conditions.	 The ' + 1' is to avoid having a
	 * timeout of 0 jiffies if HZ is smaller than 1000.
	 */
	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
	int ret = 0;
	map_word oldd;
	int retry_cnt = 0;

	adr += chip->start;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr, mode);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
	       __func__, adr, datum.x[0] );

	if (mode == FL_OTP_WRITE)
		otp_enter(map, chip, adr, map_bankwidth(map));

	/*
	 * Check for a NOP for the case when the datum to write is already
	 * present - it saves time and works around buggy chips that corrupt
	 * data at other locations when 0xff is written to a location that
	 * already contains 0xff.
	 */
	oldd = map_read(map, adr);
	if (map_word_equal(map, oldd, datum)) {
		pr_debug("MTD %s(): NOP\n",
		       __func__);
		goto op_done;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);

 retry:
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	map_write(map, datum, adr);
	chip->state = mode;

	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, map_bankwidth(map),
				chip->word_write_time);

	/* See comment above for timeout value. */
	timeo = jiffies + uWriteTimeout;
	for (;;) {
		if (chip->state != mode) {
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);

			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			mutex_lock(&chip->mutex);
			continue;
		}

		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
			xip_enable(map, chip, adr);
			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
			xip_disable(map, chip, adr);
			break;
		}

		if (chip_ready(map, adr))
			break;

		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1);
	}
	/* Did we succeed? */
	if (!chip_good(map, adr, datum)) {
		/* reset on all failures. */
		map_write( map, CMD(0xF0), chip->start );
		/* FIXME - should have reset delay before continuing */

		if (++retry_cnt <= MAX_WORD_RETRIES)
			goto retry;

		ret = -EIO;
	}
	xip_enable(map, chip, adr);
 op_done:
	if (mode == FL_OTP_WRITE)
		otp_exit(map, chip, adr, map_bankwidth(map));
	chip->state = FL_READY;
	DISABLE_VPP(map);
	put_chip(map, chip, adr);
	mutex_unlock(&chip->mutex);

	return ret;
}


static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
				  size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;
	int chipnum;
	unsigned long ofs, chipstart;
	DECLARE_WAITQUEUE(wait, current);

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);
	chipstart = cfi->chips[chipnum].start;

	/* If it's not bus-aligned, do the first byte write */
	if (ofs & (map_bankwidth(map)-1)) {
		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
		int i = ofs - bus_ofs;
		int n = 0;
		map_word tmp_buf;

 retry:
		mutex_lock(&cfi->chips[chipnum].mutex);

		if (cfi->chips[chipnum].state != FL_READY) {
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&cfi->chips[chipnum].wq, &wait);

			mutex_unlock(&cfi->chips[chipnum].mutex);

			schedule();
			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
			goto retry;
		}

		/* Load 'tmp_buf' with old contents of flash */
		tmp_buf = map_read(map, bus_ofs+chipstart);

		mutex_unlock(&cfi->chips[chipnum].mutex);

		/* Number of bytes to copy from buffer */
		n = min_t(int, len, map_bankwidth(map)-i);

		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       bus_ofs, tmp_buf, FL_WRITING);
		if (ret)
			return ret;

		ofs += n;
		buf += n;
		(*retlen) += n;
		len -= n;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	/* We are now aligned, write as much as possible */
	while(len >= map_bankwidth(map)) {
		map_word datum;

		datum = map_word_load(map, buf);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       ofs, datum, FL_WRITING);
		if (ret)
			return ret;

		ofs += map_bankwidth(map);
		buf += map_bankwidth(map);
		(*retlen) += map_bankwidth(map);
		len -= map_bankwidth(map);

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
			chipstart = cfi->chips[chipnum].start;
		}
	}

	/* Write the trailing bytes if any */
	if (len & (map_bankwidth(map)-1)) {
		map_word tmp_buf;

 retry1:
		mutex_lock(&cfi->chips[chipnum].mutex);

		if (cfi->chips[chipnum].state != FL_READY) {
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&cfi->chips[chipnum].wq, &wait);

			mutex_unlock(&cfi->chips[chipnum].mutex);

			schedule();
			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
			goto retry1;
		}

		tmp_buf = map_read(map, ofs + chipstart);

		mutex_unlock(&cfi->chips[chipnum].mutex);

		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       ofs, tmp_buf, FL_WRITING);
		if (ret)
			return ret;

		(*retlen) += len;
	}

	return 0;
}


/*
 * FIXME: interleaved mode not tested, and probably not supported!
 */
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
				    unsigned long adr, const u_char *buf,
				    int len)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo = jiffies + HZ;
	/* see comments in do_write_oneword() regarding uWriteTimeo. */
	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
	int ret = -EIO;
	unsigned long cmd_adr;
	int z, words;
	map_word datum;

	adr += chip->start;
	cmd_adr = adr;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr, FL_WRITING);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	datum = map_word_load(map, buf);

	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
	       __func__, adr, datum.x[0] );

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, cmd_adr);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);

	/* Write Buffer Load */
	map_write(map, CMD(0x25), cmd_adr);

	chip->state = FL_WRITING_TO_BUFFER;

	/* Write length of data to come */
	words = len / map_bankwidth(map);
	map_write(map, CMD(words - 1), cmd_adr);
	/* Write data */
	z = 0;
	while(z < words * map_bankwidth(map)) {
		datum = map_word_load(map, buf);
		map_write(map, datum, adr + z);

		z += map_bankwidth(map);
		buf += map_bankwidth(map);
	}
	z -= map_bankwidth(map);

	adr += z;

	/* Write Buffer Program Confirm: GO GO GO */
	map_write(map, CMD(0x29), cmd_adr);
	chip->state = FL_WRITING;

	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, map_bankwidth(map),
				chip->word_write_time);

	timeo = jiffies + uWriteTimeout;

	for (;;) {
		if (chip->state != FL_WRITING) {
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);

			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			mutex_lock(&chip->mutex);
			continue;
		}

		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
			break;

		if (chip_ready(map, adr)) {
			xip_enable(map, chip, adr);
			goto op_done;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1);
	}

	/*
	 * Recovery from write-buffer programming failures requires
	 * the write-to-buffer-reset sequence.  Since the last part
	 * of the sequence also works as a normal reset, we can run
	 * the same commands regardless of why we are here.
	 * See e.g.
	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
	 */
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	xip_enable(map, chip, adr);
	/* FIXME - should have reset delay before continuing */

	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
	       __func__, adr);

	ret = -EIO;
 op_done:
	chip->state = FL_READY;
	DISABLE_VPP(map);
	put_chip(map, chip, adr);
	mutex_unlock(&chip->mutex);

	return ret;
}


static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
				    size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

	/* If it's not bus-aligned, do the first word write */
	if (ofs & (map_bankwidth(map)-1)) {
		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
		if (local_len > len)
			local_len = len;
		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
					     local_len, retlen, buf);
		if (ret)
			return ret;
		ofs += local_len;
		buf += local_len;
		len -= local_len;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	/* Write buffer is worth it only if more than one word to write... */
	while (len >= map_bankwidth(map) * 2) {
		/* We must not cross write block boundaries */
		int size = wbufsize - (ofs & (wbufsize-1));

		if (size > len)
			size = len;
		if (size % map_bankwidth(map))
			size -= size % map_bankwidth(map);

		ret = do_write_buffer(map, &cfi->chips[chipnum],
				      ofs, buf, size);
		if (ret)
			return ret;

		ofs += size;
		buf += size;
		(*retlen) += size;
		len -= size;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	if (len) {
		size_t retlen_dregs = 0;

		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
					     len, &retlen_dregs, buf);

		*retlen += retlen_dregs;
		return ret;
	}

	return 0;
}

/*
 * Wait for the flash chip to become ready to write data
 *
 * This is only called during the panic_write() path. When panic_write()
 * is called, the kernel is in the process of a panic, and will soon be
 * dead. Therefore we don't take any locks, and attempt to get access
 * to the chip as soon as possible.
 */
static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
				 unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int retries = 10;
	int i;

	/*
	 * If the driver thinks the chip is idle, and no toggle bits
	 * are changing, then the chip is actually idle for sure.
	 */
	if (chip->state == FL_READY && chip_ready(map, adr))
		return 0;

	/*
	 * Try several times to reset the chip and then wait for it
	 * to become idle. The upper limit of a few milliseconds of
	 * delay isn't a big problem: the kernel is dying anyway. It
	 * is more important to save the messages.
	 */
	while (retries > 0) {
		const unsigned long timeo = (HZ / 1000) + 1;

		/* send the reset command */
		map_write(map, CMD(0xF0), chip->start);

		/* wait for the chip to become ready */
		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
			if (chip_ready(map, adr))
				return 0;

			udelay(1);
		}
	}

	/* the chip never became ready */
	return -EBUSY;
}

/*
 * Write out one word of data to a single flash chip during a kernel panic
 *
 * This is only called during the panic_write() path. When panic_write()
 * is called, the kernel is in the process of a panic, and will soon be
 * dead. Therefore we don't take any locks, and attempt to get access
 * to the chip as soon as possible.
 *
 * The implementation of this routine is intentionally similar to
 * do_write_oneword(), in order to ease code maintenance.
 */
static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
				  unsigned long adr, map_word datum)
{
	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
	struct cfi_private *cfi = map->fldrv_priv;
	int retry_cnt = 0;
	map_word oldd;
	int ret = 0;
	int i;

	adr += chip->start;

	ret = cfi_amdstd_panic_wait(map, chip, adr);
	if (ret)
		return ret;

	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
			__func__, adr, datum.x[0]);

	/*
	 * Check for a NOP for the case when the datum to write is already
	 * present - it saves time and works around buggy chips that corrupt
	 * data at other locations when 0xff is written to a location that
	 * already contains 0xff.
	 */
	oldd = map_read(map, adr);
	if (map_word_equal(map, oldd, datum)) {
		pr_debug("MTD %s(): NOP\n", __func__);
		goto op_done;
	}

	ENABLE_VPP(map);

retry:
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	map_write(map, datum, adr);

	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
		if (chip_ready(map, adr))
			break;

		udelay(1);
	}

	if (!chip_good(map, adr, datum)) {
		/* reset on all failures. */
		map_write(map, CMD(0xF0), chip->start);
		/* FIXME - should have reset delay before continuing */

		if (++retry_cnt <= MAX_WORD_RETRIES)
			goto retry;

		ret = -EIO;
	}

op_done:
	DISABLE_VPP(map);
	return ret;
}

/*
 * Write out some data during a kernel panic
 *
 * This is used by the mtdoops driver to save the dying messages from a
 * kernel which has panic'd.
 *
 * This routine ignores all of the locking used throughout the rest of the
 * driver, in order to ensure that the data gets written out no matter what
 * state this driver (and the flash chip itself) was in when the kernel crashed.
 *
 * The implementation of this routine is intentionally similar to
 * cfi_amdstd_write_words(), in order to ease code maintenance.
 */
static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
				  size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs, chipstart;
	int ret = 0;
	int chipnum;

	chipnum = to >> cfi->chipshift;
	ofs = to - (chipnum << cfi->chipshift);
	chipstart = cfi->chips[chipnum].start;

	/* If it's not bus aligned, do the first byte write */
	if (ofs & (map_bankwidth(map) - 1)) {
		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
		int i = ofs - bus_ofs;
		int n = 0;
		map_word tmp_buf;

		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
		if (ret)
			return ret;

		/* Load 'tmp_buf' with old contents of flash */
		tmp_buf = map_read(map, bus_ofs + chipstart);

		/* Number of bytes to copy from buffer */
		n = min_t(int, len, map_bankwidth(map) - i);

		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);

		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
					     bus_ofs, tmp_buf);
		if (ret)
			return ret;

		ofs += n;
		buf += n;
		(*retlen) += n;
		len -= n;

		if (ofs >> cfi->chipshift) {
			chipnum++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	/* We are now aligned, write as much as possible */
	while (len >= map_bankwidth(map)) {
		map_word datum;

		datum = map_word_load(map, buf);

		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
					     ofs, datum);
		if (ret)
			return ret;

		ofs += map_bankwidth(map);
		buf += map_bankwidth(map);
		(*retlen) += map_bankwidth(map);
		len -= map_bankwidth(map);

		if (ofs >> cfi->chipshift) {
			chipnum++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;

			chipstart = cfi->chips[chipnum].start;
		}
	}

	/* Write the trailing bytes if any */
	if (len & (map_bankwidth(map) - 1)) {
		map_word tmp_buf;

		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
		if (ret)
			return ret;

		tmp_buf = map_read(map, ofs + chipstart);

		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);

		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
					     ofs, tmp_buf);
		if (ret)
			return ret;

		(*retlen) += len;
	}

	return 0;
}


/*
 * Handle devices with one erase region, that only implement
 * the chip erase command.
 */
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo = jiffies + HZ;
	unsigned long int adr;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	adr = cfi->addr_unlock1;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr, FL_WRITING);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
	       __func__, chip->start );

	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);

	chip->state = FL_ERASING;
	chip->erase_suspended = 0;
	chip->in_progress_block_addr = adr;

	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, map->size,
				chip->erase_time*500);

	timeo = jiffies + (HZ*20);

	for (;;) {
		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			mutex_lock(&chip->mutex);
			continue;
		}
		if (chip->erase_suspended) {
			/* This erase was suspended and resumed.
			   Adjust the timeout */
			timeo = jiffies + (HZ*20); /* FIXME */
			chip->erase_suspended = 0;
		}

		if (chip_ready(map, adr))
			break;

		if (time_after(jiffies, timeo)) {
			printk(KERN_WARNING "MTD %s(): software timeout\n",
				__func__ );
			break;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1000000/HZ);
	}
	/* Did we succeed? */
	if (!chip_good(map, adr, map_word_ff(map))) {
		/* reset on all failures. */
		map_write( map, CMD(0xF0), chip->start );
		/* FIXME - should have reset delay before continuing */

		ret = -EIO;
	}

	chip->state = FL_READY;
	xip_enable(map, chip, adr);
	DISABLE_VPP(map);
	put_chip(map, chip, adr);
	mutex_unlock(&chip->mutex);

	return ret;
}


static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo = jiffies + HZ;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	adr += chip->start;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr, FL_ERASING);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
	       __func__, adr );

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
	map_write(map, cfi->sector_erase_cmd, adr);

	chip->state = FL_ERASING;
	chip->erase_suspended = 0;
	chip->in_progress_block_addr = adr;

	INVALIDATE_CACHE_UDELAY(map, chip,
				adr, len,
				chip->erase_time*500);

	timeo = jiffies + (HZ*20);

	for (;;) {
		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			mutex_unlock(&chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			mutex_lock(&chip->mutex);
			continue;
		}
		if (chip->erase_suspended) {
			/* This erase was suspended and resumed.
			   Adjust the timeout */
			timeo = jiffies + (HZ*20); /* FIXME */
			chip->erase_suspended = 0;
		}

		if (chip_ready(map, adr)) {
			xip_enable(map, chip, adr);
			break;
		}

		if (time_after(jiffies, timeo)) {
			xip_enable(map, chip, adr);
			printk(KERN_WARNING "MTD %s(): software timeout\n",
				__func__ );
			break;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		UDELAY(map, chip, adr, 1000000/HZ);
	}
	/* Did we succeed? */
	if (!chip_good(map, adr, map_word_ff(map))) {
		/* reset on all failures. */
		map_write( map, CMD(0xF0), chip->start );
		/* FIXME - should have reset delay before continuing */

		ret = -EIO;
	}

	chip->state = FL_READY;
	DISABLE_VPP(map);
	put_chip(map, chip, adr);
	mutex_unlock(&chip->mutex);
	return ret;
}


static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
	unsigned long ofs, len;
	int ret;

	ofs = instr->addr;
	len = instr->len;

	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
	if (ret)
		return ret;

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}


static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;

	if (instr->addr != 0)
		return -EINVAL;

	if (instr->len != mtd->size)
		return -EINVAL;

	ret = do_erase_chip(map, &cfi->chips[0]);
	if (ret)
		return ret;

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

static int do_atmel_lock(struct map_info *map, struct flchip *chip,
			 unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
	if (ret)
		goto out_unlock;
	chip->state = FL_LOCKING;

	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	map_write(map, CMD(0x40), chip->start + adr);

	chip->state = FL_READY;
	put_chip(map, chip, adr + chip->start);
	ret = 0;

out_unlock:
	mutex_unlock(&chip->mutex);
	return ret;
}

static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
			   unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
	if (ret)
		goto out_unlock;
	chip->state = FL_UNLOCKING;

	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	map_write(map, CMD(0x70), adr);

	chip->state = FL_READY;
	put_chip(map, chip, adr + chip->start);
	ret = 0;

out_unlock:
	mutex_unlock(&chip->mutex);
	return ret;
}

static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
}

static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
}

/*
 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
 */

struct ppb_lock {
	struct flchip *chip;
	loff_t offset;
	int locked;
};

#define MAX_SECTORS			512

#define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
#define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)

static int __maybe_unused do_ppb_xxlock(struct map_info *map,
					struct flchip *chip,
					unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long timeo;
	int ret;

	mutex_lock(&chip->mutex);
	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
	if (ret) {
		mutex_unlock(&chip->mutex);
		return ret;
	}

	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);

	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);
	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
			 cfi->device_type, NULL);
	/* PPB entry command */
	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
			 cfi->device_type, NULL);

	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
		chip->state = FL_LOCKING;
		map_write(map, CMD(0xA0), chip->start + adr);
		map_write(map, CMD(0x00), chip->start + adr);
	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
		/*
		 * Unlocking of one specific sector is not supported, so we
		 * have to unlock all sectors of this device instead
		 */
		chip->state = FL_UNLOCKING;
		map_write(map, CMD(0x80), chip->start);
		map_write(map, CMD(0x30), chip->start);
	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
		chip->state = FL_JEDEC_QUERY;
		/* Return locked status: 0->locked, 1->unlocked */
		ret = !cfi_read_query(map, adr);
	} else
		BUG();

	/*
	 * Wait for some time as unlocking of all sectors takes quite long
	 */
	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
	for (;;) {
		if (chip_ready(map, adr))
			break;

		if (time_after(jiffies, timeo)) {
			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
			ret = -EIO;
			break;
		}

		UDELAY(map, chip, adr, 1);
	}

	/* Exit BC commands */
	map_write(map, CMD(0x90), chip->start);
	map_write(map, CMD(0x00), chip->start);

	chip->state = FL_READY;
	put_chip(map, chip, adr + chip->start);
	mutex_unlock(&chip->mutex);

	return ret;
}

static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
				       uint64_t len)
{
	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
				DO_XXLOCK_ONEBLOCK_LOCK);
}

static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
					 uint64_t len)
{
	struct mtd_erase_region_info *regions = mtd->eraseregions;
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct ppb_lock *sect;
	unsigned long adr;
	loff_t offset;
	uint64_t length;
	int chipnum;
	int i;
	int sectors;
	int ret;

	/*
	 * PPB unlocking always unlocks all sectors of the flash chip.
	 * We need to re-lock all previously locked sectors. So lets
	 * first check the locking status of all sectors and save
	 * it for future use.
	 */
	sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
	if (!sect)
		return -ENOMEM;

	/*
	 * This code to walk all sectors is a slightly modified version
	 * of the cfi_varsize_frob() code.
	 */
	i = 0;
	chipnum = 0;
	adr = 0;
	sectors = 0;
	offset = 0;
	length = mtd->size;

	while (length) {
		int size = regions[i].erasesize;

		/*
		 * Only test sectors that shall not be unlocked. The other
		 * sectors shall be unlocked, so lets keep their locking
		 * status at "unlocked" (locked=0) for the final re-locking.
		 */
		if ((adr < ofs) || (adr >= (ofs + len))) {
			sect[sectors].chip = &cfi->chips[chipnum];
			sect[sectors].offset = offset;
			sect[sectors].locked = do_ppb_xxlock(
				map, &cfi->chips[chipnum], adr, 0,
				DO_XXLOCK_ONEBLOCK_GETLOCK);
		}

		adr += size;
		offset += size;
		length -= size;

		if (offset == regions[i].offset + size * regions[i].numblocks)
			i++;

		if (adr >> cfi->chipshift) {
			adr = 0;
			chipnum++;

			if (chipnum >= cfi->numchips)
				break;
		}

		sectors++;
		if (sectors >= MAX_SECTORS) {
			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
			       MAX_SECTORS);
			kfree(sect);
			return -EINVAL;
		}
	}

	/* Now unlock the whole chip */
	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
			       DO_XXLOCK_ONEBLOCK_UNLOCK);
	if (ret) {
		kfree(sect);
		return ret;
	}

	/*
	 * PPB unlocking always unlocks all sectors of the flash chip.
	 * We need to re-lock all previously locked sectors.
	 */
	for (i = 0; i < sectors; i++) {
		if (sect[i].locked)
			do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
				      DO_XXLOCK_ONEBLOCK_LOCK);
	}

	kfree(sect);
	return ret;
}

static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
					    uint64_t len)
{
	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
}

static void cfi_amdstd_sync (struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;
	DECLARE_WAITQUEUE(wait, current);

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

	retry:
		mutex_lock(&chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change -
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_SYNCING:
			mutex_unlock(&chip->mutex);
			break;

		default:
			/* Not an idle state */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);

			mutex_unlock(&chip->mutex);

			schedule();

			remove_wait_queue(&chip->wq, &wait);

			goto retry;
		}
	}

	/* Unlock the chips again */

	for (i--; i >=0; i--) {
		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
			wake_up(&chip->wq);
		}
		mutex_unlock(&chip->mutex);
	}
}


static int cfi_amdstd_suspend(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		switch(chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			chip->oldstate = chip->state;
			chip->state = FL_PM_SUSPENDED;
			/* No need to wake_up() on this state change -
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		case FL_PM_SUSPENDED:
			break;

		default:
			ret = -EAGAIN;
			break;
		}
		mutex_unlock(&chip->mutex);
	}

	/* Unlock the chips again */

	if (ret) {
		for (i--; i >=0; i--) {
			chip = &cfi->chips[i];

			mutex_lock(&chip->mutex);

			if (chip->state == FL_PM_SUSPENDED) {
				chip->state = chip->oldstate;
				wake_up(&chip->wq);
			}
			mutex_unlock(&chip->mutex);
		}
	}

	return ret;
}


static void cfi_amdstd_resume(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;

	for (i=0; i<cfi->numchips; i++) {

		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		if (chip->state == FL_PM_SUSPENDED) {
			chip->state = FL_READY;
			map_write(map, CMD(0xF0), chip->start);
			wake_up(&chip->wq);
		}
		else
			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");

		mutex_unlock(&chip->mutex);
	}
}


/*
 * Ensure that the flash device is put back into read array mode before
 * unloading the driver or rebooting.  On some systems, rebooting while
 * the flash is in query/program/erase mode will prevent the CPU from
 * fetching the bootloader code, requiring a hard reset or power cycle.
 */
static int cfi_amdstd_reset(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i, ret;
	struct flchip *chip;

	for (i = 0; i < cfi->numchips; i++) {

		chip = &cfi->chips[i];

		mutex_lock(&chip->mutex);

		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
		if (!ret) {
			map_write(map, CMD(0xF0), chip->start);
			chip->state = FL_SHUTDOWN;
			put_chip(map, chip, chip->start);
		}

		mutex_unlock(&chip->mutex);
	}

	return 0;
}


static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
			       void *v)
{
	struct mtd_info *mtd;

	mtd = container_of(nb, struct mtd_info, reboot_notifier);
	cfi_amdstd_reset(mtd);
	return NOTIFY_DONE;
}


static void cfi_amdstd_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;

	cfi_amdstd_reset(mtd);
	unregister_reboot_notifier(&mtd->reboot_notifier);
	kfree(cfi->cmdset_priv);
	kfree(cfi->cfiq);
	kfree(cfi);
	kfree(mtd->eraseregions);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
MODULE_ALIAS("cfi_cmdset_0006");
MODULE_ALIAS("cfi_cmdset_0701");
OpenPOWER on IntegriCloud