summaryrefslogtreecommitdiffstats
path: root/drivers/media/video/cx25840/cx25840-ir.c
blob: 13c380ebb5621571bf43fc546acaa1aaf07b6029 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
/*
 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
 *
 *  Integrated Consumer Infrared Controller
 *
 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 *  02110-1301, USA.
 */

#include <linux/slab.h>
#include <linux/kfifo.h>
#include <linux/module.h>
#include <media/cx25840.h>
#include <media/rc-core.h>

#include "cx25840-core.h"

static unsigned int ir_debug;
module_param(ir_debug, int, 0644);
MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");

#define CX25840_IR_REG_BASE 	0x200

#define CX25840_IR_CNTRL_REG	0x200
#define CNTRL_WIN_3_3	0x00000000
#define CNTRL_WIN_4_3	0x00000001
#define CNTRL_WIN_3_4	0x00000002
#define CNTRL_WIN_4_4	0x00000003
#define CNTRL_WIN	0x00000003
#define CNTRL_EDG_NONE	0x00000000
#define CNTRL_EDG_FALL	0x00000004
#define CNTRL_EDG_RISE	0x00000008
#define CNTRL_EDG_BOTH	0x0000000C
#define CNTRL_EDG	0x0000000C
#define CNTRL_DMD	0x00000010
#define CNTRL_MOD	0x00000020
#define CNTRL_RFE	0x00000040
#define CNTRL_TFE	0x00000080
#define CNTRL_RXE	0x00000100
#define CNTRL_TXE	0x00000200
#define CNTRL_RIC	0x00000400
#define CNTRL_TIC	0x00000800
#define CNTRL_CPL	0x00001000
#define CNTRL_LBM	0x00002000
#define CNTRL_R		0x00004000

#define CX25840_IR_TXCLK_REG	0x204
#define TXCLK_TCD	0x0000FFFF

#define CX25840_IR_RXCLK_REG	0x208
#define RXCLK_RCD	0x0000FFFF

#define CX25840_IR_CDUTY_REG	0x20C
#define CDUTY_CDC	0x0000000F

#define CX25840_IR_STATS_REG	0x210
#define STATS_RTO	0x00000001
#define STATS_ROR	0x00000002
#define STATS_RBY	0x00000004
#define STATS_TBY	0x00000008
#define STATS_RSR	0x00000010
#define STATS_TSR	0x00000020

#define CX25840_IR_IRQEN_REG	0x214
#define IRQEN_RTE	0x00000001
#define IRQEN_ROE	0x00000002
#define IRQEN_RSE	0x00000010
#define IRQEN_TSE	0x00000020
#define IRQEN_MSK	0x00000033

#define CX25840_IR_FILTR_REG	0x218
#define FILTR_LPF	0x0000FFFF

#define CX25840_IR_FIFO_REG	0x23C
#define FIFO_RXTX	0x0000FFFF
#define FIFO_RXTX_LVL	0x00010000
#define FIFO_RXTX_RTO	0x0001FFFF
#define FIFO_RX_NDV	0x00020000
#define FIFO_RX_DEPTH	8
#define FIFO_TX_DEPTH	8

#define CX25840_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
#define CX25840_IR_REFCLK_FREQ	(CX25840_VIDCLK_FREQ / 2)

/*
 * We use this union internally for convenience, but callers to tx_write
 * and rx_read will be expecting records of type struct ir_raw_event.
 * Always ensure the size of this union is dictated by struct ir_raw_event.
 */
union cx25840_ir_fifo_rec {
	u32 hw_fifo_data;
	struct ir_raw_event ir_core_data;
};

#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))

struct cx25840_ir_state {
	struct i2c_client *c;

	struct v4l2_subdev_ir_parameters rx_params;
	struct mutex rx_params_lock; /* protects Rx parameter settings cache */
	atomic_t rxclk_divider;
	atomic_t rx_invert;

	struct kfifo rx_kfifo;
	spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */

	struct v4l2_subdev_ir_parameters tx_params;
	struct mutex tx_params_lock; /* protects Tx parameter settings cache */
	atomic_t txclk_divider;
};

static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
{
	struct cx25840_state *state = to_state(sd);
	return state ? state->ir_state : NULL;
}


/*
 * Rx and Tx Clock Divider register computations
 *
 * Note the largest clock divider value of 0xffff corresponds to:
 * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 */
static inline u16 count_to_clock_divider(unsigned int d)
{
	if (d > RXCLK_RCD + 1)
		d = RXCLK_RCD;
	else if (d < 2)
		d = 1;
	else
		d--;
	return (u16) d;
}

static inline u16 ns_to_clock_divider(unsigned int ns)
{
	return count_to_clock_divider(
		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
}

static inline unsigned int clock_divider_to_ns(unsigned int divider)
{
	/* Period of the Rx or Tx clock in ns */
	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
				 CX25840_IR_REFCLK_FREQ / 1000000);
}

static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
{
	return count_to_clock_divider(
			  DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
}

static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
{
	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
}

static inline u16 freq_to_clock_divider(unsigned int freq,
					unsigned int rollovers)
{
	return count_to_clock_divider(
		   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
}

static inline unsigned int clock_divider_to_freq(unsigned int divider,
						 unsigned int rollovers)
{
	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
				 (divider + 1) * rollovers);
}

/*
 * Low Pass Filter register calculations
 *
 * Note the largest count value of 0xffff corresponds to:
 * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 */
static inline u16 count_to_lpf_count(unsigned int d)
{
	if (d > FILTR_LPF)
		d = FILTR_LPF;
	else if (d < 4)
		d = 0;
	return (u16) d;
}

static inline u16 ns_to_lpf_count(unsigned int ns)
{
	return count_to_lpf_count(
		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
}

static inline unsigned int lpf_count_to_ns(unsigned int count)
{
	/* Duration of the Low Pass Filter rejection window in ns */
	return DIV_ROUND_CLOSEST(count * 1000,
				 CX25840_IR_REFCLK_FREQ / 1000000);
}

static inline unsigned int lpf_count_to_us(unsigned int count)
{
	/* Duration of the Low Pass Filter rejection window in us */
	return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
}

/*
 * FIFO register pulse width count compuations
 */
static u32 clock_divider_to_resolution(u16 divider)
{
	/*
	 * Resolution is the duration of 1 tick of the readable portion of
	 * of the pulse width counter as read from the FIFO.  The two lsb's are
	 * not readable, hence the << 2.  This function returns ns.
	 */
	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
				 CX25840_IR_REFCLK_FREQ / 1000000);
}

static u64 pulse_width_count_to_ns(u16 count, u16 divider)
{
	u64 n;
	u32 rem;

	/*
	 * The 2 lsb's of the pulse width timer count are not readable, hence
	 * the (count << 2) | 0x3
	 */
	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
		n++;
	return n;
}

#if 0
/* Keep as we will need this for Transmit functionality */
static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
{
	u64 n;
	u32 d;
	u32 rem;

	/*
	 * The 2 lsb's of the pulse width timer count are not accessible, hence
	 * the (1 << 2)
	 */
	n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
	d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
	rem = do_div(n, d);
	if (rem >= d / 2)
		n++;

	if (n > FIFO_RXTX)
		n = FIFO_RXTX;
	else if (n == 0)
		n = 1;
	return (u16) n;
}

#endif
static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
{
	u64 n;
	u32 rem;

	/*
	 * The 2 lsb's of the pulse width timer count are not readable, hence
	 * the (count << 2) | 0x3
	 */
	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
		n++;
	return (unsigned int) n;
}

/*
 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 *
 * The total pulse clock count is an 18 bit pulse width timer count as the most
 * significant part and (up to) 16 bit clock divider count as a modulus.
 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 * width timer count's least significant bit.
 */
static u64 ns_to_pulse_clocks(u32 ns)
{
	u64 clocks;
	u32 rem;
	clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
	if (rem >= 1000 / 2)
		clocks++;
	return clocks;
}

static u16 pulse_clocks_to_clock_divider(u64 count)
{
	u32 rem;

	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);

	/* net result needs to be rounded down and decremented by 1 */
	if (count > RXCLK_RCD + 1)
		count = RXCLK_RCD;
	else if (count < 2)
		count = 1;
	else
		count--;
	return (u16) count;
}

/*
 * IR Control Register helpers
 */
enum tx_fifo_watermark {
	TX_FIFO_HALF_EMPTY = 0,
	TX_FIFO_EMPTY      = CNTRL_TIC,
};

enum rx_fifo_watermark {
	RX_FIFO_HALF_FULL = 0,
	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
};

static inline void control_tx_irq_watermark(struct i2c_client *c,
					    enum tx_fifo_watermark level)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
}

static inline void control_rx_irq_watermark(struct i2c_client *c,
					    enum rx_fifo_watermark level)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
}

static inline void control_tx_enable(struct i2c_client *c, bool enable)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
			enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
}

static inline void control_rx_enable(struct i2c_client *c, bool enable)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
			enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
}

static inline void control_tx_modulation_enable(struct i2c_client *c,
						bool enable)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
			enable ? CNTRL_MOD : 0);
}

static inline void control_rx_demodulation_enable(struct i2c_client *c,
						  bool enable)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
			enable ? CNTRL_DMD : 0);
}

static inline void control_rx_s_edge_detection(struct i2c_client *c,
					       u32 edge_types)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
			edge_types & CNTRL_EDG_BOTH);
}

static void control_rx_s_carrier_window(struct i2c_client *c,
					unsigned int carrier,
					unsigned int *carrier_range_low,
					unsigned int *carrier_range_high)
{
	u32 v;
	unsigned int c16 = carrier * 16;

	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
		v = CNTRL_WIN_3_4;
		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
	} else {
		v = CNTRL_WIN_3_3;
		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
	}

	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
		v |= CNTRL_WIN_4_3;
		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
	} else {
		v |= CNTRL_WIN_3_3;
		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
	}
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
}

static inline void control_tx_polarity_invert(struct i2c_client *c,
					      bool invert)
{
	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
			invert ? CNTRL_CPL : 0);
}

/*
 * IR Rx & Tx Clock Register helpers
 */
static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
				       unsigned int freq,
				       u16 *divider)
{
	*divider = carrier_freq_to_clock_divider(freq);
	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
	return clock_divider_to_carrier_freq(*divider);
}

static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
				       unsigned int freq,
				       u16 *divider)
{
	*divider = carrier_freq_to_clock_divider(freq);
	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
	return clock_divider_to_carrier_freq(*divider);
}

static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
				      u16 *divider)
{
	u64 pulse_clocks;

	if (ns > IR_MAX_DURATION)
		ns = IR_MAX_DURATION;
	pulse_clocks = ns_to_pulse_clocks(ns);
	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}

static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
				      u16 *divider)
{
	u64 pulse_clocks;

	if (ns > IR_MAX_DURATION)
		ns = IR_MAX_DURATION;
	pulse_clocks = ns_to_pulse_clocks(ns);
	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
}

/*
 * IR Tx Carrier Duty Cycle register helpers
 */
static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
					  unsigned int duty_cycle)
{
	u32 n;
	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
	if (n != 0)
		n--;
	if (n > 15)
		n = 15;
	cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
}

/*
 * IR Filter Register helpers
 */
static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
{
	u32 count = ns_to_lpf_count(min_width_ns);
	cx25840_write4(c, CX25840_IR_FILTR_REG, count);
	return lpf_count_to_ns(count);
}

/*
 * IR IRQ Enable Register helpers
 */
static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
{
	struct cx25840_state *state = to_state(sd);

	if (is_cx23885(state) || is_cx23887(state))
		mask ^= IRQEN_MSK;
	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
			~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
}

static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
{
	struct cx25840_state *state = to_state(sd);

	if (is_cx23885(state) || is_cx23887(state))
		mask ^= IRQEN_MSK;
	mask &= IRQEN_TSE;
	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
}

/*
 * V4L2 Subdevice IR Ops
 */
int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
{
	struct cx25840_state *state = to_state(sd);
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c = NULL;
	unsigned long flags;

	union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
	unsigned int i, j, k;
	u32 events, v;
	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
	u32 cntrl, irqen, stats;

	*handled = false;
	if (ir_state == NULL)
		return -ENODEV;

	c = ir_state->c;

	/* Only support the IR controller for the CX2388[57] AV Core for now */
	if (!(is_cx23885(state) || is_cx23887(state)))
		return -ENODEV;

	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
	if (is_cx23885(state) || is_cx23887(state))
		irqen ^= IRQEN_MSK;
	stats = cx25840_read4(c, CX25840_IR_STATS_REG);

	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
	ror = stats & STATS_ROR; /* Rx FIFO Over Run */

	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */

	v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
		 rto ? "rto" : "   ", ror ? "ror" : "   ",
		 stats & STATS_TBY ? "tby" : "   ",
		 stats & STATS_RBY ? "rby" : "   ");

	v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
		 tse ? "tse" : "   ", rse ? "rse" : "   ",
		 rte ? "rte" : "   ", roe ? "roe" : "   ");

	/*
	 * Transmitter interrupt service
	 */
	if (tse && tsr) {
		/*
		 * TODO:
		 * Check the watermark threshold setting
		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
		 * Push the data to the hardware FIFO.
		 * If there was nothing more to send in the tx_kfifo, disable
		 *	the TSR IRQ and notify the v4l2_device.
		 * If there was something in the tx_kfifo, check the tx_kfifo
		 *      level and notify the v4l2_device, if it is low.
		 */
		/* For now, inhibit TSR interrupt until Tx is implemented */
		irqenable_tx(sd, 0);
		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
		*handled = true;
	}

	/*
	 * Receiver interrupt service
	 */
	kror = 0;
	if ((rse && rsr) || (rte && rto)) {
		/*
		 * Receive data on RSR to clear the STATS_RSR.
		 * Receive data on RTO, since we may not have yet hit the RSR
		 * watermark when we receive the RTO.
		 */
		for (i = 0, v = FIFO_RX_NDV;
		     (v & FIFO_RX_NDV) && !kror; i = 0) {
			for (j = 0;
			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
				v = cx25840_read4(c, CX25840_IR_FIFO_REG);
				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
				i++;
			}
			if (i == 0)
				break;
			j = i * sizeof(union cx25840_ir_fifo_rec);
			k = kfifo_in_locked(&ir_state->rx_kfifo,
					    (unsigned char *) rx_data, j,
					    &ir_state->rx_kfifo_lock);
			if (k != j)
				kror++; /* rx_kfifo over run */
		}
		*handled = true;
	}

	events = 0;
	v = 0;
	if (kror) {
		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
		v4l2_err(sd, "IR receiver software FIFO overrun\n");
	}
	if (roe && ror) {
		/*
		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
		 * the Rx FIFO Over Run status (STATS_ROR)
		 */
		v |= CNTRL_RFE;
		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
	}
	if (rte && rto) {
		/*
		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
		 */
		v |= CNTRL_RXE;
		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
	}
	if (v) {
		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
		*handled = true;
	}
	spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
	if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
	spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);

	if (events)
		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
	return 0;
}

/* Receiver */
static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
			      ssize_t *num)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	bool invert;
	u16 divider;
	unsigned int i, n;
	union cx25840_ir_fifo_rec *p;
	unsigned u, v, w;

	if (ir_state == NULL)
		return -ENODEV;

	invert = (bool) atomic_read(&ir_state->rx_invert);
	divider = (u16) atomic_read(&ir_state->rxclk_divider);

	n = count / sizeof(union cx25840_ir_fifo_rec)
		* sizeof(union cx25840_ir_fifo_rec);
	if (n == 0) {
		*num = 0;
		return 0;
	}

	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
			     &ir_state->rx_kfifo_lock);

	n /= sizeof(union cx25840_ir_fifo_rec);
	*num = n * sizeof(union cx25840_ir_fifo_rec);

	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {

		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
			/* Assume RTO was because of no IR light input */
			u = 0;
			w = 1;
		} else {
			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
			if (invert)
				u = u ? 0 : 1;
			w = 0;
		}

		v = (unsigned) pulse_width_count_to_ns(
				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
		if (v > IR_MAX_DURATION)
			v = IR_MAX_DURATION;

		init_ir_raw_event(&p->ir_core_data);
		p->ir_core_data.pulse = u;
		p->ir_core_data.duration = v;
		p->ir_core_data.timeout = w;

		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
			 v, u ? "mark" : "space", w ? "(timed out)" : "");
		if (w)
			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
	}
	return 0;
}

static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);

	if (ir_state == NULL)
		return -ENODEV;

	mutex_lock(&ir_state->rx_params_lock);
	memcpy(p, &ir_state->rx_params,
				      sizeof(struct v4l2_subdev_ir_parameters));
	mutex_unlock(&ir_state->rx_params_lock);
	return 0;
}

static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;

	if (ir_state == NULL)
		return -ENODEV;

	c = ir_state->c;
	mutex_lock(&ir_state->rx_params_lock);

	/* Disable or slow down all IR Rx circuits and counters */
	irqenable_rx(sd, 0);
	control_rx_enable(c, false);
	control_rx_demodulation_enable(c, false);
	control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
	filter_rx_s_min_width(c, 0);
	cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);

	ir_state->rx_params.shutdown = true;

	mutex_unlock(&ir_state->rx_params_lock);
	return 0;
}

static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;
	struct v4l2_subdev_ir_parameters *o;
	u16 rxclk_divider;

	if (ir_state == NULL)
		return -ENODEV;

	if (p->shutdown)
		return cx25840_ir_rx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	c = ir_state->c;
	o = &ir_state->rx_params;

	mutex_lock(&ir_state->rx_params_lock);

	o->shutdown = p->shutdown;

	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
	o->mode = p->mode;

	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
	o->bytes_per_data_element = p->bytes_per_data_element;

	/* Before we tweak the hardware, we have to disable the receiver */
	irqenable_rx(sd, 0);
	control_rx_enable(c, false);

	control_rx_demodulation_enable(c, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
						     &rxclk_divider);

		o->carrier_freq = p->carrier_freq;

		p->duty_cycle = 50;
		o->duty_cycle = p->duty_cycle;

		control_rx_s_carrier_window(c, p->carrier_freq,
					    &p->carrier_range_lower,
					    &p->carrier_range_upper);
		o->carrier_range_lower = p->carrier_range_lower;
		o->carrier_range_upper = p->carrier_range_upper;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
	} else {
		p->max_pulse_width =
			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
						       &rxclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&ir_state->rxclk_divider, rxclk_divider);

	p->noise_filter_min_width =
			    filter_rx_s_min_width(c, p->noise_filter_min_width);
	o->noise_filter_min_width = p->noise_filter_min_width;

	p->resolution = clock_divider_to_resolution(rxclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);

	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);

	o->invert_level = p->invert_level;
	atomic_set(&ir_state->rx_invert, p->invert_level);

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		unsigned long flags;

		spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
		kfifo_reset(&ir_state->rx_kfifo);
		spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
		if (p->interrupt_enable)
			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
		control_rx_enable(c, p->enable);
	}

	mutex_unlock(&ir_state->rx_params_lock);
	return 0;
}

/* Transmitter */
static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
			       ssize_t *num)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;

	if (ir_state == NULL)
		return -ENODEV;

	c = ir_state->c;
#if 0
	/*
	 * FIXME - the code below is an incomplete and untested sketch of what
	 * may need to be done.  The critical part is to get 4 (or 8) pulses
	 * from the tx_kfifo, or converted from ns to the proper units from the
	 * input, and push them off to the hardware Tx FIFO right away, if the
	 * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
	 * a less critical timeframe.  Also watch out for overruning the
	 * tx_kfifo - don't let it happen and let the caller know not all his
	 * pulses were written.
	 */
	u32 *ns_pulse = (u32 *) buf;
	unsigned int n;
	u32 fifo_pulse[FIFO_TX_DEPTH];
	u32 mark;

	/* Compute how much we can fit in the tx kfifo */
	n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
	n = min(n, (unsigned int) count);
	n /= sizeof(u32);

	/* FIXME - turn on Tx Fifo service interrupt
	 * check hardware fifo level, and other stuff
	 */
	for (i = 0; i < n; ) {
		for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
			mark = ns_pulse[i] & LEVEL_MASK;
			fifo_pulse[j] = ns_to_pulse_width_count(
					 ns_pulse[i] &
					       ~LEVEL_MASK,
					 ir_state->txclk_divider);
			if (mark)
				fifo_pulse[j] &= FIFO_RXTX_LVL;
			i++;
		}
		kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
							       j * sizeof(u32));
	}
	*num = n * sizeof(u32);
#else
	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
	irqenable_tx(sd, IRQEN_TSE);
	*num = count;
#endif
	return 0;
}

static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);

	if (ir_state == NULL)
		return -ENODEV;

	mutex_lock(&ir_state->tx_params_lock);
	memcpy(p, &ir_state->tx_params,
				      sizeof(struct v4l2_subdev_ir_parameters));
	mutex_unlock(&ir_state->tx_params_lock);
	return 0;
}

static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;

	if (ir_state == NULL)
		return -ENODEV;

	c = ir_state->c;
	mutex_lock(&ir_state->tx_params_lock);

	/* Disable or slow down all IR Tx circuits and counters */
	irqenable_tx(sd, 0);
	control_tx_enable(c, false);
	control_tx_modulation_enable(c, false);
	cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);

	ir_state->tx_params.shutdown = true;

	mutex_unlock(&ir_state->tx_params_lock);
	return 0;
}

static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
				      struct v4l2_subdev_ir_parameters *p)
{
	struct cx25840_ir_state *ir_state = to_ir_state(sd);
	struct i2c_client *c;
	struct v4l2_subdev_ir_parameters *o;
	u16 txclk_divider;

	if (ir_state == NULL)
		return -ENODEV;

	if (p->shutdown)
		return cx25840_ir_tx_shutdown(sd);

	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
		return -ENOSYS;

	c = ir_state->c;
	o = &ir_state->tx_params;
	mutex_lock(&ir_state->tx_params_lock);

	o->shutdown = p->shutdown;

	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
	o->mode = p->mode;

	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
	o->bytes_per_data_element = p->bytes_per_data_element;

	/* Before we tweak the hardware, we have to disable the transmitter */
	irqenable_tx(sd, 0);
	control_tx_enable(c, false);

	control_tx_modulation_enable(c, p->modulation);
	o->modulation = p->modulation;

	if (p->modulation) {
		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
						     &txclk_divider);
		o->carrier_freq = p->carrier_freq;

		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
		o->duty_cycle = p->duty_cycle;

		p->max_pulse_width =
			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
	} else {
		p->max_pulse_width =
			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
						       &txclk_divider);
	}
	o->max_pulse_width = p->max_pulse_width;
	atomic_set(&ir_state->txclk_divider, txclk_divider);

	p->resolution = clock_divider_to_resolution(txclk_divider);
	o->resolution = p->resolution;

	/* FIXME - make this dependent on resolution for better performance */
	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);

	control_tx_polarity_invert(c, p->invert_carrier_sense);
	o->invert_carrier_sense = p->invert_carrier_sense;

	/*
	 * FIXME: we don't have hardware help for IO pin level inversion
	 * here like we have on the CX23888.
	 * Act on this with some mix of logical inversion of data levels,
	 * carrier polarity, and carrier duty cycle.
	 */
	o->invert_level = p->invert_level;

	o->interrupt_enable = p->interrupt_enable;
	o->enable = p->enable;
	if (p->enable) {
		/* reset tx_fifo here */
		if (p->interrupt_enable)
			irqenable_tx(sd, IRQEN_TSE);
		control_tx_enable(c, p->enable);
	}

	mutex_unlock(&ir_state->tx_params_lock);
	return 0;
}


/*
 * V4L2 Subdevice Core Ops support
 */
int cx25840_ir_log_status(struct v4l2_subdev *sd)
{
	struct cx25840_state *state = to_state(sd);
	struct i2c_client *c = state->c;
	char *s;
	int i, j;
	u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;

	/* The CX23888 chip doesn't have an IR controller on the A/V core */
	if (is_cx23888(state))
		return 0;

	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
	txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
	rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
	cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
	if (is_cx23885(state) || is_cx23887(state))
		irqen ^= IRQEN_MSK;
	filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;

	v4l2_info(sd, "IR Receiver:\n");
	v4l2_info(sd, "\tEnabled:                           %s\n",
		  cntrl & CNTRL_RXE ? "yes" : "no");
	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO:                              %s\n",
		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
	switch (cntrl & CNTRL_EDG) {
	case CNTRL_EDG_NONE:
		s = "disabled";
		break;
	case CNTRL_EDG_FALL:
		s = "falling edge";
		break;
	case CNTRL_EDG_RISE:
		s = "rising edge";
		break;
	case CNTRL_EDG_BOTH:
		s = "rising & falling edges";
		break;
	default:
		s = "??? edge";
		break;
	}
	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
	v4l2_info(sd, "\tLoopback mode:                     %s\n",
		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
	if (cntrl & CNTRL_DMD) {
		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
			  clock_divider_to_carrier_freq(rxclk));
		switch (cntrl & CNTRL_WIN) {
		case CNTRL_WIN_3_3:
			i = 3;
			j = 3;
			break;
		case CNTRL_WIN_4_3:
			i = 4;
			j = 3;
			break;
		case CNTRL_WIN_3_4:
			i = 3;
			j = 4;
			break;
		case CNTRL_WIN_4_4:
			i = 4;
			j = 4;
			break;
		default:
			i = 0;
			j = 0;
			break;
		}
		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
			  "-%1d/+%1d, %u to %u Hz\n", i, j,
			  clock_divider_to_freq(rxclk, 16 + j),
			  clock_divider_to_freq(rxclk, 16 - i));
	}
	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
	v4l2_info(sd, "\tLow pass filter:                   %s\n",
		  filtr ? "enabled" : "disabled");
	if (filtr)
		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
			  "%u ns\n",
			  lpf_count_to_us(filtr),
			  lpf_count_to_ns(filtr));
	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
		  stats & STATS_RTO ? "yes" : "no");
	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
		  irqen & IRQEN_RTE ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
		  stats & STATS_ROR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
		  irqen & IRQEN_ROE ? "enabled" : "disabled");
	v4l2_info(sd, "\tBusy:                              %s\n",
		  stats & STATS_RBY ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service requested:            %s\n",
		  stats & STATS_RSR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
		  irqen & IRQEN_RSE ? "enabled" : "disabled");

	v4l2_info(sd, "IR Transmitter:\n");
	v4l2_info(sd, "\tEnabled:                           %s\n",
		  cntrl & CNTRL_TXE ? "yes" : "no");
	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO:                              %s\n",
		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
				    : "space:noburst mark:burst");
	if (cntrl & CNTRL_MOD) {
		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
			  clock_divider_to_carrier_freq(txclk));
		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
			  cduty + 1);
	}
	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
		  pulse_width_count_to_us(FIFO_RXTX, txclk),
		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
	v4l2_info(sd, "\tBusy:                              %s\n",
		  stats & STATS_TBY ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service requested:            %s\n",
		  stats & STATS_TSR ? "yes" : "no");
	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
		  irqen & IRQEN_TSE ? "enabled" : "disabled");

	return 0;
}


const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
	.rx_read = cx25840_ir_rx_read,
	.rx_g_parameters = cx25840_ir_rx_g_parameters,
	.rx_s_parameters = cx25840_ir_rx_s_parameters,

	.tx_write = cx25840_ir_tx_write,
	.tx_g_parameters = cx25840_ir_tx_g_parameters,
	.tx_s_parameters = cx25840_ir_tx_s_parameters,
};


static const struct v4l2_subdev_ir_parameters default_rx_params = {
	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,

	.enable = false,
	.interrupt_enable = false,
	.shutdown = true,

	.modulation = true,
	.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */

	/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
	/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
	.noise_filter_min_width = 333333, /* ns */
	.carrier_range_lower = 35000,
	.carrier_range_upper = 37000,
	.invert_level = false,
};

static const struct v4l2_subdev_ir_parameters default_tx_params = {
	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,

	.enable = false,
	.interrupt_enable = false,
	.shutdown = true,

	.modulation = true,
	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
	.invert_level = false,
	.invert_carrier_sense = false,
};

int cx25840_ir_probe(struct v4l2_subdev *sd)
{
	struct cx25840_state *state = to_state(sd);
	struct cx25840_ir_state *ir_state;
	struct v4l2_subdev_ir_parameters default_params;

	/* Only init the IR controller for the CX2388[57] AV Core for now */
	if (!(is_cx23885(state) || is_cx23887(state)))
		return 0;

	ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
	if (ir_state == NULL)
		return -ENOMEM;

	spin_lock_init(&ir_state->rx_kfifo_lock);
	if (kfifo_alloc(&ir_state->rx_kfifo,
			CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
		kfree(ir_state);
		return -ENOMEM;
	}

	ir_state->c = state->c;
	state->ir_state = ir_state;

	/* Ensure no interrupts arrive yet */
	if (is_cx23885(state) || is_cx23887(state))
		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
	else
		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);

	mutex_init(&ir_state->rx_params_lock);
	memcpy(&default_params, &default_rx_params,
		       sizeof(struct v4l2_subdev_ir_parameters));
	v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);

	mutex_init(&ir_state->tx_params_lock);
	memcpy(&default_params, &default_tx_params,
		       sizeof(struct v4l2_subdev_ir_parameters));
	v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);

	return 0;
}

int cx25840_ir_remove(struct v4l2_subdev *sd)
{
	struct cx25840_state *state = to_state(sd);
	struct cx25840_ir_state *ir_state = to_ir_state(sd);

	if (ir_state == NULL)
		return -ENODEV;

	cx25840_ir_rx_shutdown(sd);
	cx25840_ir_tx_shutdown(sd);

	kfifo_free(&ir_state->rx_kfifo);
	kfree(ir_state);
	state->ir_state = NULL;
	return 0;
}
OpenPOWER on IntegriCloud