summaryrefslogtreecommitdiffstats
path: root/drivers/media/dvb/frontends/tda18271c2dd.c
blob: b4a23bf00104f85a1a8929afd3279bb751cef201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
/*
 * tda18271c2dd: Driver for the TDA18271C2 tuner
 *
 * Copyright (C) 2010 Digital Devices GmbH
 *
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 only, as published by the Free Software Foundation.
 *
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <asm/div64.h>

#include "dvb_frontend.h"

struct SStandardParam {
	s32   m_IFFrequency;
	u32   m_BandWidth;
	u8    m_EP3_4_0;
	u8    m_EB22;
};

struct SMap {
	u32   m_Frequency;
	u8    m_Param;
};

struct SMapI {
	u32   m_Frequency;
	s32    m_Param;
};

struct SMap2 {
	u32   m_Frequency;
	u8    m_Param1;
	u8    m_Param2;
};

struct SRFBandMap {
	u32   m_RF_max;
	u32   m_RF1_Default;
	u32   m_RF2_Default;
	u32   m_RF3_Default;
};

enum ERegister
{
	ID = 0,
	TM,
	PL,
	EP1, EP2, EP3, EP4, EP5,
	CPD, CD1, CD2, CD3,
	MPD, MD1, MD2, MD3,
	EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10,
	EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20,
	EB21, EB22, EB23,
	NUM_REGS
};

struct tda_state {
	struct i2c_adapter *i2c;
	u8 adr;

	u32   m_Frequency;
	u32   IF;

	u8    m_IFLevelAnalog;
	u8    m_IFLevelDigital;
	u8    m_IFLevelDVBC;
	u8    m_IFLevelDVBT;

	u8    m_EP4;
	u8    m_EP3_Standby;

	bool  m_bMaster;

	s32   m_SettlingTime;

	u8    m_Regs[NUM_REGS];

	/* Tracking filter settings for band 0..6 */
	u32   m_RF1[7];
	s32   m_RF_A1[7];
	s32   m_RF_B1[7];
	u32   m_RF2[7];
	s32   m_RF_A2[7];
	s32   m_RF_B2[7];
	u32   m_RF3[7];

	u8    m_TMValue_RFCal;    /* Calibration temperatur */

	bool  m_bFMInput;         /* true to use Pin 8 for FM Radio */

};

static int PowerScan(struct tda_state *state,
		     u8 RFBand,u32 RF_in,
		     u32 * pRF_Out, bool *pbcal);

static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
{
	struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD,
				   .buf  = data, .len   = len}};
	return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
}

static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
{
	struct i2c_msg msg = {.addr = adr, .flags = 0,
			      .buf = data, .len = len};

	if (i2c_transfer(adap, &msg, 1) != 1) {
		printk("i2c_write error\n");
		return -1;
	}
	return 0;
}

static int WriteRegs(struct tda_state *state,
		     u8 SubAddr, u8 *Regs, u16 nRegs)
{
	u8 data[nRegs+1];

	data[0] = SubAddr;
	memcpy(data + 1, Regs, nRegs);
	return i2c_write(state->i2c, state->adr, data, nRegs+1);
}

static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg)
{
	u8 msg[2] = {SubAddr, Reg};

	return i2c_write(state->i2c, state->adr, msg, 2);
}

static int Read(struct tda_state *state, u8 * Regs)
{
	return i2c_readn(state->i2c, state->adr, Regs, 16);
}

static int ReadExtented(struct tda_state *state, u8 * Regs)
{
	return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
}

static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo)
{
	return WriteRegs(state, RegFrom,
			 &state->m_Regs[RegFrom], RegTo-RegFrom+1);
}
static int UpdateReg(struct tda_state *state, u8 Reg)
{
	return WriteReg(state, Reg,state->m_Regs[Reg]);
}

#include "tda18271c2dd_maps.h"

#undef CHK_ERROR
#define CHK_ERROR(s) if ((status = s) < 0) break

static void reset(struct tda_state *state)
{
	u32   ulIFLevelAnalog = 0;
	u32   ulIFLevelDigital = 2;
	u32   ulIFLevelDVBC = 7;
	u32   ulIFLevelDVBT = 6;
	u32   ulXTOut = 0;
	u32   ulStandbyMode = 0x06;    // Send in stdb, but leave osc on
	u32   ulSlave = 0;
	u32   ulFMInput = 0;
	u32   ulSettlingTime = 100;

	state->m_Frequency         = 0;
	state->m_SettlingTime = 100;
	state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2;
	state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2;
	state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2;
	state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;

	state->m_EP4 = 0x20;
	if( ulXTOut != 0 ) state->m_EP4 |= 0x40;

	state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
	state->m_bMaster = (ulSlave == 0);

	state->m_SettlingTime = ulSettlingTime;

	state->m_bFMInput = (ulFMInput == 2);
}

static bool SearchMap1(struct SMap Map[],
		       u32 Frequency, u8 *pParam)
{
	int i = 0;

	while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) )
		i += 1;
	if (Map[i].m_Frequency == 0)
		return false;
	*pParam = Map[i].m_Param;
	return true;
}

static bool SearchMap2(struct SMapI Map[],
		       u32 Frequency, s32 *pParam)
{
	int i = 0;

	while ((Map[i].m_Frequency != 0) &&
	       (Frequency > Map[i].m_Frequency) )
		i += 1;
	if (Map[i].m_Frequency == 0)
		return false;
	*pParam = Map[i].m_Param;
	return true;
}

static bool SearchMap3(struct SMap2 Map[],u32 Frequency,
		       u8 *pParam1, u8 *pParam2)
{
	int i = 0;

	while ((Map[i].m_Frequency != 0) &&
	       (Frequency > Map[i].m_Frequency) )
		i += 1;
	if (Map[i].m_Frequency == 0)
		return false;
	*pParam1 = Map[i].m_Param1;
	*pParam2 = Map[i].m_Param2;
	return true;
}

static bool SearchMap4(struct SRFBandMap Map[],
		       u32 Frequency, u8 *pRFBand)
{
	int i = 0;

	while (i < 7 && (Frequency > Map[i].m_RF_max))
		i += 1;
	if (i == 7)
		return false;
	*pRFBand = i;
	return true;
}

static int ThermometerRead(struct tda_state *state, u8 *pTM_Value)
{
	int status = 0;

	do {
		u8 Regs[16];
		state->m_Regs[TM] |= 0x10;
		CHK_ERROR(UpdateReg(state,TM));
		CHK_ERROR(Read(state,Regs));
		if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) ||
		    ( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) {
			state->m_Regs[TM] ^= 0x20;
			CHK_ERROR(UpdateReg(state,TM));
			msleep(10);
			CHK_ERROR(Read(state,Regs));
		}
		*pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] :
			m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
		state->m_Regs[TM] &= ~0x10;        // Thermometer off
		CHK_ERROR(UpdateReg(state,TM));
		state->m_Regs[EP4] &= ~0x03;       // CAL_mode = 0 ?????????
		CHK_ERROR(UpdateReg(state,EP4));
	} while(0);

	return status;
}

static int StandBy(struct tda_state *state)
{
	int status = 0;
	do {
		state->m_Regs[EB12] &= ~0x20;  // PD_AGC1_Det = 0
		CHK_ERROR(UpdateReg(state,EB12));
		state->m_Regs[EB18] &= ~0x83;  // AGC1_loop_off = 0, AGC1_Gain = 6 dB
		CHK_ERROR(UpdateReg(state,EB18));
		state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB
		state->m_Regs[EP3] = state->m_EP3_Standby;
		CHK_ERROR(UpdateReg(state,EP3));
		state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0
		CHK_ERROR(UpdateRegs(state,EB21,EB23));
	} while(0);
	return status;
}

static int CalcMainPLL(struct tda_state *state, u32 freq)
{

	u8  PostDiv;
	u8  Div;
	u64 OscFreq;
	u32 MainDiv;

	if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) {
		return -EINVAL;
	}

	OscFreq = (u64) freq * (u64) Div;
	OscFreq *= (u64) 16384;
	do_div(OscFreq, (u64)16000000);
	MainDiv = OscFreq;

	state->m_Regs[MPD] = PostDiv & 0x77;
	state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
	state->m_Regs[MD2] = ((MainDiv >>  8) & 0xFF);
	state->m_Regs[MD3] = ((MainDiv      ) & 0xFF);

	return UpdateRegs(state, MPD, MD3);
}

static int CalcCalPLL(struct tda_state *state, u32 freq)
{
	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq));

	u8 PostDiv;
	u8 Div;
	u64 OscFreq;
	u32 CalDiv;

	if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) )
	{
		return -EINVAL;
	}

	OscFreq = (u64)freq * (u64)Div;
	//CalDiv = u32( OscFreq * 16384 / 16000000 );
	OscFreq*=(u64)16384;
	do_div(OscFreq, (u64)16000000);
	CalDiv=OscFreq;

	state->m_Regs[CPD] = PostDiv;
	state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
	state->m_Regs[CD2] = ((CalDiv >>  8) & 0xFF);
	state->m_Regs[CD3] = ((CalDiv      ) & 0xFF);

	return UpdateRegs(state,CPD,CD3);
}

static int CalibrateRF(struct tda_state *state,
		       u8 RFBand,u32 freq, s32 * pCprog)
{
	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID]));
	int status = 0;
	u8 Regs[NUM_REGS];
	do {
		u8 BP_Filter=0;
		u8 GainTaper=0;
		u8 RFC_K=0;
		u8 RFC_M=0;

		state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0
		CHK_ERROR(UpdateReg(state,EP4));
		state->m_Regs[EB18] |= 0x03;  // AGC1_Gain = 3
		CHK_ERROR(UpdateReg(state,EB18));

		// Switching off LT (as datasheet says) causes calibration on C1 to fail
		// (Readout of Cprog is allways 255)
		if( state->m_Regs[ID] != 0x83 )    // C1: ID == 83, C2: ID == 84
		{
			state->m_Regs[EP3] |= 0x40; // SM_LT = 1
		}

		if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) &&
			SearchMap1(m_GainTaper_Map,freq,&GainTaper) &&
			SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) )
		{
			return -EINVAL;
		}

		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
		state->m_Regs[EP2] = (RFBand << 5) | GainTaper;

		state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);

		CHK_ERROR(UpdateRegs(state,EP1,EP3));
		CHK_ERROR(UpdateReg(state,EB13));

		state->m_Regs[EB4] |= 0x20;    // LO_ForceSrce = 1
		CHK_ERROR(UpdateReg(state,EB4));

		state->m_Regs[EB7] |= 0x20;    // CAL_ForceSrce = 1
		CHK_ERROR(UpdateReg(state,EB7));

		state->m_Regs[EB14] = 0; // RFC_Cprog = 0
		CHK_ERROR(UpdateReg(state,EB14));

		state->m_Regs[EB20] &= ~0x20;  // ForceLock = 0;
		CHK_ERROR(UpdateReg(state,EB20));

		state->m_Regs[EP4] |= 0x03;  // CAL_Mode = 3
		CHK_ERROR(UpdateRegs(state,EP4,EP5));

		CHK_ERROR(CalcCalPLL(state,freq));
		CHK_ERROR(CalcMainPLL(state,freq + 1000000));

		msleep(5);
		CHK_ERROR(UpdateReg(state,EP2));
		CHK_ERROR(UpdateReg(state,EP1));
		CHK_ERROR(UpdateReg(state,EP2));
		CHK_ERROR(UpdateReg(state,EP1));

		state->m_Regs[EB4] &= ~0x20;    // LO_ForceSrce = 0
		CHK_ERROR(UpdateReg(state,EB4));

		state->m_Regs[EB7] &= ~0x20;    // CAL_ForceSrce = 0
		CHK_ERROR(UpdateReg(state,EB7));
		msleep(10);

		state->m_Regs[EB20] |= 0x20;  // ForceLock = 1;
		CHK_ERROR(UpdateReg(state,EB20));
		msleep(60);

		state->m_Regs[EP4] &= ~0x03;  // CAL_Mode = 0
		state->m_Regs[EP3] &= ~0x40; // SM_LT = 0
		state->m_Regs[EB18] &= ~0x03;  // AGC1_Gain = 0
		CHK_ERROR(UpdateReg(state,EB18));
		CHK_ERROR(UpdateRegs(state,EP3,EP4));
		CHK_ERROR(UpdateReg(state,EP1));

		CHK_ERROR(ReadExtented(state,Regs));

		*pCprog = Regs[EB14];
		//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14]));

	} while(0);
	return status;
}

static int RFTrackingFiltersInit(struct tda_state *state,
				 u8 RFBand)
{
	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
	int status = 0;

	u32   RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
	u32   RF2 = m_RF_Band_Map[RFBand].m_RF2_Default;
	u32   RF3 = m_RF_Band_Map[RFBand].m_RF3_Default;
	bool    bcal = false;

	s32    Cprog_cal1 = 0;
	s32    Cprog_table1 = 0;
	s32    Cprog_cal2 = 0;
	s32    Cprog_table2 = 0;
	s32    Cprog_cal3 = 0;
	s32    Cprog_table3 = 0;

	state->m_RF_A1[RFBand] = 0;
	state->m_RF_B1[RFBand] = 0;
	state->m_RF_A2[RFBand] = 0;
	state->m_RF_B2[RFBand] = 0;

	do {
		CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal));
		if( bcal ) {
			CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1));
		}
		SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1);
		if( !bcal ) {
			Cprog_cal1 = Cprog_table1;
		}
		state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
		//state->m_RF_A1[RF_Band] = ????

		if( RF2 == 0 ) break;

		CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal));
		if( bcal ) {
			CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2));
		}
		SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2);
		if( !bcal )
		{
			Cprog_cal2 = Cprog_table2;
		}

		state->m_RF_A1[RFBand] =
			(Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
			((s32)(RF2)-(s32)(RF1));

		if( RF3 == 0 ) break;

		CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal));
		if( bcal )
		{
			CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3));
		}
		SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3);
		if( !bcal )
		{
			Cprog_cal3 = Cprog_table3;
		}
		state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2));
		state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;

	} while(0);

	state->m_RF1[RFBand] = RF1;
	state->m_RF2[RFBand] = RF2;
	state->m_RF3[RFBand] = RF3;

#if 0
	printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__,
	       RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2,
	       state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3);
#endif

	return status;
}

static int PowerScan(struct tda_state *state,
		     u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal)
{
    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in));
    int status = 0;
    do {
	    u8   Gain_Taper=0;
	    s32  RFC_Cprog=0;
	    u8   CID_Target=0;
	    u8   CountLimit=0;
	    u32  freq_MainPLL;
	    u8   Regs[NUM_REGS];
	    u8   CID_Gain;
	    s32  Count = 0;
	    int  sign  = 1;
	    bool wait = false;

	    if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) &&
		   SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) &&
		   SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) {
		    printk("%s Search map failed\n", __FUNCTION__);
		    return -EINVAL;
	    }

	    state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
	    state->m_Regs[EB14] = (RFC_Cprog);
	    CHK_ERROR(UpdateReg(state,EP2));
	    CHK_ERROR(UpdateReg(state,EB14));

	    freq_MainPLL = RF_in + 1000000;
	    CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
	    msleep(5);
	    state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    // CAL_mode = 1
	    CHK_ERROR(UpdateReg(state,EP4));
	    CHK_ERROR(UpdateReg(state,EP2));  // Launch power measurement
	    CHK_ERROR(ReadExtented(state,Regs));
	    CID_Gain = Regs[EB10] & 0x3F;
	    state->m_Regs[ID] = Regs[ID];  // Chip version, (needed for C1 workarround in CalibrateRF )

	    *pRF_Out = RF_in;

	    while( CID_Gain < CID_Target ) {
		    freq_MainPLL = RF_in + sign * Count + 1000000;
		    CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
		    msleep( wait ? 5 : 1 );
		    wait = false;
		    CHK_ERROR(UpdateReg(state,EP2));  // Launch power measurement
		    CHK_ERROR(ReadExtented(state,Regs));
		    CID_Gain = Regs[EB10] & 0x3F;
		    Count += 200000;

		    if( Count < CountLimit * 100000 ) continue;
		    if( sign < 0 ) break;

		    sign = -sign;
		    Count = 200000;
		    wait = true;
	    }
	    CHK_ERROR(status);
	    if( CID_Gain >= CID_Target )
	    {
		    *pbcal = true;
		    *pRF_Out = freq_MainPLL - 1000000;
	    }
	    else
	    {
		    *pbcal = false;
	    }
    } while(0);
    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out));
    return status;
}

static int PowerScanInit(struct tda_state *state)
{
	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
	int status = 0;
	do
	{
		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0
		CHK_ERROR(UpdateRegs(state,EP3,EP4));
		state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0
		CHK_ERROR(UpdateReg(state,EB18));
		state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3)
		state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1
		CHK_ERROR(UpdateRegs(state,EB21,EB23));
	} while(0);
	return status;
}

static int CalcRFFilterCurve(struct tda_state *state)
{
	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
	int status = 0;
	do
	{
		msleep(200);      // Temperature stabilisation
		CHK_ERROR(PowerScanInit(state));
		CHK_ERROR(RFTrackingFiltersInit(state,0));
		CHK_ERROR(RFTrackingFiltersInit(state,1));
		CHK_ERROR(RFTrackingFiltersInit(state,2));
		CHK_ERROR(RFTrackingFiltersInit(state,3));
		CHK_ERROR(RFTrackingFiltersInit(state,4));
		CHK_ERROR(RFTrackingFiltersInit(state,5));
		CHK_ERROR(RFTrackingFiltersInit(state,6));
		CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!!
	} while(0);

	return status;
}

static int FixedContentsI2CUpdate(struct tda_state *state)
{
	static u8 InitRegs[] = {
		0x08,0x80,0xC6,
		0xDF,0x16,0x60,0x80,
		0x80,0x00,0x00,0x00,
		0x00,0x00,0x00,0x00,
		0xFC,0x01,0x84,0x41,
		0x01,0x84,0x40,0x07,
		0x00,0x00,0x96,0x3F,
		0xC1,0x00,0x8F,0x00,
		0x00,0x8C,0x00,0x20,
		0xB3,0x48,0xB0,
	};
	int status = 0;
	memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1);
	do {
		CHK_ERROR(UpdateRegs(state,TM,EB23));

		// AGC1 gain setup
		state->m_Regs[EB17] = 0x00;
		CHK_ERROR(UpdateReg(state,EB17));
		state->m_Regs[EB17] = 0x03;
		CHK_ERROR(UpdateReg(state,EB17));
		state->m_Regs[EB17] = 0x43;
		CHK_ERROR(UpdateReg(state,EB17));
		state->m_Regs[EB17] = 0x4C;
		CHK_ERROR(UpdateReg(state,EB17));

		// IRC Cal Low band
		state->m_Regs[EP3] = 0x1F;
		state->m_Regs[EP4] = 0x66;
		state->m_Regs[EP5] = 0x81;
		state->m_Regs[CPD] = 0xCC;
		state->m_Regs[CD1] = 0x6C;
		state->m_Regs[CD2] = 0x00;
		state->m_Regs[CD3] = 0x00;
		state->m_Regs[MPD] = 0xC5;
		state->m_Regs[MD1] = 0x77;
		state->m_Regs[MD2] = 0x08;
		state->m_Regs[MD3] = 0x00;
		CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3)

		//state->m_Regs[EB4] = 0x61;          // missing in sw
		//CHK_ERROR(UpdateReg(state,EB4));
		//msleep(1);
		//state->m_Regs[EB4] = 0x41;
		//CHK_ERROR(UpdateReg(state,EB4));

		msleep(5);
		CHK_ERROR(UpdateReg(state,EP1));
		msleep(5);

		state->m_Regs[EP5] = 0x85;
		state->m_Regs[CPD] = 0xCB;
		state->m_Regs[CD1] = 0x66;
		state->m_Regs[CD2] = 0x70;
		CHK_ERROR(UpdateRegs(state,EP3,CD3));
		msleep(5);
		CHK_ERROR(UpdateReg(state,EP2));
		msleep(30);

		// IRC Cal mid band
		state->m_Regs[EP5] = 0x82;
		state->m_Regs[CPD] = 0xA8;
		state->m_Regs[CD2] = 0x00;
		state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9
		state->m_Regs[MD1] = 0x73;
		state->m_Regs[MD2] = 0x1A;
		CHK_ERROR(UpdateRegs(state,EP3,MD3));

		msleep(5);
		CHK_ERROR(UpdateReg(state,EP1));
		msleep(5);

		state->m_Regs[EP5] = 0x86;
		state->m_Regs[CPD] = 0xA8;
		state->m_Regs[CD1] = 0x66;
		state->m_Regs[CD2] = 0xA0;
		CHK_ERROR(UpdateRegs(state,EP3,CD3));
		msleep(5);
		CHK_ERROR(UpdateReg(state,EP2));
		msleep(30);

		// IRC Cal high band
		state->m_Regs[EP5] = 0x83;
		state->m_Regs[CPD] = 0x98;
		state->m_Regs[CD1] = 0x65;
		state->m_Regs[CD2] = 0x00;
		state->m_Regs[MPD] = 0x91;  // Datasheet = 0x91
		state->m_Regs[MD1] = 0x71;
		state->m_Regs[MD2] = 0xCD;
		CHK_ERROR(UpdateRegs(state,EP3,MD3));
		msleep(5);
		CHK_ERROR(UpdateReg(state,EP1));
		msleep(5);
		state->m_Regs[EP5] = 0x87;
		state->m_Regs[CD1] = 0x65;
		state->m_Regs[CD2] = 0x50;
		CHK_ERROR(UpdateRegs(state,EP3,CD3));
		msleep(5);
		CHK_ERROR(UpdateReg(state,EP2));
		msleep(30);

		// Back to normal
		state->m_Regs[EP4] = 0x64;
		CHK_ERROR(UpdateReg(state,EP4));
		CHK_ERROR(UpdateReg(state,EP1));

	} while(0);
	return status;
}

static int InitCal(struct tda_state *state)
{
	int status = 0;

	do
	{
		CHK_ERROR(FixedContentsI2CUpdate(state));
		CHK_ERROR(CalcRFFilterCurve(state));
		CHK_ERROR(StandBy(state));
		//m_bInitDone = true;
	} while(0);
	return status;
};

static int RFTrackingFiltersCorrection(struct tda_state *state,
				       u32 Frequency)
{
	int status = 0;
	s32 Cprog_table;
	u8 RFBand;
	u8 dCoverdT;

	if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) ||
	    !SearchMap4(m_RF_Band_Map,Frequency,&RFBand) ||
	    !SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) )
	{
		return -EINVAL;
	}

	do
	{
		u8 TMValue_Current;
		u32   RF1 = state->m_RF1[RFBand];
		u32   RF2 = state->m_RF1[RFBand];
		u32   RF3 = state->m_RF1[RFBand];
		s32    RF_A1 = state->m_RF_A1[RFBand];
		s32    RF_B1 = state->m_RF_B1[RFBand];
		s32    RF_A2 = state->m_RF_A2[RFBand];
		s32    RF_B2 = state->m_RF_B2[RFBand];
		s32 Capprox = 0;
		int TComp;

		state->m_Regs[EP3] &= ~0xE0;  // Power up
		CHK_ERROR(UpdateReg(state,EP3));

		CHK_ERROR(ThermometerRead(state,&TMValue_Current));

		if( RF3 == 0 || Frequency < RF2 )
		{
			Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
		}
		else
		{
			Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
		}

		TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;

		Capprox += TComp;

		if( Capprox < 0 ) Capprox = 0;
		else if( Capprox > 255 ) Capprox = 255;


		// TODO Temperature compensation. There is defenitely a scale factor
		//      missing in the datasheet, so leave it out for now.
		state->m_Regs[EB14] = (Capprox );

		CHK_ERROR(UpdateReg(state,EB14));

	} while(0);
	return status;
}

static int ChannelConfiguration(struct tda_state *state,
				u32 Frequency, int Standard)
{

	s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency;
	int status = 0;

	u8 BP_Filter = 0;
	u8 RF_Band = 0;
	u8 GainTaper = 0;
	u8 IR_Meas;

	state->IF=IntermediateFrequency;
	//printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency);
	// get values from tables

	if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) &&
	       SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) &&
	       SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) &&
	       SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) )
	{
		printk("%s SearchMap failed\n", __FUNCTION__);
		return -EINVAL;
	}

	do
	{
		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
		state->m_Regs[EP3] &= ~0x04;   // switch RFAGC to high speed mode

		// m_EP4 default for XToutOn, CAL_Mode (0)
		state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog );
		//state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
		if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
		else if( Standard <= HF_ATSC      ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
		else if( Standard <= HF_DVBC      ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
		else                                state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;

		if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80;

		state->m_Regs[MPD] &= ~0x80;
		if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital

		state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;

		// Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM )
		if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |=  0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1
		else                          state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0

		CHK_ERROR(UpdateRegs(state,EB22,EB23));

		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   // Dis_Power_level = 1, Filter
		state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
		state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;

		state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
			(state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS
		// AGC1_always_master = 0
		// AGC_firstn = 0
		CHK_ERROR(UpdateReg(state,EB1));

		if( state->m_bMaster )
		{
			CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency));
			CHK_ERROR(UpdateRegs(state,TM,EP5));
			state->m_Regs[EB4] |= 0x20;    // LO_forceSrce = 1
			CHK_ERROR(UpdateReg(state,EB4));
			msleep(1);
			state->m_Regs[EB4] &= ~0x20;   // LO_forceSrce = 0
			CHK_ERROR(UpdateReg(state,EB4));
		}
		else
		{
			u8 PostDiv;
			u8 Div;
			CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency));

			SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div);
			state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
			CHK_ERROR(UpdateReg(state,MPD));
			CHK_ERROR(UpdateRegs(state,TM,EP5));

			state->m_Regs[EB7] |= 0x20;    // CAL_forceSrce = 1
			CHK_ERROR(UpdateReg(state,EB7));
			msleep(1);
			state->m_Regs[EB7] &= ~0x20;   // CAL_forceSrce = 0
			CHK_ERROR(UpdateReg(state,EB7));
		}
		msleep(20);
		if( Standard != HF_FM_Radio )
		{
			state->m_Regs[EP3] |= 0x04;    // RFAGC to normal mode
		}
		CHK_ERROR(UpdateReg(state,EP3));

	} while(0);
	return status;
}

static int sleep(struct dvb_frontend* fe)
{
	struct tda_state *state = fe->tuner_priv;

	StandBy(state);
	return 0;
}

static int init(struct dvb_frontend* fe)
{
	//struct tda_state *state = fe->tuner_priv;
	return 0;
}

static int release(struct dvb_frontend* fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static int set_params(struct dvb_frontend *fe,
		      struct dvb_frontend_parameters *params)
{
	struct tda_state *state = fe->tuner_priv;
	int status = 0;
	int Standard;

	state->m_Frequency = params->frequency;

	if (fe->ops.info.type == FE_OFDM)
		switch (params->u.ofdm.bandwidth) {
		case BANDWIDTH_6_MHZ:
			Standard = HF_DVBT_6MHZ;
			break;
		case BANDWIDTH_7_MHZ:
			Standard = HF_DVBT_7MHZ;
			break;
		default:
		case BANDWIDTH_8_MHZ:
			Standard = HF_DVBT_8MHZ;
			break;
		}
	else if (fe->ops.info.type == FE_QAM) {
		Standard = HF_DVBC_8MHZ;
	} else
		return -EINVAL;
	do {
		CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency));
		CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard));

		msleep(state->m_SettlingTime);  // Allow AGC's to settle down
	} while(0);
	return status;
}

#if 0
static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc)
{
	if( IFAgc < 500 ) {
		// Scale this from 0 to 50000
		*pSignalStrength = IFAgc * 100;
	} else {
		// Scale range 500-1500 to 50000-80000
		*pSignalStrength = 50000 + (IFAgc - 500) * 30;
	}

	return 0;
}
#endif

static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct tda_state *state = fe->tuner_priv;

	*frequency = state->IF;
	return 0;
}

static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
	//struct tda_state *state = fe->tuner_priv;
	//*bandwidth = priv->bandwidth;
	return 0;
}


static struct dvb_tuner_ops tuner_ops = {
	.info = {
		.name = "NXP TDA18271C2D",
		.frequency_min  =  47125000,
		.frequency_max  = 865000000,
		.frequency_step =     62500
	},
	.init              = init,
	.sleep             = sleep,
	.set_params        = set_params,
	.release           = release,
	.get_frequency     = get_frequency,
	.get_bandwidth     = get_bandwidth,
};

struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe,
					 struct i2c_adapter *i2c, u8 adr)
{
	struct tda_state *state;

	state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
	if (!state)
		return NULL;

	fe->tuner_priv = state;
	state->adr = adr;
	state->i2c = i2c;
	memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
	reset(state);
	InitCal(state);

	return fe;
}

EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
MODULE_DESCRIPTION("TDA18271C2 driver");
MODULE_AUTHOR("DD");
MODULE_LICENSE("GPL");

/*
 * Local variables:
 * c-basic-offset: 8
 * End:
 */
OpenPOWER on IntegriCloud