summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nouveau_calc.c
blob: ee2b84504d050f2fd68f66a8254c366485816405 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright 1993-2003 NVIDIA, Corporation
 * Copyright 2007-2009 Stuart Bennett
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "drmP.h"
#include "nouveau_drv.h"
#include "nouveau_hw.h"

/****************************************************************************\
*                                                                            *
* The video arbitration routines calculate some "magic" numbers.  Fixes      *
* the snow seen when accessing the framebuffer without it.                   *
* It just works (I hope).                                                    *
*                                                                            *
\****************************************************************************/

struct nv_fifo_info {
	int lwm;
	int burst;
};

struct nv_sim_state {
	int pclk_khz;
	int mclk_khz;
	int nvclk_khz;
	int bpp;
	int mem_page_miss;
	int mem_latency;
	int memory_type;
	int memory_width;
	int two_heads;
};

static void
nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
{
	int pagemiss, cas, width, bpp;
	int nvclks, mclks, pclks, crtpagemiss;
	int found, mclk_extra, mclk_loop, cbs, m1, p1;
	int mclk_freq, pclk_freq, nvclk_freq;
	int us_m, us_n, us_p, crtc_drain_rate;
	int cpm_us, us_crt, clwm;

	pclk_freq = arb->pclk_khz;
	mclk_freq = arb->mclk_khz;
	nvclk_freq = arb->nvclk_khz;
	pagemiss = arb->mem_page_miss;
	cas = arb->mem_latency;
	width = arb->memory_width >> 6;
	bpp = arb->bpp;
	cbs = 128;

	pclks = 2;
	nvclks = 10;
	mclks = 13 + cas;
	mclk_extra = 3;
	found = 0;

	while (!found) {
		found = 1;

		mclk_loop = mclks + mclk_extra;
		us_m = mclk_loop * 1000 * 1000 / mclk_freq;
		us_n = nvclks * 1000 * 1000 / nvclk_freq;
		us_p = nvclks * 1000 * 1000 / pclk_freq;

		crtc_drain_rate = pclk_freq * bpp / 8;
		crtpagemiss = 2;
		crtpagemiss += 1;
		cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
		us_crt = cpm_us + us_m + us_n + us_p;
		clwm = us_crt * crtc_drain_rate / (1000 * 1000);
		clwm++;

		m1 = clwm + cbs - 512;
		p1 = m1 * pclk_freq / mclk_freq;
		p1 = p1 * bpp / 8;
		if ((p1 < m1 && m1 > 0) || clwm > 519) {
			found = !mclk_extra;
			mclk_extra--;
		}
		if (clwm < 384)
			clwm = 384;

		fifo->lwm = clwm;
		fifo->burst = cbs;
	}
}

static void
nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
{
	int fill_rate, drain_rate;
	int pclks, nvclks, mclks, xclks;
	int pclk_freq, nvclk_freq, mclk_freq;
	int fill_lat, extra_lat;
	int max_burst_o, max_burst_l;
	int fifo_len, min_lwm, max_lwm;
	const int burst_lat = 80; /* Maximum allowable latency due
				   * to the CRTC FIFO burst. (ns) */

	pclk_freq = arb->pclk_khz;
	nvclk_freq = arb->nvclk_khz;
	mclk_freq = arb->mclk_khz;

	fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
	drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */

	fifo_len = arb->two_heads ? 1536 : 1024; /* B */

	/* Fixed FIFO refill latency. */

	pclks = 4;	/* lwm detect. */

	nvclks = 3	/* lwm -> sync. */
		+ 2	/* fbi bus cycles (1 req + 1 busy) */
		+ 1	/* 2 edge sync.  may be very close to edge so
			 * just put one. */
		+ 1	/* fbi_d_rdv_n */
		+ 1	/* Fbi_d_rdata */
		+ 1;	/* crtfifo load */

	mclks = 1	/* 2 edge sync.  may be very close to edge so
			 * just put one. */
		+ 1	/* arb_hp_req */
		+ 5	/* tiling pipeline */
		+ 2	/* latency fifo */
		+ 2	/* memory request to fbio block */
		+ 7;	/* data returned from fbio block */

	/* Need to accumulate 256 bits for read */
	mclks += (arb->memory_type == 0 ? 2 : 1)
		* arb->memory_width / 32;

	fill_lat = mclks * 1000 * 1000 / mclk_freq   /* minimum mclk latency */
		+ nvclks * 1000 * 1000 / nvclk_freq  /* nvclk latency */
		+ pclks * 1000 * 1000 / pclk_freq;   /* pclk latency */

	/* Conditional FIFO refill latency. */

	xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
						* the overlay. */
		+ 2 * arb->mem_page_miss       /* Extra pagemiss latency. */
		+ (arb->bpp == 32 ? 8 : 4);    /* Margin of error. */

	extra_lat = xclks * 1000 * 1000 / mclk_freq;

	if (arb->two_heads)
		/* Account for another CRTC. */
		extra_lat += fill_lat + extra_lat + burst_lat;

	/* FIFO burst */

	/* Max burst not leading to overflows. */
	max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
		* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
	fifo->burst = min(max_burst_o, 1024);

	/* Max burst value with an acceptable latency. */
	max_burst_l = burst_lat * fill_rate / (1000 * 1000);
	fifo->burst = min(max_burst_l, fifo->burst);

	fifo->burst = rounddown_pow_of_two(fifo->burst);

	/* FIFO low watermark */

	min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
	max_lwm = fifo_len - fifo->burst
		+ fill_lat * drain_rate / (1000 * 1000)
		+ fifo->burst * drain_rate / fill_rate;

	fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
}

static void
nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
		int *burst, int *lwm)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nv_fifo_info fifo_data;
	struct nv_sim_state sim_data;
	int MClk = nouveau_hw_get_clock(dev, MPLL);
	int NVClk = nouveau_hw_get_clock(dev, NVPLL);
	uint32_t cfg1 = nvReadFB(dev, NV_PFB_CFG1);

	sim_data.pclk_khz = VClk;
	sim_data.mclk_khz = MClk;
	sim_data.nvclk_khz = NVClk;
	sim_data.bpp = bpp;
	sim_data.two_heads = nv_two_heads(dev);
	if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
	    (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
		uint32_t type;

		pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);

		sim_data.memory_type = (type >> 12) & 1;
		sim_data.memory_width = 64;
		sim_data.mem_latency = 3;
		sim_data.mem_page_miss = 10;
	} else {
		sim_data.memory_type = nvReadFB(dev, NV_PFB_CFG0) & 0x1;
		sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
		sim_data.mem_latency = cfg1 & 0xf;
		sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
	}

	if (dev_priv->card_type == NV_04)
		nv04_calc_arb(&fifo_data, &sim_data);
	else
		nv10_calc_arb(&fifo_data, &sim_data);

	*burst = ilog2(fifo_data.burst >> 4);
	*lwm = fifo_data.lwm >> 3;
}

static void
nv30_update_arb(int *burst, int *lwm)
{
	unsigned int fifo_size, burst_size, graphics_lwm;

	fifo_size = 2048;
	burst_size = 512;
	graphics_lwm = fifo_size - burst_size;

	*burst = ilog2(burst_size >> 5);
	*lwm = graphics_lwm >> 3;
}

void
nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	if (dev_priv->card_type < NV_30)
		nv04_update_arb(dev, vclk, bpp, burst, lwm);
	else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
		 (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
		*burst = 128;
		*lwm = 0x0480;
	} else
		nv30_update_arb(burst, lwm);
}

static int
getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
	      struct nouveau_pll_vals *bestpv)
{
	/* Find M, N and P for a single stage PLL
	 *
	 * Note that some bioses (NV3x) have lookup tables of precomputed MNP
	 * values, but we're too lazy to use those atm
	 *
	 * "clk" parameter in kHz
	 * returns calculated clock
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int cv = dev_priv->vbios->chip_version;
	int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
	int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
	int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
	int minU = pll_lim->vco1.min_inputfreq;
	int maxU = pll_lim->vco1.max_inputfreq;
	int minP = pll_lim->max_p ? pll_lim->min_p : 0;
	int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
	int crystal = pll_lim->refclk;
	int M, N, thisP, P;
	int clkP, calcclk;
	int delta, bestdelta = INT_MAX;
	int bestclk = 0;

	/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
	/* possibly correlated with introduction of 27MHz crystal */
	if (dev_priv->card_type < NV_50) {
		if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
			if (clk > 250000)
				maxM = 6;
			if (clk > 340000)
				maxM = 2;
		} else if (cv < 0x40) {
			if (clk > 150000)
				maxM = 6;
			if (clk > 200000)
				maxM = 4;
			if (clk > 340000)
				maxM = 2;
		}
	}

	P = pll_lim->max_p ? maxP : (1 << maxP);
	if ((clk * P) < minvco) {
		minvco = clk * maxP;
		maxvco = minvco * 2;
	}

	if (clk + clk/200 > maxvco)	/* +0.5% */
		maxvco = clk + clk/200;

	/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
	for (thisP = minP; thisP <= maxP; thisP++) {
		P = pll_lim->max_p ? thisP : (1 << thisP);
		clkP = clk * P;

		if (clkP < minvco)
			continue;
		if (clkP > maxvco)
			return bestclk;

		for (M = minM; M <= maxM; M++) {
			if (crystal/M < minU)
				return bestclk;
			if (crystal/M > maxU)
				continue;

			/* add crystal/2 to round better */
			N = (clkP * M + crystal/2) / crystal;

			if (N < minN)
				continue;
			if (N > maxN)
				break;

			/* more rounding additions */
			calcclk = ((N * crystal + P/2) / P + M/2) / M;
			delta = abs(calcclk - clk);
			/* we do an exhaustive search rather than terminating
			 * on an optimality condition...
			 */
			if (delta < bestdelta) {
				bestdelta = delta;
				bestclk = calcclk;
				bestpv->N1 = N;
				bestpv->M1 = M;
				bestpv->log2P = thisP;
				if (delta == 0)	/* except this one */
					return bestclk;
			}
		}
	}

	return bestclk;
}

static int
getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
	      struct nouveau_pll_vals *bestpv)
{
	/* Find M, N and P for a two stage PLL
	 *
	 * Note that some bioses (NV30+) have lookup tables of precomputed MNP
	 * values, but we're too lazy to use those atm
	 *
	 * "clk" parameter in kHz
	 * returns calculated clock
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int chip_version = dev_priv->vbios->chip_version;
	int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
	int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
	int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
	int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
	int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
	int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
	int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
	int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
	int maxlog2P = pll_lim->max_usable_log2p;
	int crystal = pll_lim->refclk;
	bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
	int M1, N1, M2, N2, log2P;
	int clkP, calcclk1, calcclk2, calcclkout;
	int delta, bestdelta = INT_MAX;
	int bestclk = 0;

	int vco2 = (maxvco2 - maxvco2/200) / 2;
	for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
		;
	clkP = clk << log2P;

	if (maxvco2 < clk + clk/200)	/* +0.5% */
		maxvco2 = clk + clk/200;

	for (M1 = minM1; M1 <= maxM1; M1++) {
		if (crystal/M1 < minU1)
			return bestclk;
		if (crystal/M1 > maxU1)
			continue;

		for (N1 = minN1; N1 <= maxN1; N1++) {
			calcclk1 = crystal * N1 / M1;
			if (calcclk1 < minvco1)
				continue;
			if (calcclk1 > maxvco1)
				break;

			for (M2 = minM2; M2 <= maxM2; M2++) {
				if (calcclk1/M2 < minU2)
					break;
				if (calcclk1/M2 > maxU2)
					continue;

				/* add calcclk1/2 to round better */
				N2 = (clkP * M2 + calcclk1/2) / calcclk1;
				if (N2 < minN2)
					continue;
				if (N2 > maxN2)
					break;

				if (!fixedgain2) {
					if (chip_version < 0x60)
						if (N2/M2 < 4 || N2/M2 > 10)
							continue;

					calcclk2 = calcclk1 * N2 / M2;
					if (calcclk2 < minvco2)
						break;
					if (calcclk2 > maxvco2)
						continue;
				} else
					calcclk2 = calcclk1;

				calcclkout = calcclk2 >> log2P;
				delta = abs(calcclkout - clk);
				/* we do an exhaustive search rather than terminating
				 * on an optimality condition...
				 */
				if (delta < bestdelta) {
					bestdelta = delta;
					bestclk = calcclkout;
					bestpv->N1 = N1;
					bestpv->M1 = M1;
					bestpv->N2 = N2;
					bestpv->M2 = M2;
					bestpv->log2P = log2P;
					if (delta == 0)	/* except this one */
						return bestclk;
				}
			}
		}
	}

	return bestclk;
}

int
nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
		     struct nouveau_pll_vals *pv)
{
	int outclk;

	if (!pll_lim->vco2.maxfreq)
		outclk = getMNP_single(dev, pll_lim, clk, pv);
	else
		outclk = getMNP_double(dev, pll_lim, clk, pv);

	if (!outclk)
		NV_ERROR(dev, "Could not find a compatible set of PLL values\n");

	return outclk;
}
OpenPOWER on IntegriCloud