summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/intel_dp.c
blob: 818fe34f2b5ce4dde442df346ad2c539dd524b7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_dp.h"

#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	uint32_t save_DP;
	uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
	int dpms_mode;
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
	struct intel_output *intel_output;
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);

static int
intel_dp_max_lane_count(struct intel_output *intel_output)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
intel_dp_max_link_bw(struct intel_output *intel_output)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
intel_dp_link_required(int pixel_clock)
{
	return pixel_clock * 3;
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
	struct intel_output *intel_output = to_intel_output(connector);
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
	int max_lanes = intel_dp_max_lane_count(intel_output);

	if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

static int
intel_dp_aux_ch(struct intel_output *intel_output,
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint32_t output_reg = dp_priv->output_reg;
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;

	/* Load the send data into the aux channel data registers */
	for (i = 0; i < send_bytes; i += 4) {
		uint32_t    d = pack_aux(send + i, send_bytes - i);;

		I915_WRITE(ch_data + i, d);
	}

	/* The clock divider is based off the hrawclk,
	 * and would like to run at 2MHz. The 133 below assumes
	 * a 266MHz hrawclk; need to figure out how we're supposed
	 * to know what hrawclk is...
	 */
	ctl = (DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_TIME_OUT_1600us |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
	       (133 << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
	       DP_AUX_CH_CTL_RECEIVE_ERROR);

	/* Send the command and wait for it to complete */
	I915_WRITE(ch_ctl, ctl);
	(void) I915_READ(ch_ctl);
	for (;;) {
		udelay(100);
		status = I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
	}

	/* Clear done status and any errors */
	I915_WRITE(ch_ctl, (ctl |
			DP_AUX_CH_CTL_DONE |
			DP_AUX_CH_CTL_TIME_OUT_ERROR |
			DP_AUX_CH_CTL_RECEIVE_ERROR));
	(void) I915_READ(ch_ctl);

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
		printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
		return -EBUSY;
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
		printk(KERN_ERR "dp_aux_ch receive error status 0x%08x\n", status);
		return -EIO;
	}
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
		printk(KERN_ERR "dp_aux_ch timeout status 0x%08x\n", status);
		return -ETIMEDOUT;
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_output *intel_output,
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
	msg[2] = address;
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_output *intel_output,
			    uint16_t address, uint8_t byte)
{
	return intel_dp_aux_native_write(intel_output, address, &byte, 1);
}

/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_output *intel_output,
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
				      reply, reply_bytes);
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
}

static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
		    uint8_t *send, int send_bytes,
		    uint8_t *recv, int recv_bytes)
{
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
	struct intel_output *intel_output = dp_priv->intel_output;

	return intel_dp_aux_ch(intel_output,
			       send, send_bytes, recv, recv_bytes);
}

static int
intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
{
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;

	DRM_ERROR("i2c_init %s\n", name);
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
	strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
	dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
	dp_priv->adapter.algo_data = &dp_priv->algo;
	dp_priv->adapter.dev.parent = &intel_output->base.kdev;
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
	int lane_count, clock;
	int max_lane_count = intel_dp_max_lane_count(intel_output);
	int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;

			if (intel_dp_link_required(mode->clock) <= link_avail) {
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
				printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
	 * Find the lane count in the intel_output private
	 */
	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct intel_output *intel_output = to_intel_output(connector);
		struct intel_dp_priv *dp_priv = intel_output->dev_priv;

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

		if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

	if (intel_crtc->pipe == 0) {
		I915_WRITE(PIPEA_GMCH_DATA_M,
		       ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
		       m_n.gmch_m);
		I915_WRITE(PIPEA_GMCH_DATA_N,
		       m_n.gmch_n);
		I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
		I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
	} else {
		I915_WRITE(PIPEB_GMCH_DATA_M,
		       ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
		       m_n.gmch_m);
		I915_WRITE(PIPEB_GMCH_DATA_N,
		       m_n.gmch_n);
		I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
		I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	struct drm_crtc *crtc = intel_output->enc.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	dp_priv->DP = (DP_LINK_TRAIN_OFF |
			DP_VOLTAGE_0_4 |
			DP_PRE_EMPHASIS_0 |
			DP_SYNC_VS_HIGH |
			DP_SYNC_HS_HIGH);

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
	 * Check for DPCD version > 1.1,
	 * enable enahanced frame stuff in that case
	 */
	if (dp_priv->dpcd[0] >= 0x11) {
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

	if (intel_crtc->pipe == 1)
		dp_priv->DP |= DP_PIPEB_SELECT;
}


static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
	struct intel_output *intel_output = enc_to_intel_output(encoder);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
		if (dp_reg & DP_PORT_EN)
			intel_dp_link_down(intel_output, dp_priv->DP);
	} else {
		if (!(dp_reg & DP_PORT_EN))
			intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
	}
	dp_priv->dpms_mode = mode;
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
intel_dp_get_link_status(struct intel_output *intel_output,
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

	ret = intel_dp_aux_native_read(intel_output,
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static void
intel_dp_save(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	dp_priv->save_DP = I915_READ(dp_priv->output_reg);
	intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
				 dp_priv->save_link_configuration,
				 sizeof (dp_priv->save_link_configuration));
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
intel_get_adjust_train(struct intel_output *intel_output,
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
intel_dp_set_link_train(struct intel_output *intel_output,
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

	intel_dp_aux_native_write_1(intel_output,
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

	ret = intel_dp_aux_native_write(intel_output,
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;

	/* Write the link configuration data */
	intel_dp_aux_native_write(intel_output, 0x100,
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
	DP &= ~DP_LINK_TRAIN_MASK;
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
		if (!intel_dp_get_link_status(intel_output, link_status))
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		/* channel eq pattern */
		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
		if (!intel_dp_get_link_status(intel_output, link_status))
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
		++tries;
	}

	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
	POSTING_READ(dp_priv->output_reg);
	intel_dp_aux_native_write_1(intel_output,
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
{
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

static void
intel_dp_restore(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	if (dp_priv->save_DP & DP_PORT_EN)
		intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
	else
		intel_dp_link_down(intel_output,  dp_priv->save_DP);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
intel_dp_check_link_status(struct intel_output *intel_output)
{
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint8_t link_status[DP_LINK_STATUS_SIZE];

	if (!intel_output->enc.crtc)
		return;

	if (!intel_dp_get_link_status(intel_output, link_status)) {
		intel_dp_link_down(intel_output, dp_priv->DP);
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
		intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
}

/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);
	struct drm_device *dev = intel_output->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

	temp = I915_READ(PORT_HOTPLUG_EN);

	I915_WRITE(PORT_HOTPLUG_EN,
	       temp |
	       DPB_HOTPLUG_INT_EN |
	       DPC_HOTPLUG_INT_EN |
	       DPD_HOTPLUG_INT_EN);

	POSTING_READ(PORT_HOTPLUG_EN);

	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
	if (intel_dp_aux_native_read(intel_output,
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);

	/* We should parse the EDID data and find out if it has an audio sink
	 */

	return intel_ddc_get_modes(intel_output);
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);

	if (intel_output->i2c_bus)
		intel_i2c_destroy(intel_output->i2c_bus);
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
	kfree(intel_output);
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.save = intel_dp_save,
	.restore = intel_dp_restore,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

void
intel_dp_hot_plug(struct intel_output *intel_output)
{
	struct intel_dp_priv *dp_priv = intel_output->dev_priv;

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
		intel_dp_check_link_status(intel_output);
}

void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
	struct intel_output *intel_output;
	struct intel_dp_priv *dp_priv;

	intel_output = kcalloc(sizeof(struct intel_output) + 
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
	if (!intel_output)
		return;

	dp_priv = (struct intel_dp_priv *)(intel_output + 1);

	connector = &intel_output->base;
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	intel_output->type = INTEL_OUTPUT_DISPLAYPORT;

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

	dp_priv->intel_output = intel_output;
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
	intel_output->dev_priv = dp_priv;

	drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);

	drm_mode_connector_attach_encoder(&intel_output->base,
					  &intel_output->enc);
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
	intel_dp_i2c_init(intel_output,
			  (output_reg == DP_B) ? "DPDDC-B" :
			  (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
	intel_output->ddc_bus = &dp_priv->adapter;
	intel_output->hot_plug = intel_dp_hot_plug;

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}
OpenPOWER on IntegriCloud