summaryrefslogtreecommitdiffstats
path: root/drivers/block/brd.c
blob: 531ceb31d0ff86a4aec90301ea508254ea443457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * Ram backed block device driver.
 *
 * Copyright (C) 2007 Nick Piggin
 * Copyright (C) 2007 Novell Inc.
 *
 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
 * of their respective owners.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/radix-tree.h>
#include <linux/fs.h>
#include <linux/slab.h>

#include <asm/uaccess.h>

#define SECTOR_SHIFT		9
#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)

/*
 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
 * the pages containing the block device's contents. A brd page's ->index is
 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
 * with, the kernel's pagecache or buffer cache (which sit above our block
 * device).
 */
struct brd_device {
	int		brd_number;

	struct request_queue	*brd_queue;
	struct gendisk		*brd_disk;
	struct list_head	brd_list;

	/*
	 * Backing store of pages and lock to protect it. This is the contents
	 * of the block device.
	 */
	spinlock_t		brd_lock;
	struct radix_tree_root	brd_pages;
};

/*
 * Look up and return a brd's page for a given sector.
 */
static DEFINE_MUTEX(brd_mutex);
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
{
	pgoff_t idx;
	struct page *page;

	/*
	 * The page lifetime is protected by the fact that we have opened the
	 * device node -- brd pages will never be deleted under us, so we
	 * don't need any further locking or refcounting.
	 *
	 * This is strictly true for the radix-tree nodes as well (ie. we
	 * don't actually need the rcu_read_lock()), however that is not a
	 * documented feature of the radix-tree API so it is better to be
	 * safe here (we don't have total exclusion from radix tree updates
	 * here, only deletes).
	 */
	rcu_read_lock();
	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
	page = radix_tree_lookup(&brd->brd_pages, idx);
	rcu_read_unlock();

	BUG_ON(page && page->index != idx);

	return page;
}

/*
 * Look up and return a brd's page for a given sector.
 * If one does not exist, allocate an empty page, and insert that. Then
 * return it.
 */
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
{
	pgoff_t idx;
	struct page *page;
	gfp_t gfp_flags;

	page = brd_lookup_page(brd, sector);
	if (page)
		return page;

	/*
	 * Must use NOIO because we don't want to recurse back into the
	 * block or filesystem layers from page reclaim.
	 *
	 * Cannot support XIP and highmem, because our ->direct_access
	 * routine for XIP must return memory that is always addressable.
	 * If XIP was reworked to use pfns and kmap throughout, this
	 * restriction might be able to be lifted.
	 */
	gfp_flags = GFP_NOIO | __GFP_ZERO;
#ifndef CONFIG_BLK_DEV_XIP
	gfp_flags |= __GFP_HIGHMEM;
#endif
	page = alloc_page(gfp_flags);
	if (!page)
		return NULL;

	if (radix_tree_preload(GFP_NOIO)) {
		__free_page(page);
		return NULL;
	}

	spin_lock(&brd->brd_lock);
	idx = sector >> PAGE_SECTORS_SHIFT;
	if (radix_tree_insert(&brd->brd_pages, idx, page)) {
		__free_page(page);
		page = radix_tree_lookup(&brd->brd_pages, idx);
		BUG_ON(!page);
		BUG_ON(page->index != idx);
	} else
		page->index = idx;
	spin_unlock(&brd->brd_lock);

	radix_tree_preload_end();

	return page;
}

static void brd_free_page(struct brd_device *brd, sector_t sector)
{
	struct page *page;
	pgoff_t idx;

	spin_lock(&brd->brd_lock);
	idx = sector >> PAGE_SECTORS_SHIFT;
	page = radix_tree_delete(&brd->brd_pages, idx);
	spin_unlock(&brd->brd_lock);
	if (page)
		__free_page(page);
}

static void brd_zero_page(struct brd_device *brd, sector_t sector)
{
	struct page *page;

	page = brd_lookup_page(brd, sector);
	if (page)
		clear_highpage(page);
}

/*
 * Free all backing store pages and radix tree. This must only be called when
 * there are no other users of the device.
 */
#define FREE_BATCH 16
static void brd_free_pages(struct brd_device *brd)
{
	unsigned long pos = 0;
	struct page *pages[FREE_BATCH];
	int nr_pages;

	do {
		int i;

		nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
				(void **)pages, pos, FREE_BATCH);

		for (i = 0; i < nr_pages; i++) {
			void *ret;

			BUG_ON(pages[i]->index < pos);
			pos = pages[i]->index;
			ret = radix_tree_delete(&brd->brd_pages, pos);
			BUG_ON(!ret || ret != pages[i]);
			__free_page(pages[i]);
		}

		pos++;

		/*
		 * This assumes radix_tree_gang_lookup always returns as
		 * many pages as possible. If the radix-tree code changes,
		 * so will this have to.
		 */
	} while (nr_pages == FREE_BATCH);
}

/*
 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 */
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
{
	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
	size_t copy;

	copy = min_t(size_t, n, PAGE_SIZE - offset);
	if (!brd_insert_page(brd, sector))
		return -ENOMEM;
	if (copy < n) {
		sector += copy >> SECTOR_SHIFT;
		if (!brd_insert_page(brd, sector))
			return -ENOMEM;
	}
	return 0;
}

static void discard_from_brd(struct brd_device *brd,
			sector_t sector, size_t n)
{
	while (n >= PAGE_SIZE) {
		/*
		 * Don't want to actually discard pages here because
		 * re-allocating the pages can result in writeback
		 * deadlocks under heavy load.
		 */
		if (0)
			brd_free_page(brd, sector);
		else
			brd_zero_page(brd, sector);
		sector += PAGE_SIZE >> SECTOR_SHIFT;
		n -= PAGE_SIZE;
	}
}

/*
 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 */
static void copy_to_brd(struct brd_device *brd, const void *src,
			sector_t sector, size_t n)
{
	struct page *page;
	void *dst;
	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
	size_t copy;

	copy = min_t(size_t, n, PAGE_SIZE - offset);
	page = brd_lookup_page(brd, sector);
	BUG_ON(!page);

	dst = kmap_atomic(page);
	memcpy(dst + offset, src, copy);
	kunmap_atomic(dst);

	if (copy < n) {
		src += copy;
		sector += copy >> SECTOR_SHIFT;
		copy = n - copy;
		page = brd_lookup_page(brd, sector);
		BUG_ON(!page);

		dst = kmap_atomic(page);
		memcpy(dst, src, copy);
		kunmap_atomic(dst);
	}
}

/*
 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 */
static void copy_from_brd(void *dst, struct brd_device *brd,
			sector_t sector, size_t n)
{
	struct page *page;
	void *src;
	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
	size_t copy;

	copy = min_t(size_t, n, PAGE_SIZE - offset);
	page = brd_lookup_page(brd, sector);
	if (page) {
		src = kmap_atomic(page);
		memcpy(dst, src + offset, copy);
		kunmap_atomic(src);
	} else
		memset(dst, 0, copy);

	if (copy < n) {
		dst += copy;
		sector += copy >> SECTOR_SHIFT;
		copy = n - copy;
		page = brd_lookup_page(brd, sector);
		if (page) {
			src = kmap_atomic(page);
			memcpy(dst, src, copy);
			kunmap_atomic(src);
		} else
			memset(dst, 0, copy);
	}
}

/*
 * Process a single bvec of a bio.
 */
static int brd_do_bvec(struct brd_device *brd, struct page *page,
			unsigned int len, unsigned int off, int rw,
			sector_t sector)
{
	void *mem;
	int err = 0;

	if (rw != READ) {
		err = copy_to_brd_setup(brd, sector, len);
		if (err)
			goto out;
	}

	mem = kmap_atomic(page);
	if (rw == READ) {
		copy_from_brd(mem + off, brd, sector, len);
		flush_dcache_page(page);
	} else {
		flush_dcache_page(page);
		copy_to_brd(brd, mem + off, sector, len);
	}
	kunmap_atomic(mem);

out:
	return err;
}

static void brd_make_request(struct request_queue *q, struct bio *bio)
{
	struct block_device *bdev = bio->bi_bdev;
	struct brd_device *brd = bdev->bd_disk->private_data;
	int rw;
	struct bio_vec *bvec;
	sector_t sector;
	int i;
	int err = -EIO;

	sector = bio->bi_sector;
	if (sector + (bio->bi_size >> SECTOR_SHIFT) >
						get_capacity(bdev->bd_disk))
		goto out;

	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
		err = 0;
		discard_from_brd(brd, sector, bio->bi_size);
		goto out;
	}

	rw = bio_rw(bio);
	if (rw == READA)
		rw = READ;

	bio_for_each_segment(bvec, bio, i) {
		unsigned int len = bvec->bv_len;
		err = brd_do_bvec(brd, bvec->bv_page, len,
					bvec->bv_offset, rw, sector);
		if (err)
			break;
		sector += len >> SECTOR_SHIFT;
	}

out:
	bio_endio(bio, err);
}

#ifdef CONFIG_BLK_DEV_XIP
static int brd_direct_access(struct block_device *bdev, sector_t sector,
			void **kaddr, unsigned long *pfn)
{
	struct brd_device *brd = bdev->bd_disk->private_data;
	struct page *page;

	if (!brd)
		return -ENODEV;
	if (sector & (PAGE_SECTORS-1))
		return -EINVAL;
	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
		return -ERANGE;
	page = brd_insert_page(brd, sector);
	if (!page)
		return -ENOMEM;
	*kaddr = page_address(page);
	*pfn = page_to_pfn(page);

	return 0;
}
#endif

static int brd_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	int error;
	struct brd_device *brd = bdev->bd_disk->private_data;

	if (cmd != BLKFLSBUF)
		return -ENOTTY;

	/*
	 * ram device BLKFLSBUF has special semantics, we want to actually
	 * release and destroy the ramdisk data.
	 */
	mutex_lock(&brd_mutex);
	mutex_lock(&bdev->bd_mutex);
	error = -EBUSY;
	if (bdev->bd_openers <= 1) {
		/*
		 * Kill the cache first, so it isn't written back to the
		 * device.
		 *
		 * Another thread might instantiate more buffercache here,
		 * but there is not much we can do to close that race.
		 */
		kill_bdev(bdev);
		brd_free_pages(brd);
		error = 0;
	}
	mutex_unlock(&bdev->bd_mutex);
	mutex_unlock(&brd_mutex);

	return error;
}

static const struct block_device_operations brd_fops = {
	.owner =		THIS_MODULE,
	.ioctl =		brd_ioctl,
#ifdef CONFIG_BLK_DEV_XIP
	.direct_access =	brd_direct_access,
#endif
};

/*
 * And now the modules code and kernel interface.
 */
static int rd_nr;
int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
static int max_part;
static int part_shift;
module_param(rd_nr, int, S_IRUGO);
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
module_param(rd_size, int, S_IRUGO);
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
module_param(max_part, int, S_IRUGO);
MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
MODULE_ALIAS("rd");

#ifndef MODULE
/* Legacy boot options - nonmodular */
static int __init ramdisk_size(char *str)
{
	rd_size = simple_strtol(str, NULL, 0);
	return 1;
}
__setup("ramdisk_size=", ramdisk_size);
#endif

/*
 * The device scheme is derived from loop.c. Keep them in synch where possible
 * (should share code eventually).
 */
static LIST_HEAD(brd_devices);
static DEFINE_MUTEX(brd_devices_mutex);

static struct brd_device *brd_alloc(int i)
{
	struct brd_device *brd;
	struct gendisk *disk;

	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
	if (!brd)
		goto out;
	brd->brd_number		= i;
	spin_lock_init(&brd->brd_lock);
	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);

	brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
	if (!brd->brd_queue)
		goto out_free_dev;
	blk_queue_make_request(brd->brd_queue, brd_make_request);
	blk_queue_max_hw_sectors(brd->brd_queue, 1024);
	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);

	brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
	brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
	brd->brd_queue->limits.discard_zeroes_data = 1;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);

	disk = brd->brd_disk = alloc_disk(1 << part_shift);
	if (!disk)
		goto out_free_queue;
	disk->major		= RAMDISK_MAJOR;
	disk->first_minor	= i << part_shift;
	disk->fops		= &brd_fops;
	disk->private_data	= brd;
	disk->queue		= brd->brd_queue;
	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
	sprintf(disk->disk_name, "ram%d", i);
	set_capacity(disk, rd_size * 2);

	return brd;

out_free_queue:
	blk_cleanup_queue(brd->brd_queue);
out_free_dev:
	kfree(brd);
out:
	return NULL;
}

static void brd_free(struct brd_device *brd)
{
	put_disk(brd->brd_disk);
	blk_cleanup_queue(brd->brd_queue);
	brd_free_pages(brd);
	kfree(brd);
}

static struct brd_device *brd_init_one(int i)
{
	struct brd_device *brd;

	list_for_each_entry(brd, &brd_devices, brd_list) {
		if (brd->brd_number == i)
			goto out;
	}

	brd = brd_alloc(i);
	if (brd) {
		add_disk(brd->brd_disk);
		list_add_tail(&brd->brd_list, &brd_devices);
	}
out:
	return brd;
}

static void brd_del_one(struct brd_device *brd)
{
	list_del(&brd->brd_list);
	del_gendisk(brd->brd_disk);
	brd_free(brd);
}

static struct kobject *brd_probe(dev_t dev, int *part, void *data)
{
	struct brd_device *brd;
	struct kobject *kobj;

	mutex_lock(&brd_devices_mutex);
	brd = brd_init_one(MINOR(dev) >> part_shift);
	kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
	mutex_unlock(&brd_devices_mutex);

	*part = 0;
	return kobj;
}

static int __init brd_init(void)
{
	int i, nr;
	unsigned long range;
	struct brd_device *brd, *next;

	/*
	 * brd module now has a feature to instantiate underlying device
	 * structure on-demand, provided that there is an access dev node.
	 * However, this will not work well with user space tool that doesn't
	 * know about such "feature".  In order to not break any existing
	 * tool, we do the following:
	 *
	 * (1) if rd_nr is specified, create that many upfront, and this
	 *     also becomes a hard limit.
	 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
	 *     (default 16) rd device on module load, user can further
	 *     extend brd device by create dev node themselves and have
	 *     kernel automatically instantiate actual device on-demand.
	 */

	part_shift = 0;
	if (max_part > 0) {
		part_shift = fls(max_part);

		/*
		 * Adjust max_part according to part_shift as it is exported
		 * to user space so that user can decide correct minor number
		 * if [s]he want to create more devices.
		 *
		 * Note that -1 is required because partition 0 is reserved
		 * for the whole disk.
		 */
		max_part = (1UL << part_shift) - 1;
	}

	if ((1UL << part_shift) > DISK_MAX_PARTS)
		return -EINVAL;

	if (rd_nr > 1UL << (MINORBITS - part_shift))
		return -EINVAL;

	if (rd_nr) {
		nr = rd_nr;
		range = rd_nr << part_shift;
	} else {
		nr = CONFIG_BLK_DEV_RAM_COUNT;
		range = 1UL << MINORBITS;
	}

	if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
		return -EIO;

	for (i = 0; i < nr; i++) {
		brd = brd_alloc(i);
		if (!brd)
			goto out_free;
		list_add_tail(&brd->brd_list, &brd_devices);
	}

	/* point of no return */

	list_for_each_entry(brd, &brd_devices, brd_list)
		add_disk(brd->brd_disk);

	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
				  THIS_MODULE, brd_probe, NULL, NULL);

	printk(KERN_INFO "brd: module loaded\n");
	return 0;

out_free:
	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
		list_del(&brd->brd_list);
		brd_free(brd);
	}
	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");

	return -ENOMEM;
}

static void __exit brd_exit(void)
{
	unsigned long range;
	struct brd_device *brd, *next;

	range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;

	list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
		brd_del_one(brd);

	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
}

module_init(brd_init);
module_exit(brd_exit);

OpenPOWER on IntegriCloud