summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/uprobes.c
blob: 2ed845928b5f3fa533e97fbbcd2528999b5edadf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * User-space Probes (UProbes) for x86
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2008-2011
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>

#include <linux/kdebug.h>
#include <asm/processor.h>
#include <asm/insn.h>

/* Post-execution fixups. */

/* No fixup needed */
#define UPROBE_FIX_NONE		0x0

/* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP		0x1

/* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL	0x2

/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF	0x4

#define UPROBE_FIX_RIP_AX	0x8000
#define UPROBE_FIX_RIP_CX	0x4000

#define	UPROBE_TRAP_NR		UINT_MAX

/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn)		((insn)->opcode.bytes[0])
#define OPCODE2(insn)		((insn)->opcode.bytes[1])
#define OPCODE3(insn)		((insn)->opcode.bytes[2])
#define MODRM_REG(insn)		X86_MODRM_REG(insn->modrm.value)

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))

/*
 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 * some versions of gcc to think only *(unsigned long*) is used.
 */
static volatile u32 good_insns_32[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};

/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};

#ifdef CONFIG_X86_64
/* Good-instruction tables for 64-bit apps */
static volatile u32 good_insns_64[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#endif
#undef W

/*
 * opcodes we'll probably never support:
 *
 *  6c-6d, e4-e5, ec-ed - in
 *  6e-6f, e6-e7, ee-ef - out
 *  cc, cd - int3, int
 *  cf - iret
 *  d6 - illegal instruction
 *  f1 - int1/icebp
 *  f4 - hlt
 *  fa, fb - cli, sti
 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
 *
 * invalid opcodes in 64-bit mode:
 *
 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
 *  63 - we support this opcode in x86_64 but not in i386.
 *
 * opcodes we may need to refine support for:
 *
 *  0f - 2-byte instructions: For many of these instructions, the validity
 *  depends on the prefix and/or the reg field.  On such instructions, we
 *  just consider the opcode combination valid if it corresponds to any
 *  valid instruction.
 *
 *  8f - Group 1 - only reg = 0 is OK
 *  c6-c7 - Group 11 - only reg = 0 is OK
 *  d9-df - fpu insns with some illegal encodings
 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 *  certain floating-point instructions, such as addsd.
 *
 *  fe - Group 4 - only reg = 0 or 1 is OK
 *  ff - Group 5 - only reg = 0-6 is OK
 *
 * others -- Do we need to support these?
 *
 *  0f - (floating-point?) prefetch instructions
 *  07, 17, 1f - pop es, pop ss, pop ds
 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 *  67 - addr16 prefix
 *  ce - into
 *  f0 - lock prefix
 */

/*
 * TODO:
 * - Where necessary, examine the modrm byte and allow only valid instructions
 * in the different Groups and fpu instructions.
 */

static bool is_prefix_bad(struct insn *insn)
{
	int i;

	for (i = 0; i < insn->prefixes.nbytes; i++) {
		switch (insn->prefixes.bytes[i]) {
		case 0x26:	/* INAT_PFX_ES   */
		case 0x2E:	/* INAT_PFX_CS   */
		case 0x36:	/* INAT_PFX_DS   */
		case 0x3E:	/* INAT_PFX_SS   */
		case 0xF0:	/* INAT_PFX_LOCK */
			return true;
		}
	}
	return false;
}

static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
{
	insn_init(insn, auprobe->insn, false);

	/* Skip good instruction prefixes; reject "bad" ones. */
	insn_get_opcode(insn);
	if (is_prefix_bad(insn))
		return -ENOTSUPP;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
		return 0;

	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}

	return -ENOTSUPP;
}

/*
 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
 * annotate arch_uprobe->fixups accordingly.  To start with,
 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
 */
static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
{
	bool fix_ip = true, fix_call = false;	/* defaults */
	int reg;

	insn_get_opcode(insn);	/* should be a nop */

	switch (OPCODE1(insn)) {
	case 0x9d:
		/* popf */
		auprobe->fixups |= UPROBE_FIX_SETF;
		break;
	case 0xc3:		/* ret/lret */
	case 0xcb:
	case 0xc2:
	case 0xca:
		/* ip is correct */
		fix_ip = false;
		break;
	case 0xe8:		/* call relative - Fix return addr */
		fix_call = true;
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
		fix_call = true;
		fix_ip = false;
		break;
	case 0xff:
		insn_get_modrm(insn);
		reg = MODRM_REG(insn);
		if (reg == 2 || reg == 3) {
			/* call or lcall, indirect */
			/* Fix return addr; ip is correct. */
			fix_call = true;
			fix_ip = false;
		} else if (reg == 4 || reg == 5) {
			/* jmp or ljmp, indirect */
			/* ip is correct. */
			fix_ip = false;
		}
		break;
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip = false;
		break;
	default:
		break;
	}
	if (fix_ip)
		auprobe->fixups |= UPROBE_FIX_IP;
	if (fix_call)
		auprobe->fixups |= UPROBE_FIX_CALL;
}

#ifdef CONFIG_X86_64
/*
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
 * accordingly.  (The contents of the scratch register will be saved
 * before we single-step the modified instruction, and restored
 * afterward.)
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
 *
 *  - There's always a modrm byte.
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
 */
static void
handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
	u8 *cursor;
	u8 reg;

	if (mm->context.ia32_compat)
		return;

	auprobe->rip_rela_target_address = 0x0;
	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode rax/rcx, not r8/r9.
	 */
	if (insn->rex_prefix.nbytes) {
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
		*cursor &= 0xfe;	/* Clearing REX.B bit */
	}

	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
	cursor = auprobe->insn + insn_offset_modrm(insn);
	insn_get_length(insn);

	/*
	 * Convert from rip-relative addressing to indirect addressing
	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
	 */
	reg = MODRM_REG(insn);
	if (reg == 0) {
		/*
		 * The register operand (if any) is either the A register
		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
		 * REX prefix) %r8.  In any case, we know the C register
		 * is NOT the register operand, so we use %rcx (register
		 * #1) for the scratch register.
		 */
		auprobe->fixups = UPROBE_FIX_RIP_CX;
		/* Change modrm from 00 000 101 to 00 000 001. */
		*cursor = 0x1;
	} else {
		/* Use %rax (register #0) for the scratch register. */
		auprobe->fixups = UPROBE_FIX_RIP_AX;
		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
		*cursor = (reg << 3);
	}

	/* Target address = address of next instruction + (signed) offset */
	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;

	/* Displacement field is gone; slide immediate field (if any) over. */
	if (insn->immediate.nbytes) {
		cursor++;
		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
	}
	return;
}

static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
{
	insn_init(insn, auprobe->insn, true);

	/* Skip good instruction prefixes; reject "bad" ones. */
	insn_get_opcode(insn);
	if (is_prefix_bad(insn))
		return -ENOTSUPP;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
		return 0;

	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}
	return -ENOTSUPP;
}

static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
	if (mm->context.ia32_compat)
		return validate_insn_32bits(auprobe, insn);
	return validate_insn_64bits(auprobe, insn);
}
#else /* 32-bit: */
static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
	/* No RIP-relative addressing on 32-bit */
}

static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
{
	return validate_insn_32bits(auprobe, insn);
}
#endif /* CONFIG_X86_64 */

/**
 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 * @mm: the probed address space.
 * @arch_uprobe: the probepoint information.
 * @addr: virtual address at which to install the probepoint
 * Return 0 on success or a -ve number on error.
 */
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{
	int ret;
	struct insn insn;

	auprobe->fixups = 0;
	ret = validate_insn_bits(auprobe, mm, &insn);
	if (ret != 0)
		return ret;

	handle_riprel_insn(auprobe, mm, &insn);
	prepare_fixups(auprobe, &insn);

	return 0;
}

#ifdef CONFIG_X86_64
/*
 * If we're emulating a rip-relative instruction, save the contents
 * of the scratch register and store the target address in that register.
 */
static void
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
				struct arch_uprobe_task *autask)
{
	if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
		autask->saved_scratch_register = regs->ax;
		regs->ax = current->utask->vaddr;
		regs->ax += auprobe->rip_rela_target_address;
	} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
		autask->saved_scratch_register = regs->cx;
		regs->cx = current->utask->vaddr;
		regs->cx += auprobe->rip_rela_target_address;
	}
}
#else
static void
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
				struct arch_uprobe_task *autask)
{
	/* No RIP-relative addressing on 32-bit */
}
#endif

/*
 * arch_uprobe_pre_xol - prepare to execute out of line.
 * @auprobe: the probepoint information.
 * @regs: reflects the saved user state of current task.
 */
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct arch_uprobe_task *autask;

	autask = &current->utask->autask;
	autask->saved_trap_nr = current->thread.trap_nr;
	current->thread.trap_nr = UPROBE_TRAP_NR;
	regs->ip = current->utask->xol_vaddr;
	pre_xol_rip_insn(auprobe, regs, autask);

	autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
	regs->flags |= X86_EFLAGS_TF;
	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
		set_task_blockstep(current, false);

	return 0;
}

/*
 * This function is called by arch_uprobe_post_xol() to adjust the return
 * address pushed by a call instruction executed out of line.
 */
static int adjust_ret_addr(unsigned long sp, long correction)
{
	int rasize, ncopied;
	long ra = 0;

	if (is_ia32_task())
		rasize = 4;
	else
		rasize = 8;

	ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
	if (unlikely(ncopied))
		return -EFAULT;

	ra += correction;
	ncopied = copy_to_user((void __user *)sp, &ra, rasize);
	if (unlikely(ncopied))
		return -EFAULT;

	return 0;
}

#ifdef CONFIG_X86_64
static bool is_riprel_insn(struct arch_uprobe *auprobe)
{
	return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
}

static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{
	if (is_riprel_insn(auprobe)) {
		struct arch_uprobe_task *autask;

		autask = &current->utask->autask;
		if (auprobe->fixups & UPROBE_FIX_RIP_AX)
			regs->ax = autask->saved_scratch_register;
		else
			regs->cx = autask->saved_scratch_register;

		/*
		 * The original instruction includes a displacement, and so
		 * is 4 bytes longer than what we've just single-stepped.
		 * Fall through to handle stuff like "jmpq *...(%rip)" and
		 * "callq *...(%rip)".
		 */
		if (correction)
			*correction += 4;
	}
}
#else
static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{
	/* No RIP-relative addressing on 32-bit */
}
#endif

/*
 * If xol insn itself traps and generates a signal(Say,
 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 * instruction jumps back to its own address. It is assumed that anything
 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 *
 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 */
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
	if (t->thread.trap_nr != UPROBE_TRAP_NR)
		return true;

	return false;
}

/*
 * Called after single-stepping. To avoid the SMP problems that can
 * occur when we temporarily put back the original opcode to
 * single-step, we single-stepped a copy of the instruction.
 *
 * This function prepares to resume execution after the single-step.
 * We have to fix things up as follows:
 *
 * Typically, the new ip is relative to the copied instruction.  We need
 * to make it relative to the original instruction (FIX_IP).  Exceptions
 * are return instructions and absolute or indirect jump or call instructions.
 *
 * If the single-stepped instruction was a call, the return address that
 * is atop the stack is the address following the copied instruction.  We
 * need to make it the address following the original instruction (FIX_CALL).
 *
 * If the original instruction was a rip-relative instruction such as
 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
 * We need to restore the contents of the scratch register and adjust
 * the ip, keeping in mind that the instruction we executed is 4 bytes
 * shorter than the original instruction (since we squeezed out the offset
 * field).  (FIX_RIP_AX or FIX_RIP_CX)
 */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask;
	long correction;
	int result = 0;

	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);

	utask = current->utask;
	current->thread.trap_nr = utask->autask.saved_trap_nr;
	correction = (long)(utask->vaddr - utask->xol_vaddr);
	handle_riprel_post_xol(auprobe, regs, &correction);
	if (auprobe->fixups & UPROBE_FIX_IP)
		regs->ip += correction;

	if (auprobe->fixups & UPROBE_FIX_CALL)
		result = adjust_ret_addr(regs->sp, correction);

	/*
	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
	 * so we can get an extra SIGTRAP if we do not clear TF. We need
	 * to examine the opcode to make it right.
	 */
	if (utask->autask.saved_tf)
		send_sig(SIGTRAP, current, 0);
	else if (!(auprobe->fixups & UPROBE_FIX_SETF))
		regs->flags &= ~X86_EFLAGS_TF;

	return result;
}

/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	/* We are only interested in userspace traps */
	if (regs && !user_mode_vm(regs))
		return NOTIFY_DONE;

	switch (val) {
	case DIE_INT3:
		if (uprobe_pre_sstep_notifier(regs))
			ret = NOTIFY_STOP;

		break;

	case DIE_DEBUG:
		if (uprobe_post_sstep_notifier(regs))
			ret = NOTIFY_STOP;

	default:
		break;
	}

	return ret;
}

/*
 * This function gets called when XOL instruction either gets trapped or
 * the thread has a fatal signal, so reset the instruction pointer to its
 * probed address.
 */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	current->thread.trap_nr = utask->autask.saved_trap_nr;
	handle_riprel_post_xol(auprobe, regs, NULL);
	instruction_pointer_set(regs, utask->vaddr);

	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;
}

/*
 * Skip these instructions as per the currently known x86 ISA.
 * rep=0x66*; nop=0x90
 */
static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	int i;

	for (i = 0; i < MAX_UINSN_BYTES; i++) {
		if (auprobe->insn[i] == 0x66)
			continue;

		if (auprobe->insn[i] == 0x90) {
			regs->ip += i + 1;
			return true;
		}

		break;
	}
	return false;
}

bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	bool ret = __skip_sstep(auprobe, regs);
	if (ret && (regs->flags & X86_EFLAGS_TF))
		send_sig(SIGTRAP, current, 0);
	return ret;
}

unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
	int rasize, ncopied;
	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */

	rasize = is_ia32_task() ? 4 : 8;
	ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
	if (unlikely(ncopied))
		return -1;

	/* check whether address has been already hijacked */
	if (orig_ret_vaddr == trampoline_vaddr)
		return orig_ret_vaddr;

	ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
	if (likely(!ncopied))
		return orig_ret_vaddr;

	if (ncopied != rasize) {
		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);

		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
	}

	return -1;
}
OpenPOWER on IntegriCloud