summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/hpet.c
blob: 9007f9ea64eed80e9537be44d391fe55d6f7f749 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <linux/sysdev.h>
#include <linux/pm.h>

#include <asm/fixmap.h>
#include <asm/hpet.h>
#include <asm/i8253.h>
#include <asm/io.h>

#define HPET_MASK	CLOCKSOURCE_MASK(32)
#define HPET_SHIFT	22

/* FSEC = 10^-15
   NSEC = 10^-9 */
#define FSEC_PER_NSEC	1000000

/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
unsigned long hpet_address;
static void __iomem *hpet_virt_address;

unsigned long hpet_readl(unsigned long a)
{
	return readl(hpet_virt_address + a);
}

static inline void hpet_writel(unsigned long d, unsigned long a)
{
	writel(d, hpet_virt_address + a);
}

#ifdef CONFIG_X86_64

#include <asm/pgtable.h>

static inline void hpet_set_mapping(void)
{
	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
	hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
}

static inline void hpet_clear_mapping(void)
{
	hpet_virt_address = NULL;
}

#else

static inline void hpet_set_mapping(void)
{
	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}

static inline void hpet_clear_mapping(void)
{
	iounmap(hpet_virt_address);
	hpet_virt_address = NULL;
}
#endif

/*
 * HPET command line enable / disable
 */
static int boot_hpet_disable;
int hpet_force_user;

static int __init hpet_setup(char* str)
{
	if (str) {
		if (!strncmp("disable", str, 7))
			boot_hpet_disable = 1;
		if (!strncmp("force", str, 5))
			hpet_force_user = 1;
	}
	return 1;
}
__setup("hpet=", hpet_setup);

static int __init disable_hpet(char *str)
{
	boot_hpet_disable = 1;
	return 1;
}
__setup("nohpet", disable_hpet);

static inline int is_hpet_capable(void)
{
	return (!boot_hpet_disable && hpet_address);
}

/*
 * HPET timer interrupt enable / disable
 */
static int hpet_legacy_int_enabled;

/**
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
	return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);

/*
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET
static void hpet_reserve_platform_timers(unsigned long id)
{
	struct hpet __iomem *hpet = hpet_virt_address;
	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
	unsigned int nrtimers, i;
	struct hpet_data hd;

	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

	memset(&hd, 0, sizeof (hd));
	hd.hd_phys_address = hpet_address;
	hd.hd_address = hpet;
	hd.hd_nirqs = nrtimers;
	hd.hd_flags = HPET_DATA_PLATFORM;
	hpet_reserve_timer(&hd, 0);

#ifdef CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif

	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;

	for (i = 2; i < nrtimers; timer++, i++)
		hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
			Tn_INT_ROUTE_CNF_SHIFT;

	hpet_alloc(&hd);

}
#else
static void hpet_reserve_platform_timers(unsigned long id) { }
#endif

/*
 * Common hpet info
 */
static unsigned long hpet_period;

static void hpet_legacy_set_mode(enum clock_event_mode mode,
			  struct clock_event_device *evt);
static int hpet_legacy_next_event(unsigned long delta,
			   struct clock_event_device *evt);

/*
 * The hpet clock event device
 */
static struct clock_event_device hpet_clockevent = {
	.name		= "hpet",
	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
	.set_mode	= hpet_legacy_set_mode,
	.set_next_event = hpet_legacy_next_event,
	.shift		= 32,
	.irq		= 0,
	.rating		= 50,
};

static void hpet_start_counter(void)
{
	unsigned long cfg = hpet_readl(HPET_CFG);

	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);
	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

static void hpet_resume_device(void)
{
	force_hpet_resume();
}

static void hpet_restart_counter(void)
{
	hpet_resume_device();
	hpet_start_counter();
}

static void hpet_enable_legacy_int(void)
{
	unsigned long cfg = hpet_readl(HPET_CFG);

	cfg |= HPET_CFG_LEGACY;
	hpet_writel(cfg, HPET_CFG);
	hpet_legacy_int_enabled = 1;
}

static void hpet_legacy_clockevent_register(void)
{
	uint64_t hpet_freq;

	/* Start HPET legacy interrupts */
	hpet_enable_legacy_int();

	/*
	 * The period is a femto seconds value. We need to calculate the
	 * scaled math multiplication factor for nanosecond to hpet tick
	 * conversion.
	 */
	hpet_freq = 1000000000000000ULL;
	do_div(hpet_freq, hpet_period);
	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
				      NSEC_PER_SEC, hpet_clockevent.shift);
	/* Calculate the min / max delta */
	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
							   &hpet_clockevent);
	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
							   &hpet_clockevent);

	/*
	 * Start hpet with the boot cpu mask and make it
	 * global after the IO_APIC has been initialized.
	 */
	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
	clockevents_register_device(&hpet_clockevent);
	global_clock_event = &hpet_clockevent;
	printk(KERN_DEBUG "hpet clockevent registered\n");
}

static void hpet_legacy_set_mode(enum clock_event_mode mode,
			  struct clock_event_device *evt)
{
	unsigned long cfg, cmp, now;
	uint64_t delta;

	switch(mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
		delta >>= hpet_clockevent.shift;
		now = hpet_readl(HPET_COUNTER);
		cmp = now + (unsigned long) delta;
		cfg = hpet_readl(HPET_T0_CFG);
		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
		       HPET_TN_SETVAL | HPET_TN_32BIT;
		hpet_writel(cfg, HPET_T0_CFG);
		/*
		 * The first write after writing TN_SETVAL to the
		 * config register sets the counter value, the second
		 * write sets the period.
		 */
		hpet_writel(cmp, HPET_T0_CMP);
		udelay(1);
		hpet_writel((unsigned long) delta, HPET_T0_CMP);
		break;

	case CLOCK_EVT_MODE_ONESHOT:
		cfg = hpet_readl(HPET_T0_CFG);
		cfg &= ~HPET_TN_PERIODIC;
		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
		hpet_writel(cfg, HPET_T0_CFG);
		break;

	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
		cfg = hpet_readl(HPET_T0_CFG);
		cfg &= ~HPET_TN_ENABLE;
		hpet_writel(cfg, HPET_T0_CFG);
		break;

	case CLOCK_EVT_MODE_RESUME:
		hpet_enable_legacy_int();
		break;
	}
}

static int hpet_legacy_next_event(unsigned long delta,
			   struct clock_event_device *evt)
{
	unsigned long cnt;

	cnt = hpet_readl(HPET_COUNTER);
	cnt += delta;
	hpet_writel(cnt, HPET_T0_CMP);

	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
}

/*
 * Clock source related code
 */
static cycle_t read_hpet(void)
{
	return (cycle_t)hpet_readl(HPET_COUNTER);
}

#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_hpet(void)
{
	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
#endif

static struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= HPET_MASK,
	.shift		= HPET_SHIFT,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.resume		= hpet_restart_counter,
#ifdef CONFIG_X86_64
	.vread		= vread_hpet,
#endif
};

static int hpet_clocksource_register(void)
{
	u64 tmp, start, now;
	cycle_t t1;

	/* Start the counter */
	hpet_start_counter();

	/* Verify whether hpet counter works */
	t1 = read_hpet();
	rdtscll(start);

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		rep_nop();
		rdtscll(now);
	} while ((now - start) < 200000UL);

	if (t1 == read_hpet()) {
		printk(KERN_WARNING
		       "HPET counter not counting. HPET disabled\n");
		return -ENODEV;
	}

	/* Initialize and register HPET clocksource
	 *
	 * hpet period is in femto seconds per cycle
	 * so we need to convert this to ns/cyc units
	 * approximated by mult/2^shift
	 *
	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
	 *  (fsec/cyc << shift)/1000000 = mult
	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
	 */
	tmp = (u64)hpet_period << HPET_SHIFT;
	do_div(tmp, FSEC_PER_NSEC);
	clocksource_hpet.mult = (u32)tmp;

	clocksource_register(&clocksource_hpet);

	return 0;
}

/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 */
int __init hpet_enable(void)
{
	unsigned long id;

	if (!is_hpet_capable())
		return 0;

	hpet_set_mapping();

	/*
	 * Read the period and check for a sane value:
	 */
	hpet_period = hpet_readl(HPET_PERIOD);
	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
		goto out_nohpet;

	/*
	 * Read the HPET ID register to retrieve the IRQ routing
	 * information and the number of channels
	 */
	id = hpet_readl(HPET_ID);

#ifdef CONFIG_HPET_EMULATE_RTC
	/*
	 * The legacy routing mode needs at least two channels, tick timer
	 * and the rtc emulation channel.
	 */
	if (!(id & HPET_ID_NUMBER))
		goto out_nohpet;
#endif

	if (hpet_clocksource_register())
		goto out_nohpet;

	if (id & HPET_ID_LEGSUP) {
		hpet_legacy_clockevent_register();
		return 1;
	}
	return 0;

out_nohpet:
	hpet_clear_mapping();
	boot_hpet_disable = 1;
	return 0;
}

/*
 * Needs to be late, as the reserve_timer code calls kalloc !
 *
 * Not a problem on i386 as hpet_enable is called from late_time_init,
 * but on x86_64 it is necessary !
 */
static __init int hpet_late_init(void)
{
	if (boot_hpet_disable)
		return -ENODEV;

	if (!hpet_address) {
		if (!force_hpet_address)
			return -ENODEV;

		hpet_address = force_hpet_address;
		hpet_enable();
		if (!hpet_virt_address)
			return -ENODEV;
	}

	hpet_reserve_platform_timers(hpet_readl(HPET_ID));

	return 0;
}
fs_initcall(hpet_late_init);

void hpet_disable(void)
{
	if (is_hpet_capable()) {
		unsigned long cfg = hpet_readl(HPET_CFG);

		if (hpet_legacy_int_enabled) {
			cfg &= ~HPET_CFG_LEGACY;
			hpet_legacy_int_enabled = 0;
		}
		cfg &= ~HPET_CFG_ENABLE;
		hpet_writel(cfg, HPET_CFG);
	}
}

#ifdef CONFIG_HPET_EMULATE_RTC

/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
#include <asm/rtc.h>

#define DEFAULT_RTC_INT_FREQ	64
#define DEFAULT_RTC_SHIFT	6
#define RTC_NUM_INTS		1

static unsigned long hpet_rtc_flags;
static unsigned long hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static unsigned long hpet_t1_cmp;
static unsigned long hpet_default_delta;
static unsigned long hpet_pie_delta;
static unsigned long hpet_pie_limit;

static rtc_irq_handler irq_handler;

/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return -ENODEV;
	if (irq_handler)
		return -EBUSY;

	irq_handler = handler;

	return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return;

	irq_handler = NULL;
	hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

/*
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for timer 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
	unsigned long cfg, cnt, delta, flags;

	if (!is_hpet_enabled())
		return 0;

	if (!hpet_default_delta) {
		uint64_t clc;

		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
		hpet_default_delta = (unsigned long) clc;
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	local_irq_save(flags);

	cnt = delta + hpet_readl(HPET_COUNTER);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags &= ~bit_mask;
	return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	unsigned long oldbits = hpet_rtc_flags;

	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags |= bit_mask;

	if (!oldbits)
		hpet_rtc_timer_init();

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);

int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
			unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_alarm_time.tm_hour = hrs;
	hpet_alarm_time.tm_min = min;
	hpet_alarm_time.tm_sec = sec;

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);

int hpet_set_periodic_freq(unsigned long freq)
{
	uint64_t clc;

	if (!is_hpet_enabled())
		return 0;

	if (freq <= DEFAULT_RTC_INT_FREQ)
		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
	else {
		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
		do_div(clc, freq);
		clc >>= hpet_clockevent.shift;
		hpet_pie_delta = (unsigned long) clc;
	}
	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);

int hpet_rtc_dropped_irq(void)
{
	return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);

static void hpet_rtc_timer_reinit(void)
{
	unsigned long cfg, delta;
	int lost_ints = -1;

	if (unlikely(!hpet_rtc_flags)) {
		cfg = hpet_readl(HPET_T1_CFG);
		cfg &= ~HPET_TN_ENABLE;
		hpet_writel(cfg, HPET_T1_CFG);
		return;
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	/*
	 * Increment the comparator value until we are ahead of the
	 * current count.
	 */
	do {
		hpet_t1_cmp += delta;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
		lost_ints++;
	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);

	if (lost_ints) {
		if (hpet_rtc_flags & RTC_PIE)
			hpet_pie_count += lost_ints;
		if (printk_ratelimit())
			printk(KERN_WARNING "rtc: lost %d interrupts\n",
				lost_ints);
	}
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;

	hpet_rtc_timer_reinit();
	memset(&curr_time, 0, sizeof(struct rtc_time));

	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
		get_rtc_time(&curr_time);

	if (hpet_rtc_flags & RTC_UIE &&
	    curr_time.tm_sec != hpet_prev_update_sec) {
		rtc_int_flag = RTC_UF;
		hpet_prev_update_sec = curr_time.tm_sec;
	}

	if (hpet_rtc_flags & RTC_PIE &&
	    ++hpet_pie_count >= hpet_pie_limit) {
		rtc_int_flag |= RTC_PF;
		hpet_pie_count = 0;
	}

	if (hpet_rtc_flags & RTC_AIE &&
	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
			rtc_int_flag |= RTC_AF;

	if (rtc_int_flag) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
		if (irq_handler)
			irq_handler(rtc_int_flag, dev_id);
	}
	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif
OpenPOWER on IntegriCloud