summaryrefslogtreecommitdiffstats
path: root/arch/s390/kernel/process.c
blob: 7dd58f8ac6b59848cec44f18fb5931b6d6ee2a47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 *  arch/s390/kernel/process.c
 *
 *  S390 version
 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
 *               Hartmut Penner (hp@de.ibm.com),
 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995, Linus Torvalds
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#include <linux/config.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/notifier.h>

#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/timer.h>

asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");

/*
 * Return saved PC of a blocked thread. used in kernel/sched.
 * resume in entry.S does not create a new stack frame, it
 * just stores the registers %r6-%r15 to the frame given by
 * schedule. We want to return the address of the caller of
 * schedule, so we have to walk the backchain one time to
 * find the frame schedule() store its return address.
 */
unsigned long thread_saved_pc(struct task_struct *tsk)
{
	struct stack_frame *sf;

	sf = (struct stack_frame *) tsk->thread.ksp;
	sf = (struct stack_frame *) sf->back_chain;
	return sf->gprs[8];
}

/*
 * Need to know about CPUs going idle?
 */
static struct notifier_block *idle_chain;

int register_idle_notifier(struct notifier_block *nb)
{
	return notifier_chain_register(&idle_chain, nb);
}
EXPORT_SYMBOL(register_idle_notifier);

int unregister_idle_notifier(struct notifier_block *nb)
{
	return notifier_chain_unregister(&idle_chain, nb);
}
EXPORT_SYMBOL(unregister_idle_notifier);

void do_monitor_call(struct pt_regs *regs, long interruption_code)
{
	/* disable monitor call class 0 */
	__ctl_clear_bit(8, 15);

	notifier_call_chain(&idle_chain, CPU_NOT_IDLE,
			    (void *)(long) smp_processor_id());
}

extern void s390_handle_mcck(void);
/*
 * The idle loop on a S390...
 */
void default_idle(void)
{
	int cpu, rc;

	/* CPU is going idle. */
	cpu = smp_processor_id();

	local_irq_disable();
	if (need_resched()) {
		local_irq_enable();
		return;
	}

	rc = notifier_call_chain(&idle_chain, CPU_IDLE, (void *)(long) cpu);
	if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
		BUG();
	if (rc != NOTIFY_OK) {
		local_irq_enable();
		return;
	}

	/* enable monitor call class 0 */
	__ctl_set_bit(8, 15);

#ifdef CONFIG_HOTPLUG_CPU
	if (cpu_is_offline(cpu))
		cpu_die();
#endif

	local_mcck_disable();
	if (test_thread_flag(TIF_MCCK_PENDING)) {
		local_mcck_enable();
		local_irq_enable();
		s390_handle_mcck();
		return;
	}

	/* Wait for external, I/O or machine check interrupt. */
	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_WAIT |
			PSW_MASK_IO | PSW_MASK_EXT);
}

void cpu_idle(void)
{
	for (;;) {
		while (!need_resched())
			default_idle();

		preempt_enable_no_resched();
		schedule();
		preempt_disable();
	}
}

void show_regs(struct pt_regs *regs)
{
	struct task_struct *tsk = current;

        printk("CPU:    %d    %s\n", tsk->thread_info->cpu, print_tainted());
        printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
	       current->comm, current->pid, (void *) tsk,
	       (void *) tsk->thread.ksp);

	show_registers(regs);
	/* Show stack backtrace if pt_regs is from kernel mode */
	if (!(regs->psw.mask & PSW_MASK_PSTATE))
		show_trace(0,(unsigned long *) regs->gprs[15]);
}

extern void kernel_thread_starter(void);

__asm__(".align 4\n"
	"kernel_thread_starter:\n"
	"    la    2,0(10)\n"
	"    basr  14,9\n"
	"    la    2,0\n"
	"    br    11\n");

int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
	struct pt_regs regs;

	memset(&regs, 0, sizeof(regs));
	regs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT;
	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
	regs.gprs[9] = (unsigned long) fn;
	regs.gprs[10] = (unsigned long) arg;
	regs.gprs[11] = (unsigned long) do_exit;
	regs.orig_gpr2 = -1;

	/* Ok, create the new process.. */
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
		       0, &regs, 0, NULL, NULL);
}

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
}

void flush_thread(void)
{
	clear_used_math();
	clear_tsk_thread_flag(current, TIF_USEDFPU);
}

void release_thread(struct task_struct *dead_task)
{
}

int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
	unsigned long unused,
        struct task_struct * p, struct pt_regs * regs)
{
        struct fake_frame
          {
	    struct stack_frame sf;
            struct pt_regs childregs;
          } *frame;

        frame = ((struct fake_frame *)
		 (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
        p->thread.ksp = (unsigned long) frame;
	/* Store access registers to kernel stack of new process. */
        frame->childregs = *regs;
	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
        frame->childregs.gprs[15] = new_stackp;
        frame->sf.back_chain = 0;

        /* new return point is ret_from_fork */
        frame->sf.gprs[8] = (unsigned long) ret_from_fork;

        /* fake return stack for resume(), don't go back to schedule */
        frame->sf.gprs[9] = (unsigned long) frame;

	/* Save access registers to new thread structure. */
	save_access_regs(&p->thread.acrs[0]);

#ifndef CONFIG_64BIT
        /*
	 * save fprs to current->thread.fp_regs to merge them with
	 * the emulated registers and then copy the result to the child.
	 */
	save_fp_regs(&current->thread.fp_regs);
	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
	       sizeof(s390_fp_regs));
        p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
	/* Set a new TLS ?  */
	if (clone_flags & CLONE_SETTLS)
		p->thread.acrs[0] = regs->gprs[6];
#else /* CONFIG_64BIT */
	/* Save the fpu registers to new thread structure. */
	save_fp_regs(&p->thread.fp_regs);
        p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
	/* Set a new TLS ?  */
	if (clone_flags & CLONE_SETTLS) {
		if (test_thread_flag(TIF_31BIT)) {
			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
		} else {
			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
		}
	}
#endif /* CONFIG_64BIT */
	/* start new process with ar4 pointing to the correct address space */
	p->thread.mm_segment = get_fs();
        /* Don't copy debug registers */
        memset(&p->thread.per_info,0,sizeof(p->thread.per_info));

        return 0;
}

asmlinkage long sys_fork(struct pt_regs regs)
{
	return do_fork(SIGCHLD, regs.gprs[15], &regs, 0, NULL, NULL);
}

asmlinkage long sys_clone(struct pt_regs regs)
{
        unsigned long clone_flags;
        unsigned long newsp;
	int __user *parent_tidptr, *child_tidptr;

        clone_flags = regs.gprs[3];
        newsp = regs.orig_gpr2;
	parent_tidptr = (int __user *) regs.gprs[4];
	child_tidptr = (int __user *) regs.gprs[5];
        if (!newsp)
                newsp = regs.gprs[15];
        return do_fork(clone_flags, newsp, &regs, 0,
		       parent_tidptr, child_tidptr);
}

/*
 * This is trivial, and on the face of it looks like it
 * could equally well be done in user mode.
 *
 * Not so, for quite unobvious reasons - register pressure.
 * In user mode vfork() cannot have a stack frame, and if
 * done by calling the "clone()" system call directly, you
 * do not have enough call-clobbered registers to hold all
 * the information you need.
 */
asmlinkage long sys_vfork(struct pt_regs regs)
{
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
		       regs.gprs[15], &regs, 0, NULL, NULL);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage long sys_execve(struct pt_regs regs)
{
        int error;
        char * filename;

        filename = getname((char __user *) regs.orig_gpr2);
        error = PTR_ERR(filename);
        if (IS_ERR(filename))
                goto out;
        error = do_execve(filename, (char __user * __user *) regs.gprs[3],
			  (char __user * __user *) regs.gprs[4], &regs);
	if (error == 0) {
		task_lock(current);
		current->ptrace &= ~PT_DTRACE;
		task_unlock(current);
		current->thread.fp_regs.fpc = 0;
		if (MACHINE_HAS_IEEE)
			asm volatile("sfpc %0,%0" : : "d" (0));
	}
        putname(filename);
out:
        return error;
}


/*
 * fill in the FPU structure for a core dump.
 */
int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
{
#ifndef CONFIG_64BIT
        /*
	 * save fprs to current->thread.fp_regs to merge them with
	 * the emulated registers and then copy the result to the dump.
	 */
	save_fp_regs(&current->thread.fp_regs);
	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
#else /* CONFIG_64BIT */
	save_fp_regs(fpregs);
#endif /* CONFIG_64BIT */
	return 1;
}

unsigned long get_wchan(struct task_struct *p)
{
	struct stack_frame *sf, *low, *high;
	unsigned long return_address;
	int count;

	if (!p || p == current || p->state == TASK_RUNNING || !p->thread_info)
		return 0;
	low = (struct stack_frame *) p->thread_info;
	high = (struct stack_frame *)
		((unsigned long) p->thread_info + THREAD_SIZE) - 1;
	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
	if (sf <= low || sf > high)
		return 0;
	for (count = 0; count < 16; count++) {
		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
		if (sf <= low || sf > high)
			return 0;
		return_address = sf->gprs[8] & PSW_ADDR_INSN;
		if (!in_sched_functions(return_address))
			return return_address;
	}
	return 0;
}

OpenPOWER on IntegriCloud