summaryrefslogtreecommitdiffstats
path: root/arch/m68knommu/kernel/semaphore.c
blob: c083f4772add4d61a5ba41ad04cb8dcd8c5635fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 *  Generic semaphore code. Buyer beware. Do your own
 * specific changes in <asm/semaphore-helper.h>
 */

#include <linux/config.h>
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/init.h>
#include <asm/semaphore-helper.h>

#ifndef CONFIG_RMW_INSNS
spinlock_t semaphore_wake_lock;
#endif

/*
 * Semaphores are implemented using a two-way counter:
 * The "count" variable is decremented for each process
 * that tries to sleep, while the "waking" variable is
 * incremented when the "up()" code goes to wake up waiting
 * processes.
 *
 * Notably, the inline "up()" and "down()" functions can
 * efficiently test if they need to do any extra work (up
 * needs to do something only if count was negative before
 * the increment operation.
 *
 * waking_non_zero() (from asm/semaphore.h) must execute
 * atomically.
 *
 * When __up() is called, the count was negative before
 * incrementing it, and we need to wake up somebody.
 *
 * This routine adds one to the count of processes that need to
 * wake up and exit.  ALL waiting processes actually wake up but
 * only the one that gets to the "waking" field first will gate
 * through and acquire the semaphore.  The others will go back
 * to sleep.
 *
 * Note that these functions are only called when there is
 * contention on the lock, and as such all this is the
 * "non-critical" part of the whole semaphore business. The
 * critical part is the inline stuff in <asm/semaphore.h>
 * where we want to avoid any extra jumps and calls.
 */
void __up(struct semaphore *sem)
{
	wake_one_more(sem);
	wake_up(&sem->wait);
}

/*
 * Perform the "down" function.  Return zero for semaphore acquired,
 * return negative for signalled out of the function.
 *
 * If called from __down, the return is ignored and the wait loop is
 * not interruptible.  This means that a task waiting on a semaphore
 * using "down()" cannot be killed until someone does an "up()" on
 * the semaphore.
 *
 * If called from __down_interruptible, the return value gets checked
 * upon return.  If the return value is negative then the task continues
 * with the negative value in the return register (it can be tested by
 * the caller).
 *
 * Either form may be used in conjunction with "up()".
 *
 */


#define DOWN_HEAD(task_state)						\
									\
									\
	current->state = (task_state);					\
	add_wait_queue(&sem->wait, &wait);				\
									\
	/*								\
	 * Ok, we're set up.  sem->count is known to be less than zero	\
	 * so we must wait.						\
	 *								\
	 * We can let go the lock for purposes of waiting.		\
	 * We re-acquire it after awaking so as to protect		\
	 * all semaphore operations.					\
	 *								\
	 * If "up()" is called before we call waking_non_zero() then	\
	 * we will catch it right away.  If it is called later then	\
	 * we will have to go through a wakeup cycle to catch it.	\
	 *								\
	 * Multiple waiters contend for the semaphore lock to see	\
	 * who gets to gate through and who has to wait some more.	\
	 */								\
	for (;;) {

#define DOWN_TAIL(task_state)			\
		current->state = (task_state);	\
	}					\
	current->state = TASK_RUNNING;		\
	remove_wait_queue(&sem->wait, &wait);

void __sched __down(struct semaphore * sem)
{
	DECLARE_WAITQUEUE(wait, current);

	DOWN_HEAD(TASK_UNINTERRUPTIBLE)
	if (waking_non_zero(sem))
		break;
	schedule();
	DOWN_TAIL(TASK_UNINTERRUPTIBLE)
}

int __sched __down_interruptible(struct semaphore * sem)
{
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	DOWN_HEAD(TASK_INTERRUPTIBLE)

	ret = waking_non_zero_interruptible(sem, current);
	if (ret)
	{
		if (ret == 1)
			/* ret != 0 only if we get interrupted -arca */
			ret = 0;
		break;
	}
	schedule();
	DOWN_TAIL(TASK_INTERRUPTIBLE)
	return ret;
}

int __down_trylock(struct semaphore * sem)
{
	return waking_non_zero_trylock(sem);
}
OpenPOWER on IntegriCloud