summaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/cpu/intel_cacheinfo.c
blob: 80b4c5d421b1366915028b2002af39cdae851c95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
 *      Routines to indentify caches on Intel CPU.
 *
 *      Changes:
 *      Venkatesh Pallipadi	: Adding cache identification through cpuid(4)
 *		Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
 *	Andi Kleen		: CPUID4 emulation on AMD.
 */

#include <linux/init.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>

#include <asm/processor.h>
#include <asm/smp.h>

#define LVL_1_INST	1
#define LVL_1_DATA	2
#define LVL_2		3
#define LVL_3		4
#define LVL_TRACE	5

struct _cache_table
{
	unsigned char descriptor;
	char cache_type;
	short size;
};

/* all the cache descriptor types we care about (no TLB or trace cache entries) */
static struct _cache_table cache_table[] __cpuinitdata =
{
	{ 0x06, LVL_1_INST, 8 },	/* 4-way set assoc, 32 byte line size */
	{ 0x08, LVL_1_INST, 16 },	/* 4-way set assoc, 32 byte line size */
	{ 0x0a, LVL_1_DATA, 8 },	/* 2 way set assoc, 32 byte line size */
	{ 0x0c, LVL_1_DATA, 16 },	/* 4-way set assoc, 32 byte line size */
	{ 0x22, LVL_3,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x23, LVL_3,      1024 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x25, LVL_3,      2048 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x29, LVL_3,      4096 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x2c, LVL_1_DATA, 32 },	/* 8-way set assoc, 64 byte line size */
	{ 0x30, LVL_1_INST, 32 },	/* 8-way set assoc, 64 byte line size */
	{ 0x39, LVL_2,      128 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x3a, LVL_2,      192 },	/* 6-way set assoc, sectored cache, 64 byte line size */
	{ 0x3b, LVL_2,      128 },	/* 2-way set assoc, sectored cache, 64 byte line size */
	{ 0x3c, LVL_2,      256 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x3d, LVL_2,      384 },	/* 6-way set assoc, sectored cache, 64 byte line size */
	{ 0x3e, LVL_2,      512 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x41, LVL_2,      128 },	/* 4-way set assoc, 32 byte line size */
	{ 0x42, LVL_2,      256 },	/* 4-way set assoc, 32 byte line size */
	{ 0x43, LVL_2,      512 },	/* 4-way set assoc, 32 byte line size */
	{ 0x44, LVL_2,      1024 },	/* 4-way set assoc, 32 byte line size */
	{ 0x45, LVL_2,      2048 },	/* 4-way set assoc, 32 byte line size */
	{ 0x46, LVL_3,      4096 },	/* 4-way set assoc, 64 byte line size */
	{ 0x47, LVL_3,      8192 },	/* 8-way set assoc, 64 byte line size */
	{ 0x49, LVL_3,      4096 },	/* 16-way set assoc, 64 byte line size */
	{ 0x4a, LVL_3,      6144 },	/* 12-way set assoc, 64 byte line size */
	{ 0x4b, LVL_3,      8192 },	/* 16-way set assoc, 64 byte line size */
	{ 0x4c, LVL_3,     12288 },	/* 12-way set assoc, 64 byte line size */
	{ 0x4d, LVL_3,     16384 },	/* 16-way set assoc, 64 byte line size */
	{ 0x60, LVL_1_DATA, 16 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x66, LVL_1_DATA, 8 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x67, LVL_1_DATA, 16 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x68, LVL_1_DATA, 32 },	/* 4-way set assoc, sectored cache, 64 byte line size */
	{ 0x70, LVL_TRACE,  12 },	/* 8-way set assoc */
	{ 0x71, LVL_TRACE,  16 },	/* 8-way set assoc */
	{ 0x72, LVL_TRACE,  32 },	/* 8-way set assoc */
	{ 0x73, LVL_TRACE,  64 },	/* 8-way set assoc */
	{ 0x78, LVL_2,    1024 },	/* 4-way set assoc, 64 byte line size */
	{ 0x79, LVL_2,     128 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7a, LVL_2,     256 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7b, LVL_2,     512 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7c, LVL_2,    1024 },	/* 8-way set assoc, sectored cache, 64 byte line size */
	{ 0x7d, LVL_2,    2048 },	/* 8-way set assoc, 64 byte line size */
	{ 0x7f, LVL_2,     512 },	/* 2-way set assoc, 64 byte line size */
	{ 0x82, LVL_2,     256 },	/* 8-way set assoc, 32 byte line size */
	{ 0x83, LVL_2,     512 },	/* 8-way set assoc, 32 byte line size */
	{ 0x84, LVL_2,    1024 },	/* 8-way set assoc, 32 byte line size */
	{ 0x85, LVL_2,    2048 },	/* 8-way set assoc, 32 byte line size */
	{ 0x86, LVL_2,     512 },	/* 4-way set assoc, 64 byte line size */
	{ 0x87, LVL_2,    1024 },	/* 8-way set assoc, 64 byte line size */
	{ 0x00, 0, 0}
};


enum _cache_type
{
	CACHE_TYPE_NULL	= 0,
	CACHE_TYPE_DATA = 1,
	CACHE_TYPE_INST = 2,
	CACHE_TYPE_UNIFIED = 3
};

union _cpuid4_leaf_eax {
	struct {
		enum _cache_type	type:5;
		unsigned int		level:3;
		unsigned int		is_self_initializing:1;
		unsigned int		is_fully_associative:1;
		unsigned int		reserved:4;
		unsigned int		num_threads_sharing:12;
		unsigned int		num_cores_on_die:6;
	} split;
	u32 full;
};

union _cpuid4_leaf_ebx {
	struct {
		unsigned int		coherency_line_size:12;
		unsigned int		physical_line_partition:10;
		unsigned int		ways_of_associativity:10;
	} split;
	u32 full;
};

union _cpuid4_leaf_ecx {
	struct {
		unsigned int		number_of_sets:32;
	} split;
	u32 full;
};

struct _cpuid4_info {
	union _cpuid4_leaf_eax eax;
	union _cpuid4_leaf_ebx ebx;
	union _cpuid4_leaf_ecx ecx;
	unsigned long size;
	cpumask_t shared_cpu_map;
};

unsigned short			num_cache_leaves;

/* AMD doesn't have CPUID4. Emulate it here to report the same
   information to the user.  This makes some assumptions about the machine:
   No L3, L2 not shared, no SMT etc. that is currently true on AMD CPUs.

   In theory the TLBs could be reported as fake type (they are in "dummy").
   Maybe later */
union l1_cache {
	struct {
		unsigned line_size : 8;
		unsigned lines_per_tag : 8;
		unsigned assoc : 8;
		unsigned size_in_kb : 8;
	};
	unsigned val;
};

union l2_cache {
	struct {
		unsigned line_size : 8;
		unsigned lines_per_tag : 4;
		unsigned assoc : 4;
		unsigned size_in_kb : 16;
	};
	unsigned val;
};

static const unsigned short assocs[] = {
	[1] = 1, [2] = 2, [4] = 4, [6] = 8,
	[8] = 16,
	[0xf] = 0xffff // ??
	};
static const unsigned char levels[] = { 1, 1, 2 };
static const unsigned char types[] = { 1, 2, 3 };

static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
		       union _cpuid4_leaf_ebx *ebx,
		       union _cpuid4_leaf_ecx *ecx)
{
	unsigned dummy;
	unsigned line_size, lines_per_tag, assoc, size_in_kb;
	union l1_cache l1i, l1d;
	union l2_cache l2;

	eax->full = 0;
	ebx->full = 0;
	ecx->full = 0;

	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
	cpuid(0x80000006, &dummy, &dummy, &l2.val, &dummy);

	if (leaf > 2 || !l1d.val || !l1i.val || !l2.val)
		return;

	eax->split.is_self_initializing = 1;
	eax->split.type = types[leaf];
	eax->split.level = levels[leaf];
	eax->split.num_threads_sharing = 0;
	eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;

	if (leaf <= 1) {
		union l1_cache *l1 = leaf == 0 ? &l1d : &l1i;
		assoc = l1->assoc;
		line_size = l1->line_size;
		lines_per_tag = l1->lines_per_tag;
		size_in_kb = l1->size_in_kb;
	} else {
		assoc = l2.assoc;
		line_size = l2.line_size;
		lines_per_tag = l2.lines_per_tag;
		/* cpu_data has errata corrections for K7 applied */
		size_in_kb = current_cpu_data.x86_cache_size;
	}

	if (assoc == 0xf)
		eax->split.is_fully_associative = 1;
	ebx->split.coherency_line_size = line_size - 1;
	ebx->split.ways_of_associativity = assocs[assoc] - 1;
	ebx->split.physical_line_partition = lines_per_tag - 1;
	ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
		(ebx->split.ways_of_associativity + 1) - 1;
}

static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
	union _cpuid4_leaf_eax 	eax;
	union _cpuid4_leaf_ebx 	ebx;
	union _cpuid4_leaf_ecx 	ecx;
	unsigned		edx;

	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
		amd_cpuid4(index, &eax, &ebx, &ecx);
	else
		cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full,  &edx);
	if (eax.split.type == CACHE_TYPE_NULL)
		return -EIO; /* better error ? */

	this_leaf->eax = eax;
	this_leaf->ebx = ebx;
	this_leaf->ecx = ecx;
	this_leaf->size = (ecx.split.number_of_sets + 1) *
		(ebx.split.coherency_line_size + 1) *
		(ebx.split.physical_line_partition + 1) *
		(ebx.split.ways_of_associativity + 1);
	return 0;
}

/* will only be called once; __init is safe here */
static int __init find_num_cache_leaves(void)
{
	unsigned int		eax, ebx, ecx, edx;
	union _cpuid4_leaf_eax	cache_eax;
	int 			i = -1;

	do {
		++i;
		/* Do cpuid(4) loop to find out num_cache_leaves */
		cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
		cache_eax.full = eax;
	} while (cache_eax.split.type != CACHE_TYPE_NULL);
	return i;
}

unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
	unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
	unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
	unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
	unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_X86_HT
	unsigned int cpu = (c == &boot_cpu_data) ? 0 : (c - cpu_data);
#endif

	if (c->cpuid_level > 3) {
		static int is_initialized;

		if (is_initialized == 0) {
			/* Init num_cache_leaves from boot CPU */
			num_cache_leaves = find_num_cache_leaves();
			is_initialized++;
		}

		/*
		 * Whenever possible use cpuid(4), deterministic cache
		 * parameters cpuid leaf to find the cache details
		 */
		for (i = 0; i < num_cache_leaves; i++) {
			struct _cpuid4_info this_leaf;

			int retval;

			retval = cpuid4_cache_lookup(i, &this_leaf);
			if (retval >= 0) {
				switch(this_leaf.eax.split.level) {
				    case 1:
					if (this_leaf.eax.split.type ==
							CACHE_TYPE_DATA)
						new_l1d = this_leaf.size/1024;
					else if (this_leaf.eax.split.type ==
							CACHE_TYPE_INST)
						new_l1i = this_leaf.size/1024;
					break;
				    case 2:
					new_l2 = this_leaf.size/1024;
					num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
					index_msb = get_count_order(num_threads_sharing);
					l2_id = c->apicid >> index_msb;
					break;
				    case 3:
					new_l3 = this_leaf.size/1024;
					num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
					index_msb = get_count_order(num_threads_sharing);
					l3_id = c->apicid >> index_msb;
					break;
				    default:
					break;
				}
			}
		}
	}
	/*
	 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
	 * trace cache
	 */
	if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
		/* supports eax=2  call */
		int i, j, n;
		int regs[4];
		unsigned char *dp = (unsigned char *)regs;
		int only_trace = 0;

		if (num_cache_leaves != 0 && c->x86 == 15)
			only_trace = 1;

		/* Number of times to iterate */
		n = cpuid_eax(2) & 0xFF;

		for ( i = 0 ; i < n ; i++ ) {
			cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);

			/* If bit 31 is set, this is an unknown format */
			for ( j = 0 ; j < 3 ; j++ ) {
				if ( regs[j] < 0 ) regs[j] = 0;
			}

			/* Byte 0 is level count, not a descriptor */
			for ( j = 1 ; j < 16 ; j++ ) {
				unsigned char des = dp[j];
				unsigned char k = 0;

				/* look up this descriptor in the table */
				while (cache_table[k].descriptor != 0)
				{
					if (cache_table[k].descriptor == des) {
						if (only_trace && cache_table[k].cache_type != LVL_TRACE)
							break;
						switch (cache_table[k].cache_type) {
						case LVL_1_INST:
							l1i += cache_table[k].size;
							break;
						case LVL_1_DATA:
							l1d += cache_table[k].size;
							break;
						case LVL_2:
							l2 += cache_table[k].size;
							break;
						case LVL_3:
							l3 += cache_table[k].size;
							break;
						case LVL_TRACE:
							trace += cache_table[k].size;
							break;
						}

						break;
					}

					k++;
				}
			}
		}
	}

	if (new_l1d)
		l1d = new_l1d;

	if (new_l1i)
		l1i = new_l1i;

	if (new_l2) {
		l2 = new_l2;
#ifdef CONFIG_X86_HT
		cpu_llc_id[cpu] = l2_id;
#endif
	}

	if (new_l3) {
		l3 = new_l3;
#ifdef CONFIG_X86_HT
		cpu_llc_id[cpu] = l3_id;
#endif
	}

	if (trace)
		printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
	else if ( l1i )
		printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);

	if (l1d)
		printk(", L1 D cache: %dK\n", l1d);
	else
		printk("\n");

	if (l2)
		printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);

	if (l3)
		printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);

	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));

	return l2;
}

/* pointer to _cpuid4_info array (for each cache leaf) */
static struct _cpuid4_info *cpuid4_info[NR_CPUS];
#define CPUID4_INFO_IDX(x,y)    (&((cpuid4_info[x])[y]))

#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
	struct _cpuid4_info	*this_leaf, *sibling_leaf;
	unsigned long num_threads_sharing;
	int index_msb, i;
	struct cpuinfo_x86 *c = cpu_data;

	this_leaf = CPUID4_INFO_IDX(cpu, index);
	num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;

	if (num_threads_sharing == 1)
		cpu_set(cpu, this_leaf->shared_cpu_map);
	else {
		index_msb = get_count_order(num_threads_sharing);

		for_each_online_cpu(i) {
			if (c[i].apicid >> index_msb ==
			    c[cpu].apicid >> index_msb) {
				cpu_set(i, this_leaf->shared_cpu_map);
				if (i != cpu && cpuid4_info[i])  {
					sibling_leaf = CPUID4_INFO_IDX(i, index);
					cpu_set(cpu, sibling_leaf->shared_cpu_map);
				}
			}
		}
	}
}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
	struct _cpuid4_info	*this_leaf, *sibling_leaf;
	int sibling;

	this_leaf = CPUID4_INFO_IDX(cpu, index);
	for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
		sibling_leaf = CPUID4_INFO_IDX(sibling, index);	
		cpu_clear(cpu, sibling_leaf->shared_cpu_map);
	}
}
#else
static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
#endif

static void free_cache_attributes(unsigned int cpu)
{
	kfree(cpuid4_info[cpu]);
	cpuid4_info[cpu] = NULL;
}

static int __cpuinit detect_cache_attributes(unsigned int cpu)
{
	struct _cpuid4_info	*this_leaf;
	unsigned long 		j;
	int 			retval;
	cpumask_t		oldmask;

	if (num_cache_leaves == 0)
		return -ENOENT;

	cpuid4_info[cpu] = kzalloc(
	    sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
	if (unlikely(cpuid4_info[cpu] == NULL))
		return -ENOMEM;

	oldmask = current->cpus_allowed;
	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
	if (retval)
		goto out;

	/* Do cpuid and store the results */
	retval = 0;
	for (j = 0; j < num_cache_leaves; j++) {
		this_leaf = CPUID4_INFO_IDX(cpu, j);
		retval = cpuid4_cache_lookup(j, this_leaf);
		if (unlikely(retval < 0))
			break;
		cache_shared_cpu_map_setup(cpu, j);
	}
	set_cpus_allowed(current, oldmask);

out:
	if (retval)
		free_cache_attributes(cpu);
	return retval;
}

#ifdef CONFIG_SYSFS

#include <linux/kobject.h>
#include <linux/sysfs.h>

extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */

/* pointer to kobject for cpuX/cache */
static struct kobject * cache_kobject[NR_CPUS];

struct _index_kobject {
	struct kobject kobj;
	unsigned int cpu;
	unsigned short index;
};

/* pointer to array of kobjects for cpuX/cache/indexY */
static struct _index_kobject *index_kobject[NR_CPUS];
#define INDEX_KOBJECT_PTR(x,y)    (&((index_kobject[x])[y]))

#define show_one_plus(file_name, object, val)				\
static ssize_t show_##file_name						\
			(struct _cpuid4_info *this_leaf, char *buf)	\
{									\
	return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}

show_one_plus(level, eax.split.level, 0);
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);

static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
{
	return sprintf (buf, "%luK\n", this_leaf->size / 1024);
}

static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
{
	char mask_str[NR_CPUS];
	cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
	return sprintf(buf, "%s\n", mask_str);
}

static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
	switch(this_leaf->eax.split.type) {
	    case CACHE_TYPE_DATA:
		return sprintf(buf, "Data\n");
		break;
	    case CACHE_TYPE_INST:
		return sprintf(buf, "Instruction\n");
		break;
	    case CACHE_TYPE_UNIFIED:
		return sprintf(buf, "Unified\n");
		break;
	    default:
		return sprintf(buf, "Unknown\n");
		break;
	}
}

struct _cache_attr {
	struct attribute attr;
	ssize_t (*show)(struct _cpuid4_info *, char *);
	ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
};

#define define_one_ro(_name) \
static struct _cache_attr _name = \
	__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);

static struct attribute * default_attrs[] = {
	&type.attr,
	&level.attr,
	&coherency_line_size.attr,
	&physical_line_partition.attr,
	&ways_of_associativity.attr,
	&number_of_sets.attr,
	&size.attr,
	&shared_cpu_map.attr,
	NULL
};

#define to_object(k) container_of(k, struct _index_kobject, kobj)
#define to_attr(a) container_of(a, struct _cache_attr, attr)

static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
{
	struct _cache_attr *fattr = to_attr(attr);
	struct _index_kobject *this_leaf = to_object(kobj);
	ssize_t ret;

	ret = fattr->show ?
		fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
			buf) :
	       	0;
	return ret;
}

static ssize_t store(struct kobject * kobj, struct attribute * attr,
		     const char * buf, size_t count)
{
	return 0;
}

static struct sysfs_ops sysfs_ops = {
	.show   = show,
	.store  = store,
};

static struct kobj_type ktype_cache = {
	.sysfs_ops	= &sysfs_ops,
	.default_attrs	= default_attrs,
};

static struct kobj_type ktype_percpu_entry = {
	.sysfs_ops	= &sysfs_ops,
};

static void cpuid4_cache_sysfs_exit(unsigned int cpu)
{
	kfree(cache_kobject[cpu]);
	kfree(index_kobject[cpu]);
	cache_kobject[cpu] = NULL;
	index_kobject[cpu] = NULL;
	free_cache_attributes(cpu);
}

static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
{

	if (num_cache_leaves == 0)
		return -ENOENT;

	detect_cache_attributes(cpu);
	if (cpuid4_info[cpu] == NULL)
		return -ENOENT;

	/* Allocate all required memory */
	cache_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
	if (unlikely(cache_kobject[cpu] == NULL))
		goto err_out;

	index_kobject[cpu] = kzalloc(
	    sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
	if (unlikely(index_kobject[cpu] == NULL))
		goto err_out;

	return 0;

err_out:
	cpuid4_cache_sysfs_exit(cpu);
	return -ENOMEM;
}

/* Add/Remove cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
	unsigned int cpu = sys_dev->id;
	unsigned long i, j;
	struct _index_kobject *this_object;
	int retval = 0;

	retval = cpuid4_cache_sysfs_init(cpu);
	if (unlikely(retval < 0))
		return retval;

	cache_kobject[cpu]->parent = &sys_dev->kobj;
	kobject_set_name(cache_kobject[cpu], "%s", "cache");
	cache_kobject[cpu]->ktype = &ktype_percpu_entry;
	retval = kobject_register(cache_kobject[cpu]);

	for (i = 0; i < num_cache_leaves; i++) {
		this_object = INDEX_KOBJECT_PTR(cpu,i);
		this_object->cpu = cpu;
		this_object->index = i;
		this_object->kobj.parent = cache_kobject[cpu];
		kobject_set_name(&(this_object->kobj), "index%1lu", i);
		this_object->kobj.ktype = &ktype_cache;
		retval = kobject_register(&(this_object->kobj));
		if (unlikely(retval)) {
			for (j = 0; j < i; j++) {
				kobject_unregister(
					&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
			}
			kobject_unregister(cache_kobject[cpu]);
			cpuid4_cache_sysfs_exit(cpu);
			break;
		}
	}
	return retval;
}

static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
{
	unsigned int cpu = sys_dev->id;
	unsigned long i;

	for (i = 0; i < num_cache_leaves; i++) {
		cache_remove_shared_cpu_map(cpu, i);
		kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
	}
	kobject_unregister(cache_kobject[cpu]);
	cpuid4_cache_sysfs_exit(cpu);
	return;
}

static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;
	struct sys_device *sys_dev;

	sys_dev = get_cpu_sysdev(cpu);
	switch (action) {
	case CPU_ONLINE:
		cache_add_dev(sys_dev);
		break;
	case CPU_DEAD:
		cache_remove_dev(sys_dev);
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
{
    .notifier_call = cacheinfo_cpu_callback,
};

static int __cpuinit cache_sysfs_init(void)
{
	int i;

	if (num_cache_leaves == 0)
		return 0;

	register_hotcpu_notifier(&cacheinfo_cpu_notifier);

	for_each_online_cpu(i) {
		cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
			(void *)(long)i);
	}

	return 0;
}

device_initcall(cache_sysfs_init);

#endif
OpenPOWER on IntegriCloud