1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/*
* Blackfin architecture-dependent process handling
*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later
*/
#include <linux/module.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <asm/blackfin.h>
#include <asm/fixed_code.h>
#include <asm/mem_map.h>
#include <asm/irq.h>
asmlinkage void ret_from_fork(void);
/* Points to the SDRAM backup memory for the stack that is currently in
* L1 scratchpad memory.
*/
void *current_l1_stack_save;
/* The number of tasks currently using a L1 stack area. The SRAM is
* allocated/deallocated whenever this changes from/to zero.
*/
int nr_l1stack_tasks;
/* Start and length of the area in L1 scratchpad memory which we've allocated
* for process stacks.
*/
void *l1_stack_base;
unsigned long l1_stack_len;
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void) = NULL;
EXPORT_SYMBOL(pm_idle);
void (*pm_power_off)(void) = NULL;
EXPORT_SYMBOL(pm_power_off);
/*
* The idle loop on BFIN
*/
#ifdef CONFIG_IDLE_L1
static void default_idle(void)__attribute__((l1_text));
void cpu_idle(void)__attribute__((l1_text));
#endif
/*
* This is our default idle handler. We need to disable
* interrupts here to ensure we don't miss a wakeup call.
*/
static void default_idle(void)
{
#ifdef CONFIG_IPIPE
ipipe_suspend_domain();
#endif
hard_local_irq_disable();
if (!need_resched())
idle_with_irq_disabled();
hard_local_irq_enable();
}
/*
* The idle thread. We try to conserve power, while trying to keep
* overall latency low. The architecture specific idle is passed
* a value to indicate the level of "idleness" of the system.
*/
void cpu_idle(void)
{
/* endless idle loop with no priority at all */
while (1) {
void (*idle)(void) = pm_idle;
#ifdef CONFIG_HOTPLUG_CPU
if (cpu_is_offline(smp_processor_id()))
cpu_die();
#endif
if (!idle)
idle = default_idle;
tick_nohz_idle_enter();
rcu_idle_enter();
while (!need_resched())
idle();
rcu_idle_exit();
tick_nohz_idle_exit();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
/*
* Do necessary setup to start up a newly executed thread.
*
* pass the data segment into user programs if it exists,
* it can't hurt anything as far as I can tell
*/
void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
regs->pc = new_ip;
if (current->mm)
regs->p5 = current->mm->start_data;
#ifndef CONFIG_SMP
task_thread_info(current)->l1_task_info.stack_start =
(void *)current->mm->context.stack_start;
task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
sizeof(*L1_SCRATCH_TASK_INFO));
#endif
wrusp(new_sp);
}
EXPORT_SYMBOL_GPL(start_thread);
void flush_thread(void)
{
}
asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
{
#ifdef __ARCH_SYNC_CORE_DCACHE
if (current->nr_cpus_allowed == num_possible_cpus())
set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
#endif
if (newsp)
newsp -= 12;
return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
}
int
copy_thread(unsigned long clone_flags,
unsigned long usp, unsigned long topstk,
struct task_struct *p)
{
struct pt_regs *childregs;
unsigned long *v;
childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
v = ((unsigned long *)childregs) - 2;
if (unlikely(p->flags & PF_KTHREAD)) {
memset(childregs, 0, sizeof(struct pt_regs));
v[0] = usp;
v[1] = topstk;
childregs->orig_p0 = -1;
childregs->ipend = 0x8000;
__asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
p->thread.usp = 0;
} else {
*childregs = *current_pt_regs();
childregs->r0 = 0;
p->thread.usp = usp ? : rdusp();
v[0] = v[1] = 0;
}
p->thread.ksp = (unsigned long)v;
p->thread.pc = (unsigned long)ret_from_fork;
return 0;
}
unsigned long get_wchan(struct task_struct *p)
{
unsigned long fp, pc;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)p;
fp = p->thread.usp;
do {
if (fp < stack_page + sizeof(struct thread_info) ||
fp >= 8184 + stack_page)
return 0;
pc = ((unsigned long *)fp)[1];
if (!in_sched_functions(pc))
return pc;
fp = *(unsigned long *)fp;
}
while (count++ < 16);
return 0;
}
void finish_atomic_sections (struct pt_regs *regs)
{
int __user *up0 = (int __user *)regs->p0;
switch (regs->pc) {
default:
/* not in middle of an atomic step, so resume like normal */
return;
case ATOMIC_XCHG32 + 2:
put_user(regs->r1, up0);
break;
case ATOMIC_CAS32 + 2:
case ATOMIC_CAS32 + 4:
if (regs->r0 == regs->r1)
case ATOMIC_CAS32 + 6:
put_user(regs->r2, up0);
break;
case ATOMIC_ADD32 + 2:
regs->r0 = regs->r1 + regs->r0;
/* fall through */
case ATOMIC_ADD32 + 4:
put_user(regs->r0, up0);
break;
case ATOMIC_SUB32 + 2:
regs->r0 = regs->r1 - regs->r0;
/* fall through */
case ATOMIC_SUB32 + 4:
put_user(regs->r0, up0);
break;
case ATOMIC_IOR32 + 2:
regs->r0 = regs->r1 | regs->r0;
/* fall through */
case ATOMIC_IOR32 + 4:
put_user(regs->r0, up0);
break;
case ATOMIC_AND32 + 2:
regs->r0 = regs->r1 & regs->r0;
/* fall through */
case ATOMIC_AND32 + 4:
put_user(regs->r0, up0);
break;
case ATOMIC_XOR32 + 2:
regs->r0 = regs->r1 ^ regs->r0;
/* fall through */
case ATOMIC_XOR32 + 4:
put_user(regs->r0, up0);
break;
}
/*
* We've finished the atomic section, and the only thing left for
* userspace is to do a RTS, so we might as well handle that too
* since we need to update the PC anyways.
*/
regs->pc = regs->rets;
}
static inline
int in_mem(unsigned long addr, unsigned long size,
unsigned long start, unsigned long end)
{
return addr >= start && addr + size <= end;
}
static inline
int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
unsigned long const_addr, unsigned long const_size)
{
return const_size &&
in_mem(addr, size, const_addr + off, const_addr + const_size);
}
static inline
int in_mem_const(unsigned long addr, unsigned long size,
unsigned long const_addr, unsigned long const_size)
{
return in_mem_const_off(addr, size, 0, const_addr, const_size);
}
#ifdef CONFIG_BF60x
#define ASYNC_ENABLED(bnum, bctlnum) 1
#else
#define ASYNC_ENABLED(bnum, bctlnum) \
({ \
(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
1; \
})
#endif
/*
* We can't read EBIU banks that aren't enabled or we end up hanging
* on the access to the async space. Make sure we validate accesses
* that cross async banks too.
* 0 - found, but unusable
* 1 - found & usable
* 2 - not found
*/
static
int in_async(unsigned long addr, unsigned long size)
{
if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
if (!ASYNC_ENABLED(0, 0))
return 0;
if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
return 1;
size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
}
if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
if (!ASYNC_ENABLED(1, 0))
return 0;
if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
return 1;
size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
}
if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
if (!ASYNC_ENABLED(2, 1))
return 0;
if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
return 1;
size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
}
if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
if (ASYNC_ENABLED(3, 1))
return 0;
if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
return 1;
return 0;
}
/* not within async bounds */
return 2;
}
int bfin_mem_access_type(unsigned long addr, unsigned long size)
{
int cpu = raw_smp_processor_id();
/* Check that things do not wrap around */
if (addr > ULONG_MAX - size)
return -EFAULT;
if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
return BFIN_MEM_ACCESS_CORE;
if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
#ifdef COREB_L1_CODE_START
if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
#endif
if (in_mem_const(addr, size, L2_START, L2_LENGTH))
return BFIN_MEM_ACCESS_CORE;
if (addr >= SYSMMR_BASE)
return BFIN_MEM_ACCESS_CORE_ONLY;
switch (in_async(addr, size)) {
case 0: return -EFAULT;
case 1: return BFIN_MEM_ACCESS_CORE;
case 2: /* fall through */;
}
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
return BFIN_MEM_ACCESS_CORE;
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
return BFIN_MEM_ACCESS_DMA;
return -EFAULT;
}
#if defined(CONFIG_ACCESS_CHECK)
#ifdef CONFIG_ACCESS_OK_L1
__attribute__((l1_text))
#endif
/* Return 1 if access to memory range is OK, 0 otherwise */
int _access_ok(unsigned long addr, unsigned long size)
{
int aret;
if (size == 0)
return 1;
/* Check that things do not wrap around */
if (addr > ULONG_MAX - size)
return 0;
if (segment_eq(get_fs(), KERNEL_DS))
return 1;
#ifdef CONFIG_MTD_UCLINUX
if (1)
#else
if (0)
#endif
{
if (in_mem(addr, size, memory_start, memory_end))
return 1;
if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
return 1;
# ifndef CONFIG_ROMFS_ON_MTD
if (0)
# endif
/* For XIP, allow user space to use pointers within the ROMFS. */
if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
return 1;
} else {
if (in_mem(addr, size, memory_start, physical_mem_end))
return 1;
}
if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
return 1;
if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
return 1;
if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
return 1;
if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
return 1;
if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
return 1;
#ifdef COREB_L1_CODE_START
if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
return 1;
if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
return 1;
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
return 1;
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
return 1;
#endif
#ifndef CONFIG_EXCEPTION_L1_SCRATCH
if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
return 1;
#endif
aret = in_async(addr, size);
if (aret < 2)
return aret;
if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
return 1;
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
return 1;
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
return 1;
return 0;
}
EXPORT_SYMBOL(_access_ok);
#endif /* CONFIG_ACCESS_CHECK */
|