summaryrefslogtreecommitdiffstats
path: root/arch/avr32/kernel/time.c
blob: bf2f762e6a476e71c3f3c17824972e6171f8f933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * Copyright (C) 2004-2007 Atmel Corporation
 *
 * Based on MIPS implementation arch/mips/kernel/time.c
 *   Copyright 2001 MontaVista Software Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/clk.h>
#include <linux/clocksource.h>
#include <linux/time.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/sysdev.h>
#include <linux/err.h>

#include <asm/div64.h>
#include <asm/sysreg.h>
#include <asm/io.h>
#include <asm/sections.h>

/* how many counter cycles in a jiffy? */
static u32 cycles_per_jiffy;

/* the count value for the next timer interrupt */
static u32 expirelo;

cycle_t __weak read_cycle_count(void)
{
	return (cycle_t)sysreg_read(COUNT);
}

/*
 * The architectural cycle count registers are a fine clocksource unless
 * the system idle loop use sleep states like "idle":  the CPU cycles
 * measured by COUNT (and COMPARE) don't happen during sleep states.
 * So we rate the clocksource using COUNT as very low quality.
 */
struct clocksource __weak clocksource_avr32 = {
	.name		= "avr32",
	.rating		= 50,
	.read		= read_cycle_count,
	.mask		= CLOCKSOURCE_MASK(32),
	.shift		= 16,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

irqreturn_t __weak timer_interrupt(int irq, void *dev_id);

struct irqaction timer_irqaction = {
	.handler	= timer_interrupt,
	.flags		= IRQF_DISABLED,
	.name		= "timer",
};

static void avr32_timer_ack(void)
{
	u32 count;

	/* Ack this timer interrupt and set the next one */
	expirelo += cycles_per_jiffy;
	/* setting COMPARE to 0 stops the COUNT-COMPARE */
	if (expirelo == 0) {
		sysreg_write(COMPARE, expirelo + 1);
	} else {
		sysreg_write(COMPARE, expirelo);
	}

	/* Check to see if we have missed any timer interrupts */
	count = sysreg_read(COUNT);
	if ((count - expirelo) < 0x7fffffff) {
		expirelo = count + cycles_per_jiffy;
		sysreg_write(COMPARE, expirelo);
	}
}

int __weak avr32_hpt_init(void)
{
	int ret;
	unsigned long mult, shift, count_hz;

	count_hz = clk_get_rate(boot_cpu_data.clk);
	shift = clocksource_avr32.shift;
	mult = clocksource_hz2mult(count_hz, shift);
	clocksource_avr32.mult = mult;

	{
		u64 tmp;

		tmp = TICK_NSEC;
		tmp <<= shift;
		tmp += mult / 2;
		do_div(tmp, mult);

		cycles_per_jiffy = tmp;
	}

	ret = setup_irq(0, &timer_irqaction);
	if (ret) {
		pr_debug("timer: could not request IRQ 0: %d\n", ret);
		return -ENODEV;
	}

	printk(KERN_INFO "timer: AT32AP COUNT-COMPARE at irq 0, "
			"%lu.%03lu MHz\n",
			((count_hz + 500) / 1000) / 1000,
			((count_hz + 500) / 1000) % 1000);

	return 0;
}

/*
 * Taken from MIPS c0_hpt_timer_init().
 *
 * The reason COUNT is written twice is probably to make sure we don't get any
 * timer interrupts while we are messing with the counter.
 */
int __weak avr32_hpt_start(void)
{
	u32 count = sysreg_read(COUNT);
	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
	sysreg_write(COUNT, expirelo - cycles_per_jiffy);
	sysreg_write(COMPARE, expirelo);
	sysreg_write(COUNT, count);

	return 0;
}

/*
 * local_timer_interrupt() does profiling and process accounting on a
 * per-CPU basis.
 *
 * In UP mode, it is invoked from the (global) timer_interrupt.
 */
void local_timer_interrupt(int irq, void *dev_id)
{
	if (current->pid)
		profile_tick(CPU_PROFILING);
	update_process_times(user_mode(get_irq_regs()));
}

irqreturn_t __weak timer_interrupt(int irq, void *dev_id)
{
	/* ack timer interrupt and try to set next interrupt */
	avr32_timer_ack();

	/*
	 * Call the generic timer interrupt handler
	 */
	write_seqlock(&xtime_lock);
	do_timer(1);
	write_sequnlock(&xtime_lock);

	/*
	 * In UP mode, we call local_timer_interrupt() to do profiling
	 * and process accounting.
	 *
	 * SMP is not supported yet.
	 */
	local_timer_interrupt(irq, dev_id);

	return IRQ_HANDLED;
}

void __init time_init(void)
{
	int ret;

	/*
	 * Make sure we don't get any COMPARE interrupts before we can
	 * handle them.
	 */
	sysreg_write(COMPARE, 0);

	xtime.tv_sec = mktime(2007, 1, 1, 0, 0, 0);
	xtime.tv_nsec = 0;

	set_normalized_timespec(&wall_to_monotonic,
				-xtime.tv_sec, -xtime.tv_nsec);

	ret = avr32_hpt_init();
	if (ret) {
		pr_debug("timer: failed setup: %d\n", ret);
		return;
	}

	ret = clocksource_register(&clocksource_avr32);
	if (ret)
		pr_debug("timer: could not register clocksource: %d\n", ret);

	ret = avr32_hpt_start();
	if (ret) {
		pr_debug("timer: failed starting: %d\n", ret);
		return;
	}
}
OpenPOWER on IntegriCloud