#include "util.h" #include "hist.h" #include "session.h" #include "sort.h" #include struct callchain_param callchain_param = { .mode = CHAIN_GRAPH_REL, .min_percent = 0.5 }; static void hist_entry__add_cpumode_count(struct hist_entry *self, unsigned int cpumode, u64 count) { switch (cpumode) { case PERF_RECORD_MISC_KERNEL: self->count_sys += count; break; case PERF_RECORD_MISC_USER: self->count_us += count; break; case PERF_RECORD_MISC_GUEST_KERNEL: self->count_guest_sys += count; break; case PERF_RECORD_MISC_GUEST_USER: self->count_guest_us += count; break; default: break; } } /* * histogram, sorted on item, collects counts */ static struct hist_entry *hist_entry__new(struct hist_entry *template) { size_t callchain_size = symbol_conf.use_callchain ? sizeof(struct callchain_node) : 0; struct hist_entry *self = malloc(sizeof(*self) + callchain_size); if (self != NULL) { *self = *template; if (symbol_conf.use_callchain) callchain_init(self->callchain); } return self; } static void hists__inc_nr_entries(struct hists *self, struct hist_entry *entry) { if (entry->ms.sym && self->max_sym_namelen < entry->ms.sym->namelen) self->max_sym_namelen = entry->ms.sym->namelen; ++self->nr_entries; } struct hist_entry *__hists__add_entry(struct hists *self, struct addr_location *al, struct symbol *sym_parent, u64 count) { struct rb_node **p = &self->entries.rb_node; struct rb_node *parent = NULL; struct hist_entry *he; struct hist_entry entry = { .thread = al->thread, .ms = { .map = al->map, .sym = al->sym, }, .ip = al->addr, .level = al->level, .count = count, .parent = sym_parent, }; int cmp; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node); cmp = hist_entry__cmp(&entry, he); if (!cmp) { he->count += count; goto out; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = hist_entry__new(&entry); if (!he) return NULL; rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, &self->entries); hists__inc_nr_entries(self, he); out: hist_entry__add_cpumode_count(he, al->cpumode, count); return he; } int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { cmp = se->se_cmp(left, right); if (cmp) break; } return cmp; } int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { int64_t (*f)(struct hist_entry *, struct hist_entry *); f = se->se_collapse ?: se->se_cmp; cmp = f(left, right); if (cmp) break; } return cmp; } void hist_entry__free(struct hist_entry *he) { free(he); } /* * collapse the histogram */ static bool collapse__insert_entry(struct rb_root *root, struct hist_entry *he) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; int64_t cmp; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); cmp = hist_entry__collapse(iter, he); if (!cmp) { iter->count += he->count; hist_entry__free(he); return false; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, root); return true; } void hists__collapse_resort(struct hists *self) { struct rb_root tmp; struct rb_node *next; struct hist_entry *n; if (!sort__need_collapse) return; tmp = RB_ROOT; next = rb_first(&self->entries); self->nr_entries = 0; self->max_sym_namelen = 0; while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); rb_erase(&n->rb_node, &self->entries); if (collapse__insert_entry(&tmp, n)) hists__inc_nr_entries(self, n); } self->entries = tmp; } /* * reverse the map, sort on count. */ static void __hists__insert_output_entry(struct rb_root *entries, struct hist_entry *he, u64 min_callchain_hits) { struct rb_node **p = &entries->rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; if (symbol_conf.use_callchain) callchain_param.sort(&he->sorted_chain, he->callchain, min_callchain_hits, &callchain_param); while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (he->count > iter->count) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, entries); } void hists__output_resort(struct hists *self) { struct rb_root tmp; struct rb_node *next; struct hist_entry *n; u64 min_callchain_hits; min_callchain_hits = self->stats.total * (callchain_param.min_percent / 100); tmp = RB_ROOT; next = rb_first(&self->entries); self->nr_entries = 0; self->max_sym_namelen = 0; while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); rb_erase(&n->rb_node, &self->entries); __hists__insert_output_entry(&tmp, n, min_callchain_hits); hists__inc_nr_entries(self, n); } self->entries = tmp; } static size_t callchain__fprintf_left_margin(FILE *fp, int left_margin) { int i; int ret = fprintf(fp, " "); for (i = 0; i < left_margin; i++) ret += fprintf(fp, " "); return ret; } static size_t ipchain__fprintf_graph_line(FILE *fp, int depth, int depth_mask, int left_margin) { int i; size_t ret = callchain__fprintf_left_margin(fp, left_margin); for (i = 0; i < depth; i++) if (depth_mask & (1 << i)) ret += fprintf(fp, "| "); else ret += fprintf(fp, " "); ret += fprintf(fp, "\n"); return ret; } static size_t ipchain__fprintf_graph(FILE *fp, struct callchain_list *chain, int depth, int depth_mask, int count, u64 total_samples, int hits, int left_margin) { int i; size_t ret = 0; ret += callchain__fprintf_left_margin(fp, left_margin); for (i = 0; i < depth; i++) { if (depth_mask & (1 << i)) ret += fprintf(fp, "|"); else ret += fprintf(fp, " "); if (!count && i == depth - 1) { double percent; percent = hits * 100.0 / total_samples; ret += percent_color_fprintf(fp, "--%2.2f%%-- ", percent); } else ret += fprintf(fp, "%s", " "); } if (chain->ms.sym) ret += fprintf(fp, "%s\n", chain->ms.sym->name); else ret += fprintf(fp, "%p\n", (void *)(long)chain->ip); return ret; } static struct symbol *rem_sq_bracket; static struct callchain_list rem_hits; static void init_rem_hits(void) { rem_sq_bracket = malloc(sizeof(*rem_sq_bracket) + 6); if (!rem_sq_bracket) { fprintf(stderr, "Not enough memory to display remaining hits\n"); return; } strcpy(rem_sq_bracket->name, "[...]"); rem_hits.ms.sym = rem_sq_bracket; } static size_t __callchain__fprintf_graph(FILE *fp, struct callchain_node *self, u64 total_samples, int depth, int depth_mask, int left_margin) { struct rb_node *node, *next; struct callchain_node *child; struct callchain_list *chain; int new_depth_mask = depth_mask; u64 new_total; u64 remaining; size_t ret = 0; int i; uint entries_printed = 0; if (callchain_param.mode == CHAIN_GRAPH_REL) new_total = self->children_hit; else new_total = total_samples; remaining = new_total; node = rb_first(&self->rb_root); while (node) { u64 cumul; child = rb_entry(node, struct callchain_node, rb_node); cumul = cumul_hits(child); remaining -= cumul; /* * The depth mask manages the output of pipes that show * the depth. We don't want to keep the pipes of the current * level for the last child of this depth. * Except if we have remaining filtered hits. They will * supersede the last child */ next = rb_next(node); if (!next && (callchain_param.mode != CHAIN_GRAPH_REL || !remaining)) new_depth_mask &= ~(1 << (depth - 1)); /* * But we keep the older depth mask for the line separator * to keep the level link until we reach the last child */ ret += ipchain__fprintf_graph_line(fp, depth, depth_mask, left_margin); i = 0; list_for_each_entry(chain, &child->val, list) { ret += ipchain__fprintf_graph(fp, chain, depth, new_depth_mask, i++, new_total, cumul, left_margin); } ret += __callchain__fprintf_graph(fp, child, new_total, depth + 1, new_depth_mask | (1 << depth), left_margin); node = next; if (++entries_printed == callchain_param.print_limit) break; } if (callchain_param.mode == CHAIN_GRAPH_REL && remaining && remaining != new_total) { if (!rem_sq_bracket) return ret; new_depth_mask &= ~(1 << (depth - 1)); ret += ipchain__fprintf_graph(fp, &rem_hits, depth, new_depth_mask, 0, new_total, remaining, left_margin); } return ret; } static size_t callchain__fprintf_graph(FILE *fp, struct callchain_node *self, u64 total_samples, int left_margin) { struct callchain_list *chain; bool printed = false; int i = 0; int ret = 0; u32 entries_printed = 0; list_for_each_entry(chain, &self->val, list) { if (!i++ && sort__first_dimension == SORT_SYM) continue; if (!printed) { ret += callchain__fprintf_left_margin(fp, left_margin); ret += fprintf(fp, "|\n"); ret += callchain__fprintf_left_margin(fp, left_margin); ret += fprintf(fp, "---"); left_margin += 3; printed = true; } else ret += callchain__fprintf_left_margin(fp, left_margin); if (chain->ms.sym) ret += fprintf(fp, " %s\n", chain->ms.sym->name); else ret += fprintf(fp, " %p\n", (void *)(long)chain->ip); if (++entries_printed == callchain_param.print_limit) break; } ret += __callchain__fprintf_graph(fp, self, total_samples, 1, 1, left_margin); return ret; } static size_t callchain__fprintf_flat(FILE *fp, struct callchain_node *self, u64 total_samples) { struct callchain_list *chain; size_t ret = 0; if (!self) return 0; ret += callchain__fprintf_flat(fp, self->parent, total_samples); list_for_each_entry(chain, &self->val, list) { if (chain->ip >= PERF_CONTEXT_MAX) continue; if (chain->ms.sym) ret += fprintf(fp, " %s\n", chain->ms.sym->name); else ret += fprintf(fp, " %p\n", (void *)(long)chain->ip); } return ret; } static size_t hist_entry_callchain__fprintf(FILE *fp, struct hist_entry *self, u64 total_samples, int left_margin) { struct rb_node *rb_node; struct callchain_node *chain; size_t ret = 0; u32 entries_printed = 0; rb_node = rb_first(&self->sorted_chain); while (rb_node) { double percent; chain = rb_entry(rb_node, struct callchain_node, rb_node); percent = chain->hit * 100.0 / total_samples; switch (callchain_param.mode) { case CHAIN_FLAT: ret += percent_color_fprintf(fp, " %6.2f%%\n", percent); ret += callchain__fprintf_flat(fp, chain, total_samples); break; case CHAIN_GRAPH_ABS: /* Falldown */ case CHAIN_GRAPH_REL: ret += callchain__fprintf_graph(fp, chain, total_samples, left_margin); case CHAIN_NONE: default: break; } ret += fprintf(fp, "\n"); if (++entries_printed == callchain_param.print_limit) break; rb_node = rb_next(rb_node); } return ret; } int hist_entry__snprintf(struct hist_entry *self, char *s, size_t size, struct hists *pair_hists, bool show_displacement, long displacement, bool color, u64 session_total) { struct sort_entry *se; u64 count, total, count_sys, count_us, count_guest_sys, count_guest_us; const char *sep = symbol_conf.field_sep; int ret; if (symbol_conf.exclude_other && !self->parent) return 0; if (pair_hists) { count = self->pair ? self->pair->count : 0; total = pair_hists->stats.total; count_sys = self->pair ? self->pair->count_sys : 0; count_us = self->pair ? self->pair->count_us : 0; count_guest_sys = self->pair ? self->pair->count_guest_sys : 0; count_guest_us = self->pair ? self->pair->count_guest_us : 0; } else { count = self->count; total = session_total; count_sys = self->count_sys; count_us = self->count_us; count_guest_sys = self->count_guest_sys; count_guest_us = self->count_guest_us; } if (total) { if (color) ret = percent_color_snprintf(s, size, sep ? "%.2f" : " %6.2f%%", (count * 100.0) / total); else ret = snprintf(s, size, sep ? "%.2f" : " %6.2f%%", (count * 100.0) / total); if (symbol_conf.show_cpu_utilization) { ret += percent_color_snprintf(s + ret, size - ret, sep ? "%.2f" : " %6.2f%%", (count_sys * 100.0) / total); ret += percent_color_snprintf(s + ret, size - ret, sep ? "%.2f" : " %6.2f%%", (count_us * 100.0) / total); if (perf_guest) { ret += percent_color_snprintf(s + ret, size - ret, sep ? "%.2f" : " %6.2f%%", (count_guest_sys * 100.0) / total); ret += percent_color_snprintf(s + ret, size - ret, sep ? "%.2f" : " %6.2f%%", (count_guest_us * 100.0) / total); } } } else ret = snprintf(s, size, sep ? "%lld" : "%12lld ", count); if (symbol_conf.show_nr_samples) { if (sep) ret += snprintf(s + ret, size - ret, "%c%lld", *sep, count); else ret += snprintf(s + ret, size - ret, "%11lld", count); } if (pair_hists) { char bf[32]; double old_percent = 0, new_percent = 0, diff; if (total > 0) old_percent = (count * 100.0) / total; if (session_total > 0) new_percent = (self->count * 100.0) / session_total; diff = new_percent - old_percent; if (fabs(diff) >= 0.01) snprintf(bf, sizeof(bf), "%+4.2F%%", diff); else snprintf(bf, sizeof(bf), " "); if (sep) ret += snprintf(s + ret, size - ret, "%c%s", *sep, bf); else ret += snprintf(s + ret, size - ret, "%11.11s", bf); if (show_displacement) { if (displacement) snprintf(bf, sizeof(bf), "%+4ld", displacement); else snprintf(bf, sizeof(bf), " "); if (sep) ret += snprintf(s + ret, size - ret, "%c%s", *sep, bf); else ret += snprintf(s + ret, size - ret, "%6.6s", bf); } } list_for_each_entry(se, &hist_entry__sort_list, list) { if (se->elide) continue; ret += snprintf(s + ret, size - ret, "%s", sep ?: " "); ret += se->se_snprintf(self, s + ret, size - ret, se->se_width ? *se->se_width : 0); } return ret; } int hist_entry__fprintf(struct hist_entry *self, struct hists *pair_hists, bool show_displacement, long displacement, FILE *fp, u64 session_total) { char bf[512]; hist_entry__snprintf(self, bf, sizeof(bf), pair_hists, show_displacement, displacement, true, session_total); return fprintf(fp, "%s\n", bf); } static size_t hist_entry__fprintf_callchain(struct hist_entry *self, FILE *fp, u64 session_total) { int left_margin = 0; if (sort__first_dimension == SORT_COMM) { struct sort_entry *se = list_first_entry(&hist_entry__sort_list, typeof(*se), list); left_margin = se->se_width ? *se->se_width : 0; left_margin -= thread__comm_len(self->thread); } return hist_entry_callchain__fprintf(fp, self, session_total, left_margin); } size_t hists__fprintf(struct hists *self, struct hists *pair, bool show_displacement, FILE *fp) { struct sort_entry *se; struct rb_node *nd; size_t ret = 0; unsigned long position = 1; long displacement = 0; unsigned int width; const char *sep = symbol_conf.field_sep; char *col_width = symbol_conf.col_width_list_str; init_rem_hits(); fprintf(fp, "# %s", pair ? "Baseline" : "Overhead"); if (symbol_conf.show_nr_samples) { if (sep) fprintf(fp, "%cSamples", *sep); else fputs(" Samples ", fp); } if (symbol_conf.show_cpu_utilization) { if (sep) { ret += fprintf(fp, "%csys", *sep); ret += fprintf(fp, "%cus", *sep); if (perf_guest) { ret += fprintf(fp, "%cguest sys", *sep); ret += fprintf(fp, "%cguest us", *sep); } } else { ret += fprintf(fp, " sys "); ret += fprintf(fp, " us "); if (perf_guest) { ret += fprintf(fp, " guest sys "); ret += fprintf(fp, " guest us "); } } } if (pair) { if (sep) ret += fprintf(fp, "%cDelta", *sep); else ret += fprintf(fp, " Delta "); if (show_displacement) { if (sep) ret += fprintf(fp, "%cDisplacement", *sep); else ret += fprintf(fp, " Displ"); } } list_for_each_entry(se, &hist_entry__sort_list, list) { if (se->elide) continue; if (sep) { fprintf(fp, "%c%s", *sep, se->se_header); continue; } width = strlen(se->se_header); if (se->se_width) { if (symbol_conf.col_width_list_str) { if (col_width) { *se->se_width = atoi(col_width); col_width = strchr(col_width, ','); if (col_width) ++col_width; } } width = *se->se_width = max(*se->se_width, width); } fprintf(fp, " %*s", width, se->se_header); } fprintf(fp, "\n"); if (sep) goto print_entries; fprintf(fp, "# ........"); if (symbol_conf.show_nr_samples) fprintf(fp, " .........."); if (pair) { fprintf(fp, " .........."); if (show_displacement) fprintf(fp, " ....."); } list_for_each_entry(se, &hist_entry__sort_list, list) { unsigned int i; if (se->elide) continue; fprintf(fp, " "); if (se->se_width) width = *se->se_width; else width = strlen(se->se_header); for (i = 0; i < width; i++) fprintf(fp, "."); } fprintf(fp, "\n#\n"); print_entries: for (nd = rb_first(&self->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (show_displacement) { if (h->pair != NULL) displacement = ((long)h->pair->position - (long)position); else displacement = 0; ++position; } ret += hist_entry__fprintf(h, pair, show_displacement, displacement, fp, self->stats.total); if (symbol_conf.use_callchain) ret += hist_entry__fprintf_callchain(h, fp, self->stats.total); if (h->ms.map == NULL && verbose > 1) { __map_groups__fprintf_maps(&h->thread->mg, MAP__FUNCTION, verbose, fp); fprintf(fp, "%.10s end\n", graph_dotted_line); } } free(rem_sq_bracket); return ret; } enum hist_filter { HIST_FILTER__DSO, HIST_FILTER__THREAD, }; void hists__filter_by_dso(struct hists *self, const struct dso *dso) { struct rb_node *nd; self->nr_entries = self->stats.total = 0; self->max_sym_namelen = 0; for (nd = rb_first(&self->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (symbol_conf.exclude_other && !h->parent) continue; if (dso != NULL && (h->ms.map == NULL || h->ms.map->dso != dso)) { h->filtered |= (1 << HIST_FILTER__DSO); continue; } h->filtered &= ~(1 << HIST_FILTER__DSO); if (!h->filtered) { ++self->nr_entries; self->stats.total += h->count; if (h->ms.sym && self->max_sym_namelen < h->ms.sym->namelen) self->max_sym_namelen = h->ms.sym->namelen; } } } void hists__filter_by_thread(struct hists *self, const struct thread *thread) { struct rb_node *nd; self->nr_entries = self->stats.total = 0; self->max_sym_namelen = 0; for (nd = rb_first(&self->entries); nd; nd = rb_next(nd)) { struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); if (thread != NULL && h->thread != thread) { h->filtered |= (1 << HIST_FILTER__THREAD); continue; } h->filtered &= ~(1 << HIST_FILTER__THREAD); if (!h->filtered) { ++self->nr_entries; self->stats.total += h->count; if (h->ms.sym && self->max_sym_namelen < h->ms.sym->namelen) self->max_sym_namelen = h->ms.sym->namelen; } } } static int symbol__alloc_hist(struct symbol *self) { struct sym_priv *priv = symbol__priv(self); const int size = (sizeof(*priv->hist) + (self->end - self->start) * sizeof(u64)); priv->hist = zalloc(size); return priv->hist == NULL ? -1 : 0; } int hist_entry__inc_addr_samples(struct hist_entry *self, u64 ip) { unsigned int sym_size, offset; struct symbol *sym = self->ms.sym; struct sym_priv *priv; struct sym_hist *h; if (!sym || !self->ms.map) return 0; priv = symbol__priv(sym); if (priv->hist == NULL && symbol__alloc_hist(sym) < 0) return -ENOMEM; sym_size = sym->end - sym->start; offset = ip - sym->start; pr_debug3("%s: ip=%#Lx\n", __func__, self->ms.map->unmap_ip(self->ms.map, ip)); if (offset >= sym_size) return 0; h = priv->hist; h->sum++; h->ip[offset]++; pr_debug3("%#Lx %s: count++ [ip: %#Lx, %#Lx] => %Ld\n", self->ms.sym->start, self->ms.sym->name, ip, ip - self->ms.sym->start, h->ip[offset]); return 0; } static struct objdump_line *objdump_line__new(s64 offset, char *line) { struct objdump_line *self = malloc(sizeof(*self)); if (self != NULL) { self->offset = offset; self->line = line; } return self; } void objdump_line__free(struct objdump_line *self) { free(self->line); free(self); } static void objdump__add_line(struct list_head *head, struct objdump_line *line) { list_add_tail(&line->node, head); } struct objdump_line *objdump__get_next_ip_line(struct list_head *head, struct objdump_line *pos) { list_for_each_entry_continue(pos, head, node) if (pos->offset >= 0) return pos; return NULL; } static int hist_entry__parse_objdump_line(struct hist_entry *self, FILE *file, struct list_head *head) { struct symbol *sym = self->ms.sym; struct objdump_line *objdump_line; char *line = NULL, *tmp, *tmp2, *c; size_t line_len; s64 line_ip, offset = -1; if (getline(&line, &line_len, file) < 0) return -1; if (!line) return -1; while (line_len != 0 && isspace(line[line_len - 1])) line[--line_len] = '\0'; c = strchr(line, '\n'); if (c) *c = 0; line_ip = -1; /* * Strip leading spaces: */ tmp = line; while (*tmp) { if (*tmp != ' ') break; tmp++; } if (*tmp) { /* * Parse hexa addresses followed by ':' */ line_ip = strtoull(tmp, &tmp2, 16); if (*tmp2 != ':') line_ip = -1; } if (line_ip != -1) { u64 start = map__rip_2objdump(self->ms.map, sym->start); offset = line_ip - start; } objdump_line = objdump_line__new(offset, line); if (objdump_line == NULL) { free(line); return -1; } objdump__add_line(head, objdump_line); return 0; } int hist_entry__annotate(struct hist_entry *self, struct list_head *head) { struct symbol *sym = self->ms.sym; struct map *map = self->ms.map; struct dso *dso = map->dso; const char *filename = dso->long_name; char command[PATH_MAX * 2]; FILE *file; u64 len; if (!filename) return -1; if (dso->origin == DSO__ORIG_KERNEL) { if (dso->annotate_warned) return 0; dso->annotate_warned = 1; pr_err("Can't annotate %s: No vmlinux file was found in the " "path:\n", sym->name); vmlinux_path__fprintf(stderr); return -1; } pr_debug("%s: filename=%s, sym=%s, start=%#Lx, end=%#Lx\n", __func__, filename, sym->name, map->unmap_ip(map, sym->start), map->unmap_ip(map, sym->end)); len = sym->end - sym->start; pr_debug("annotating [%p] %30s : [%p] %30s\n", dso, dso->long_name, sym, sym->name); snprintf(command, sizeof(command), "objdump --start-address=0x%016Lx --stop-address=0x%016Lx -dS %s|grep -v %s|expand", map__rip_2objdump(map, sym->start), map__rip_2objdump(map, sym->end), filename, filename); pr_debug("Executing: %s\n", command); file = popen(command, "r"); if (!file) return -1; while (!feof(file)) if (hist_entry__parse_objdump_line(self, file, head) < 0) break; pclose(file); return 0; }