/* * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver * * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sgtl5000.h" #define SGTL5000_DAP_REG_OFFSET 0x0100 #define SGTL5000_MAX_REG_OFFSET 0x013A /* default value of sgtl5000 registers */ static const struct reg_default sgtl5000_reg_defaults[] = { { SGTL5000_CHIP_DIG_POWER, 0x0000 }, { SGTL5000_CHIP_CLK_CTRL, 0x0008 }, { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, { SGTL5000_CHIP_LINREG_CTRL, 0x0000 }, { SGTL5000_CHIP_REF_CTRL, 0x0000 }, { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, { SGTL5000_CHIP_ANA_POWER, 0x7060 }, { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, { SGTL5000_DAP_CTRL, 0x0000 }, { SGTL5000_DAP_PEQ, 0x0000 }, { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, { SGTL5000_DAP_SURROUND, 0x0040 }, { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, { SGTL5000_DAP_MIX_CHAN, 0x0000 }, { SGTL5000_DAP_AVC_CTRL, 0x0510 }, { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, { SGTL5000_DAP_AVC_DECAY, 0x0050 }, }; /* regulator supplies for sgtl5000, VDDD is an optional external supply */ enum sgtl5000_regulator_supplies { VDDA, VDDIO, VDDD, SGTL5000_SUPPLY_NUM }; /* vddd is optional supply */ static const char *supply_names[SGTL5000_SUPPLY_NUM] = { "VDDA", "VDDIO", "VDDD" }; #define LDO_CONSUMER_NAME "VDDD_LDO" #define LDO_VOLTAGE 1200000 static struct regulator_consumer_supply ldo_consumer[] = { REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL), }; static struct regulator_init_data ldo_init_data = { .constraints = { .min_uV = 1200000, .max_uV = 1200000, .valid_modes_mask = REGULATOR_MODE_NORMAL, .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .num_consumer_supplies = 1, .consumer_supplies = &ldo_consumer[0], }; /* * sgtl5000 internal ldo regulator, * enabled when VDDD not provided */ struct ldo_regulator { struct regulator_desc desc; struct regulator_dev *dev; int voltage; void *codec_data; bool enabled; }; enum sgtl5000_micbias_resistor { SGTL5000_MICBIAS_OFF = 0, SGTL5000_MICBIAS_2K = 2, SGTL5000_MICBIAS_4K = 4, SGTL5000_MICBIAS_8K = 8, }; /* sgtl5000 private structure in codec */ struct sgtl5000_priv { int sysclk; /* sysclk rate */ int master; /* i2s master or not */ int fmt; /* i2s data format */ struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; struct ldo_regulator *ldo; struct regmap *regmap; struct clk *mclk; int revision; u8 micbias_resistor; u8 micbias_voltage; }; /* * mic_bias power on/off share the same register bits with * output impedance of mic bias, when power on mic bias, we * need reclaim it to impedance value. * 0x0 = Powered off * 0x1 = 2Kohm * 0x2 = 4Kohm * 0x3 = 8Kohm */ static int mic_bias_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(w->codec); switch (event) { case SND_SOC_DAPM_POST_PMU: /* change mic bias resistor */ snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, 0); break; } return 0; } /* * As manual described, ADC/DAC only works when VAG powerup, * So enabled VAG before ADC/DAC up. * In power down case, we need wait 400ms when vag fully ramped down. */ static int power_vag_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP; switch (event) { case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); break; case SND_SOC_DAPM_PRE_PMD: /* * Don't clear VAG_POWERUP, when both DAC and ADC are * operational to prevent inadvertently starving the * other one of them. */ if ((snd_soc_read(w->codec, SGTL5000_CHIP_ANA_POWER) & mask) != mask) { snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_VAG_POWERUP, 0); msleep(400); } break; default: break; } return 0; } /* input sources for ADC */ static const char *adc_mux_text[] = { "MIC_IN", "LINE_IN" }; static SOC_ENUM_SINGLE_DECL(adc_enum, SGTL5000_CHIP_ANA_CTRL, 2, adc_mux_text); static const struct snd_kcontrol_new adc_mux = SOC_DAPM_ENUM("Capture Mux", adc_enum); /* input sources for DAC */ static const char *dac_mux_text[] = { "DAC", "LINE_IN" }; static SOC_ENUM_SINGLE_DECL(dac_enum, SGTL5000_CHIP_ANA_CTRL, 6, dac_mux_text); static const struct snd_kcontrol_new dac_mux = SOC_DAPM_ENUM("Headphone Mux", dac_enum); static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { SND_SOC_DAPM_INPUT("LINE_IN"), SND_SOC_DAPM_INPUT("MIC_IN"), SND_SOC_DAPM_OUTPUT("HP_OUT"), SND_SOC_DAPM_OUTPUT("LINE_OUT"), SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, mic_bias_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0), SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux), /* aif for i2s input */ SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 0, SGTL5000_CHIP_DIG_POWER, 0, 0), /* aif for i2s output */ SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 0, SGTL5000_CHIP_DIG_POWER, 1, 0), SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0), SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0), SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event), SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event), }; /* routes for sgtl5000 */ static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */ {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ {"LO", NULL, "DAC"}, /* dac --> line_out */ {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ {"LINE_OUT", NULL, "LO"}, {"HP_OUT", NULL, "HP"}, }; /* custom function to fetch info of PCM playback volume */ static int dac_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0xfc - 0x3c; return 0; } /* * custom function to get of PCM playback volume * * dac volume register * 15-------------8-7--------------0 * | R channel vol | L channel vol | * ------------------------------- * * PCM volume with 0.5017 dB steps from 0 to -90 dB * * register values map to dB * 0x3B and less = Reserved * 0x3C = 0 dB * 0x3D = -0.5 dB * 0xF0 = -90 dB * 0xFC and greater = Muted * * register value map to userspace value * * register value 0x3c(0dB) 0xf0(-90dB)0xfc * ------------------------------ * userspace value 0xc0 0 */ static int dac_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int reg; int l; int r; reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL); /* get left channel volume */ l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; /* get right channel volume */ r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; /* make sure value fall in (0x3c,0xfc) */ l = clamp(l, 0x3c, 0xfc); r = clamp(r, 0x3c, 0xfc); /* invert it and map to userspace value */ l = 0xfc - l; r = 0xfc - r; ucontrol->value.integer.value[0] = l; ucontrol->value.integer.value[1] = r; return 0; } /* * custom function to put of PCM playback volume * * dac volume register * 15-------------8-7--------------0 * | R channel vol | L channel vol | * ------------------------------- * * PCM volume with 0.5017 dB steps from 0 to -90 dB * * register values map to dB * 0x3B and less = Reserved * 0x3C = 0 dB * 0x3D = -0.5 dB * 0xF0 = -90 dB * 0xFC and greater = Muted * * userspace value map to register value * * userspace value 0xc0 0 * ------------------------------ * register value 0x3c(0dB) 0xf0(-90dB)0xfc */ static int dac_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); int reg; int l; int r; l = ucontrol->value.integer.value[0]; r = ucontrol->value.integer.value[1]; /* make sure userspace volume fall in (0, 0xfc-0x3c) */ l = clamp(l, 0, 0xfc - 0x3c); r = clamp(r, 0, 0xfc - 0x3c); /* invert it, get the value can be set to register */ l = 0xfc - l; r = 0xfc - r; /* shift to get the register value */ reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | r << SGTL5000_DAC_VOL_RIGHT_SHIFT; snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg); return 0; } static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); /* tlv for mic gain, 0db 20db 30db 40db */ static const unsigned int mic_gain_tlv[] = { TLV_DB_RANGE_HEAD(2), 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0), }; /* tlv for hp volume, -51.5db to 12.0db, step .5db */ static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { /* SOC_DOUBLE_S8_TLV with invert */ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = dac_info_volsw, .get = dac_get_volsw, .put = dac_put_volsw, }, SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", SGTL5000_CHIP_ANA_ADC_CTRL, 8, 1, 0, capture_6db_attenuate), SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), SOC_DOUBLE_TLV("Headphone Playback Volume", SGTL5000_CHIP_ANA_HP_CTRL, 0, 8, 0x7f, 1, headphone_volume), SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 5, 1, 0), SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 0, 3, 0, mic_gain_tlv), }; /* mute the codec used by alsa core */ static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_codec *codec = codec_dai->codec; u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT; snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL, adcdac_ctrl, mute ? adcdac_ctrl : 0); return 0; } /* set codec format */ static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); u16 i2sctl = 0; sgtl5000->master = 0; /* * i2s clock and frame master setting. * ONLY support: * - clock and frame slave, * - clock and frame master */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBM_CFM: i2sctl |= SGTL5000_I2S_MASTER; sgtl5000->master = 1; break; default: return -EINVAL; } /* setting i2s data format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; break; case SND_SOC_DAIFMT_DSP_B: i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRALIGN; break; case SND_SOC_DAIFMT_I2S: i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; break; case SND_SOC_DAIFMT_RIGHT_J: i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRPOL; break; case SND_SOC_DAIFMT_LEFT_J: i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; i2sctl |= SGTL5000_I2S_LRALIGN; break; default: return -EINVAL; } sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; /* Clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: i2sctl |= SGTL5000_I2S_SCLK_INV; break; default: return -EINVAL; } snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl); return 0; } /* set codec sysclk */ static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); switch (clk_id) { case SGTL5000_SYSCLK: sgtl5000->sysclk = freq; break; default: return -EINVAL; } return 0; } /* * set clock according to i2s frame clock, * sgtl5000 provides 2 clock sources: * 1. sys_mclk: sample freq can only be configured to * 1/256, 1/384, 1/512 of sys_mclk. * 2. pll: can derive any audio clocks. * * clock setting rules: * 1. in slave mode, only sys_mclk can be used * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz * and above. * 3. usage of sys_mclk is preferred over pll to save power. */ static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate) { struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); int clk_ctl = 0; int sys_fs; /* sample freq */ /* * sample freq should be divided by frame clock, * if frame clock is lower than 44.1 kHz, sample freq should be set to * 32 kHz or 44.1 kHz. */ switch (frame_rate) { case 8000: case 16000: sys_fs = 32000; break; case 11025: case 22050: sys_fs = 44100; break; default: sys_fs = frame_rate; break; } /* set divided factor of frame clock */ switch (sys_fs / frame_rate) { case 4: clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; break; case 2: clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; break; case 1: clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; break; default: return -EINVAL; } /* set the sys_fs according to frame rate */ switch (sys_fs) { case 32000: clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; break; case 44100: clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; break; case 48000: clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; break; case 96000: clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; break; default: dev_err(codec->dev, "frame rate %d not supported\n", frame_rate); return -EINVAL; } /* * calculate the divider of mclk/sample_freq, * factor of freq = 96 kHz can only be 256, since mclk is in the range * of 8 MHz - 27 MHz */ switch (sgtl5000->sysclk / frame_rate) { case 256: clk_ctl |= SGTL5000_MCLK_FREQ_256FS << SGTL5000_MCLK_FREQ_SHIFT; break; case 384: clk_ctl |= SGTL5000_MCLK_FREQ_384FS << SGTL5000_MCLK_FREQ_SHIFT; break; case 512: clk_ctl |= SGTL5000_MCLK_FREQ_512FS << SGTL5000_MCLK_FREQ_SHIFT; break; default: /* if mclk does not satisfy the divider, use pll */ if (sgtl5000->master) { clk_ctl |= SGTL5000_MCLK_FREQ_PLL << SGTL5000_MCLK_FREQ_SHIFT; } else { dev_err(codec->dev, "PLL not supported in slave mode\n"); dev_err(codec->dev, "%d ratio is not supported. " "SYS_MCLK needs to be 256, 384 or 512 * fs\n", sgtl5000->sysclk / frame_rate); return -EINVAL; } } /* if using pll, please check manual 6.4.2 for detail */ if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { u64 out, t; int div2; int pll_ctl; unsigned int in, int_div, frac_div; if (sgtl5000->sysclk > 17000000) { div2 = 1; in = sgtl5000->sysclk / 2; } else { div2 = 0; in = sgtl5000->sysclk; } if (sys_fs == 44100) out = 180633600; else out = 196608000; t = do_div(out, in); int_div = out; t *= 2048; do_div(t, in); frac_div = t; pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl); if (div2) snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INPUT_FREQ_DIV2, SGTL5000_INPUT_FREQ_DIV2); else snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INPUT_FREQ_DIV2, 0); /* power up pll */ snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); /* if using pll, clk_ctrl must be set after pll power up */ snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); } else { /* otherwise, clk_ctrl must be set before pll power down */ snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); /* power down pll */ snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 0); } return 0; } /* * Set PCM DAI bit size and sample rate. * input: params_rate, params_fmt */ static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); int channels = params_channels(params); int i2s_ctl = 0; int stereo; int ret; /* sysclk should already set */ if (!sgtl5000->sysclk) { dev_err(codec->dev, "%s: set sysclk first!\n", __func__); return -EFAULT; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) stereo = SGTL5000_DAC_STEREO; else stereo = SGTL5000_ADC_STEREO; /* set mono to save power */ snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo, channels == 1 ? 0 : stereo); /* set codec clock base on lrclk */ ret = sgtl5000_set_clock(codec, params_rate(params)); if (ret) return ret; /* set i2s data format */ switch (params_width(params)) { case 16: if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) return -EINVAL; i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 20: i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 24: i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; case 32: if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) return -EINVAL; i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << SGTL5000_I2S_SCLKFREQ_SHIFT; break; default: return -EINVAL; } snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL, SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, i2s_ctl); return 0; } #ifdef CONFIG_REGULATOR static int ldo_regulator_is_enabled(struct regulator_dev *dev) { struct ldo_regulator *ldo = rdev_get_drvdata(dev); return ldo->enabled; } static int ldo_regulator_enable(struct regulator_dev *dev) { struct ldo_regulator *ldo = rdev_get_drvdata(dev); struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; int reg; if (ldo_regulator_is_enabled(dev)) return 0; /* set regulator value firstly */ reg = (1600 - ldo->voltage / 1000) / 50; reg = clamp(reg, 0x0, 0xf); /* amend the voltage value, unit: uV */ ldo->voltage = (1600 - reg * 50) * 1000; /* set voltage to register */ snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, SGTL5000_LINREG_VDDD_MASK, reg); snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_LINEREG_D_POWERUP, SGTL5000_LINEREG_D_POWERUP); /* when internal ldo is enabled, simple digital power can be disabled */ snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_LINREG_SIMPLE_POWERUP, 0); ldo->enabled = 1; return 0; } static int ldo_regulator_disable(struct regulator_dev *dev) { struct ldo_regulator *ldo = rdev_get_drvdata(dev); struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_LINEREG_D_POWERUP, 0); /* clear voltage info */ snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, SGTL5000_LINREG_VDDD_MASK, 0); ldo->enabled = 0; return 0; } static int ldo_regulator_get_voltage(struct regulator_dev *dev) { struct ldo_regulator *ldo = rdev_get_drvdata(dev); return ldo->voltage; } static struct regulator_ops ldo_regulator_ops = { .is_enabled = ldo_regulator_is_enabled, .enable = ldo_regulator_enable, .disable = ldo_regulator_disable, .get_voltage = ldo_regulator_get_voltage, }; static int ldo_regulator_register(struct snd_soc_codec *codec, struct regulator_init_data *init_data, int voltage) { struct ldo_regulator *ldo; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); struct regulator_config config = { }; ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL); if (!ldo) return -ENOMEM; ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL); if (!ldo->desc.name) { kfree(ldo); dev_err(codec->dev, "failed to allocate decs name memory\n"); return -ENOMEM; } ldo->desc.type = REGULATOR_VOLTAGE; ldo->desc.owner = THIS_MODULE; ldo->desc.ops = &ldo_regulator_ops; ldo->desc.n_voltages = 1; ldo->codec_data = codec; ldo->voltage = voltage; config.dev = codec->dev; config.driver_data = ldo; config.init_data = init_data; ldo->dev = regulator_register(&ldo->desc, &config); if (IS_ERR(ldo->dev)) { int ret = PTR_ERR(ldo->dev); dev_err(codec->dev, "failed to register regulator\n"); kfree(ldo->desc.name); kfree(ldo); return ret; } sgtl5000->ldo = ldo; return 0; } static int ldo_regulator_remove(struct snd_soc_codec *codec) { struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); struct ldo_regulator *ldo = sgtl5000->ldo; if (!ldo) return 0; regulator_unregister(ldo->dev); kfree(ldo->desc.name); kfree(ldo); return 0; } #else static int ldo_regulator_register(struct snd_soc_codec *codec, struct regulator_init_data *init_data, int voltage) { dev_err(codec->dev, "this setup needs regulator support in the kernel\n"); return -EINVAL; } static int ldo_regulator_remove(struct snd_soc_codec *codec) { return 0; } #endif /* * set dac bias * common state changes: * startup: * off --> standby --> prepare --> on * standby --> prepare --> on * * stop: * on --> prepare --> standby */ static int sgtl5000_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { int ret; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { ret = regulator_bulk_enable( ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); if (ret) return ret; udelay(10); regcache_cache_only(sgtl5000->regmap, false); ret = regcache_sync(sgtl5000->regmap); if (ret != 0) { dev_err(codec->dev, "Failed to restore cache: %d\n", ret); regcache_cache_only(sgtl5000->regmap, true); regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); return ret; } } break; case SND_SOC_BIAS_OFF: regcache_cache_only(sgtl5000->regmap, true); regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); break; } codec->dapm.bias_level = level; return 0; } #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops sgtl5000_ops = { .hw_params = sgtl5000_pcm_hw_params, .digital_mute = sgtl5000_digital_mute, .set_fmt = sgtl5000_set_dai_fmt, .set_sysclk = sgtl5000_set_dai_sysclk, }; static struct snd_soc_dai_driver sgtl5000_dai = { .name = "sgtl5000", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, /* * only support 8~48K + 96K, * TODO modify hw_param to support more */ .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, .formats = SGTL5000_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, .formats = SGTL5000_FORMATS, }, .ops = &sgtl5000_ops, .symmetric_rates = 1, }; static bool sgtl5000_volatile(struct device *dev, unsigned int reg) { switch (reg) { case SGTL5000_CHIP_ID: case SGTL5000_CHIP_ADCDAC_CTRL: case SGTL5000_CHIP_ANA_STATUS: return true; } return false; } static bool sgtl5000_readable(struct device *dev, unsigned int reg) { switch (reg) { case SGTL5000_CHIP_ID: case SGTL5000_CHIP_DIG_POWER: case SGTL5000_CHIP_CLK_CTRL: case SGTL5000_CHIP_I2S_CTRL: case SGTL5000_CHIP_SSS_CTRL: case SGTL5000_CHIP_ADCDAC_CTRL: case SGTL5000_CHIP_DAC_VOL: case SGTL5000_CHIP_PAD_STRENGTH: case SGTL5000_CHIP_ANA_ADC_CTRL: case SGTL5000_CHIP_ANA_HP_CTRL: case SGTL5000_CHIP_ANA_CTRL: case SGTL5000_CHIP_LINREG_CTRL: case SGTL5000_CHIP_REF_CTRL: case SGTL5000_CHIP_MIC_CTRL: case SGTL5000_CHIP_LINE_OUT_CTRL: case SGTL5000_CHIP_LINE_OUT_VOL: case SGTL5000_CHIP_ANA_POWER: case SGTL5000_CHIP_PLL_CTRL: case SGTL5000_CHIP_CLK_TOP_CTRL: case SGTL5000_CHIP_ANA_STATUS: case SGTL5000_CHIP_SHORT_CTRL: case SGTL5000_CHIP_ANA_TEST2: case SGTL5000_DAP_CTRL: case SGTL5000_DAP_PEQ: case SGTL5000_DAP_BASS_ENHANCE: case SGTL5000_DAP_BASS_ENHANCE_CTRL: case SGTL5000_DAP_AUDIO_EQ: case SGTL5000_DAP_SURROUND: case SGTL5000_DAP_FLT_COEF_ACCESS: case SGTL5000_DAP_COEF_WR_B0_MSB: case SGTL5000_DAP_COEF_WR_B0_LSB: case SGTL5000_DAP_EQ_BASS_BAND0: case SGTL5000_DAP_EQ_BASS_BAND1: case SGTL5000_DAP_EQ_BASS_BAND2: case SGTL5000_DAP_EQ_BASS_BAND3: case SGTL5000_DAP_EQ_BASS_BAND4: case SGTL5000_DAP_MAIN_CHAN: case SGTL5000_DAP_MIX_CHAN: case SGTL5000_DAP_AVC_CTRL: case SGTL5000_DAP_AVC_THRESHOLD: case SGTL5000_DAP_AVC_ATTACK: case SGTL5000_DAP_AVC_DECAY: case SGTL5000_DAP_COEF_WR_B1_MSB: case SGTL5000_DAP_COEF_WR_B1_LSB: case SGTL5000_DAP_COEF_WR_B2_MSB: case SGTL5000_DAP_COEF_WR_B2_LSB: case SGTL5000_DAP_COEF_WR_A1_MSB: case SGTL5000_DAP_COEF_WR_A1_LSB: case SGTL5000_DAP_COEF_WR_A2_MSB: case SGTL5000_DAP_COEF_WR_A2_LSB: return true; default: return false; } } /* * sgtl5000 has 3 internal power supplies: * 1. VAG, normally set to vdda/2 * 2. charge pump, set to different value * according to voltage of vdda and vddio * 3. line out VAG, normally set to vddio/2 * * and should be set according to: * 1. vddd provided by external or not * 2. vdda and vddio voltage value. > 3.1v or not * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd. */ static int sgtl5000_set_power_regs(struct snd_soc_codec *codec) { int vddd; int vdda; int vddio; u16 ana_pwr; u16 lreg_ctrl; int vag; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); vddd = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer); vdda = vdda / 1000; vddio = vddio / 1000; vddd = vddd / 1000; if (vdda <= 0 || vddio <= 0 || vddd < 0) { dev_err(codec->dev, "regulator voltage not set correctly\n"); return -EINVAL; } /* according to datasheet, maximum voltage of supplies */ if (vdda > 3600 || vddio > 3600 || vddd > 1980) { dev_err(codec->dev, "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", vdda, vddio, vddd); return -EINVAL; } /* reset value */ ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER); ana_pwr |= SGTL5000_DAC_STEREO | SGTL5000_ADC_STEREO | SGTL5000_REFTOP_POWERUP; lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL); if (vddio < 3100 && vdda < 3100) { /* enable internal oscillator used for charge pump */ snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, SGTL5000_INT_OSC_EN, SGTL5000_INT_OSC_EN); /* Enable VDDC charge pump */ ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; } else if (vddio >= 3100 && vdda >= 3100) { /* * if vddio and vddd > 3.1v, * charge pump should be clean before set ana_pwr */ snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_VDDC_CHRGPMP_POWERUP, 0); /* VDDC use VDDIO rail */ lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << SGTL5000_VDDC_MAN_ASSN_SHIFT; } snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr); /* set voltage to register */ snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, SGTL5000_LINREG_VDDD_MASK, 0x8); /* * if vddd linear reg has been enabled, * simple digital supply should be clear to get * proper VDDD voltage. */ if (ana_pwr & SGTL5000_LINEREG_D_POWERUP) snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_LINREG_SIMPLE_POWERUP, 0); else snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, SGTL5000_LINREG_SIMPLE_POWERUP | SGTL5000_STARTUP_POWERUP, 0); /* * set ADC/DAC VAG to vdda / 2, * should stay in range (0.8v, 1.575v) */ vag = vdda / 2; if (vag <= SGTL5000_ANA_GND_BASE) vag = 0; else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; else vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ vag = vddio / 2; if (vag <= SGTL5000_LINE_OUT_GND_BASE) vag = 0; else if (vag >= SGTL5000_LINE_OUT_GND_BASE + SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) vag = SGTL5000_LINE_OUT_GND_MAX; else vag = (vag - SGTL5000_LINE_OUT_GND_BASE) / SGTL5000_LINE_OUT_GND_STP; snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL, SGTL5000_LINE_OUT_CURRENT_MASK | SGTL5000_LINE_OUT_GND_MASK, vag << SGTL5000_LINE_OUT_GND_SHIFT | SGTL5000_LINE_OUT_CURRENT_360u << SGTL5000_LINE_OUT_CURRENT_SHIFT); return 0; } static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec) { struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); int ret; /* set internal ldo to 1.2v */ ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE); if (ret) { dev_err(codec->dev, "Failed to register vddd internal supplies: %d\n", ret); return ret; } sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME; dev_info(codec->dev, "Using internal LDO instead of VDDD\n"); return 0; } static int sgtl5000_enable_regulators(struct snd_soc_codec *codec) { int ret; int i; int external_vddd = 0; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); struct regulator *vddd; for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) sgtl5000->supplies[i].supply = supply_names[i]; /* External VDDD only works before revision 0x11 */ if (sgtl5000->revision < 0x11) { vddd = regulator_get_optional(codec->dev, "VDDD"); if (IS_ERR(vddd)) { /* See if it's just not registered yet */ if (PTR_ERR(vddd) == -EPROBE_DEFER) return -EPROBE_DEFER; } else { external_vddd = 1; regulator_put(vddd); } } if (!external_vddd) { ret = sgtl5000_replace_vddd_with_ldo(codec); if (ret) return ret; } ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); if (ret) goto err_ldo_remove; ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); if (ret) goto err_regulator_free; /* wait for all power rails bring up */ udelay(10); return 0; err_regulator_free: regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); err_ldo_remove: if (!external_vddd) ldo_regulator_remove(codec); return ret; } static int sgtl5000_probe(struct snd_soc_codec *codec) { int ret; struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); ret = sgtl5000_enable_regulators(codec); if (ret) return ret; /* power up sgtl5000 */ ret = sgtl5000_set_power_regs(codec); if (ret) goto err; /* enable small pop, introduce 400ms delay in turning off */ snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, SGTL5000_SMALL_POP, 1); /* disable short cut detector */ snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0); /* * set i2s as default input of sound switch * TODO: add sound switch to control and dapm widge. */ snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT); snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER, SGTL5000_ADC_EN | SGTL5000_DAC_EN); /* enable dac volume ramp by default */ snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL, SGTL5000_DAC_VOL_RAMP_EN | SGTL5000_DAC_MUTE_RIGHT | SGTL5000_DAC_MUTE_LEFT); snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f); snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL, SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN); snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, SGTL5000_BIAS_R_MASK, sgtl5000->micbias_voltage << SGTL5000_BIAS_R_SHIFT); /* * disable DAP * TODO: * Enable DAP in kcontrol and dapm. */ snd_soc_write(codec, SGTL5000_DAP_CTRL, 0); return 0; err: regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); ldo_regulator_remove(codec); return ret; } static int sgtl5000_remove(struct snd_soc_codec *codec) { struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), sgtl5000->supplies); ldo_regulator_remove(codec); return 0; } static struct snd_soc_codec_driver sgtl5000_driver = { .probe = sgtl5000_probe, .remove = sgtl5000_remove, .set_bias_level = sgtl5000_set_bias_level, .suspend_bias_off = true, .controls = sgtl5000_snd_controls, .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), .dapm_widgets = sgtl5000_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), .dapm_routes = sgtl5000_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), }; static const struct regmap_config sgtl5000_regmap = { .reg_bits = 16, .val_bits = 16, .reg_stride = 2, .max_register = SGTL5000_MAX_REG_OFFSET, .volatile_reg = sgtl5000_volatile, .readable_reg = sgtl5000_readable, .cache_type = REGCACHE_RBTREE, .reg_defaults = sgtl5000_reg_defaults, .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), }; /* * Write all the default values from sgtl5000_reg_defaults[] array into the * sgtl5000 registers, to make sure we always start with the sane registers * values as stated in the datasheet. * * Since sgtl5000 does not have a reset line, nor a reset command in software, * we follow this approach to guarantee we always start from the default values * and avoid problems like, not being able to probe after an audio playback * followed by a system reset or a 'reboot' command in Linux */ static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000) { int i, ret, val, index; for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { val = sgtl5000_reg_defaults[i].def; index = sgtl5000_reg_defaults[i].reg; ret = regmap_write(sgtl5000->regmap, index, val); if (ret) return ret; } return 0; } static int sgtl5000_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct sgtl5000_priv *sgtl5000; int ret, reg, rev; struct device_node *np = client->dev.of_node; u32 value; sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); if (!sgtl5000) return -ENOMEM; sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); if (IS_ERR(sgtl5000->regmap)) { ret = PTR_ERR(sgtl5000->regmap); dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); return ret; } sgtl5000->mclk = devm_clk_get(&client->dev, NULL); if (IS_ERR(sgtl5000->mclk)) { ret = PTR_ERR(sgtl5000->mclk); dev_err(&client->dev, "Failed to get mclock: %d\n", ret); /* Defer the probe to see if the clk will be provided later */ if (ret == -ENOENT) return -EPROBE_DEFER; return ret; } ret = clk_prepare_enable(sgtl5000->mclk); if (ret) return ret; /* read chip information */ ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); if (ret) goto disable_clk; if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != SGTL5000_PARTID_PART_ID) { dev_err(&client->dev, "Device with ID register %x is not a sgtl5000\n", reg); ret = -ENODEV; goto disable_clk; } rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); sgtl5000->revision = rev; if (np) { if (!of_property_read_u32(np, "micbias-resistor-k-ohms", &value)) { switch (value) { case SGTL5000_MICBIAS_OFF: sgtl5000->micbias_resistor = 0; break; case SGTL5000_MICBIAS_2K: sgtl5000->micbias_resistor = 1; break; case SGTL5000_MICBIAS_4K: sgtl5000->micbias_resistor = 2; break; case SGTL5000_MICBIAS_8K: sgtl5000->micbias_resistor = 3; break; default: sgtl5000->micbias_resistor = 2; dev_err(&client->dev, "Unsuitable MicBias resistor\n"); } } else { /* default is 4Kohms */ sgtl5000->micbias_resistor = 2; } if (!of_property_read_u32(np, "micbias-voltage-m-volts", &value)) { /* 1250mV => 0 */ /* steps of 250mV */ if ((value >= 1250) && (value <= 3000)) sgtl5000->micbias_voltage = (value / 250) - 5; else { sgtl5000->micbias_voltage = 0; dev_err(&client->dev, "Unsuitable MicBias resistor\n"); } } else { sgtl5000->micbias_voltage = 0; } } i2c_set_clientdata(client, sgtl5000); /* Ensure sgtl5000 will start with sane register values */ ret = sgtl5000_fill_defaults(sgtl5000); if (ret) goto disable_clk; ret = snd_soc_register_codec(&client->dev, &sgtl5000_driver, &sgtl5000_dai, 1); if (ret) goto disable_clk; return 0; disable_clk: clk_disable_unprepare(sgtl5000->mclk); return ret; } static int sgtl5000_i2c_remove(struct i2c_client *client) { struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); snd_soc_unregister_codec(&client->dev); clk_disable_unprepare(sgtl5000->mclk); return 0; } static const struct i2c_device_id sgtl5000_id[] = { {"sgtl5000", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, sgtl5000_id); static const struct of_device_id sgtl5000_dt_ids[] = { { .compatible = "fsl,sgtl5000", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); static struct i2c_driver sgtl5000_i2c_driver = { .driver = { .name = "sgtl5000", .owner = THIS_MODULE, .of_match_table = sgtl5000_dt_ids, }, .probe = sgtl5000_i2c_probe, .remove = sgtl5000_i2c_remove, .id_table = sgtl5000_id, }; module_i2c_driver(sgtl5000_i2c_driver); MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); MODULE_AUTHOR("Zeng Zhaoming "); MODULE_LICENSE("GPL");