/* * Support for Digigram Lola PCI-e boards * * Copyright (c) 2011 Takashi Iwai <tiwai@suse.de> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/pci.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/initval.h> #include "lola.h" /* Standard options */ static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Digigram Lola driver."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Digigram Lola driver."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Digigram Lola driver."); /* Lola-specific options */ /* for instance use always max granularity which is compatible * with all sample rates */ static int granularity[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS - 1)] = LOLA_GRANULARITY_MAX }; /* below a sample_rate of 16kHz the analogue audio quality is NOT excellent */ static int sample_rate_min[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS - 1) ] = 16000 }; module_param_array(granularity, int, NULL, 0444); MODULE_PARM_DESC(granularity, "Granularity value"); module_param_array(sample_rate_min, int, NULL, 0444); MODULE_PARM_DESC(sample_rate_min, "Minimal sample rate"); /* */ MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Digigram, Lola}}"); MODULE_DESCRIPTION("Digigram Lola driver"); MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); #ifdef CONFIG_SND_DEBUG_VERBOSE static int debug; module_param(debug, int, 0644); #define verbose_debug(fmt, args...) \ do { if (debug > 1) printk(KERN_DEBUG SFX fmt, ##args); } while (0) #else #define verbose_debug(fmt, args...) #endif /* * pseudo-codec read/write via CORB/RIRB */ static int corb_send_verb(struct lola *chip, unsigned int nid, unsigned int verb, unsigned int data, unsigned int extdata) { unsigned long flags; int ret = -EIO; chip->last_cmd_nid = nid; chip->last_verb = verb; chip->last_data = data; chip->last_extdata = extdata; data |= (nid << 20) | (verb << 8); spin_lock_irqsave(&chip->reg_lock, flags); if (chip->rirb.cmds < LOLA_CORB_ENTRIES - 1) { unsigned int wp = chip->corb.wp + 1; wp %= LOLA_CORB_ENTRIES; chip->corb.wp = wp; chip->corb.buf[wp * 2] = cpu_to_le32(data); chip->corb.buf[wp * 2 + 1] = cpu_to_le32(extdata); lola_writew(chip, BAR0, CORBWP, wp); chip->rirb.cmds++; smp_wmb(); ret = 0; } spin_unlock_irqrestore(&chip->reg_lock, flags); return ret; } static void lola_queue_unsol_event(struct lola *chip, unsigned int res, unsigned int res_ex) { lola_update_ext_clock_freq(chip, res); } /* retrieve RIRB entry - called from interrupt handler */ static void lola_update_rirb(struct lola *chip) { unsigned int rp, wp; u32 res, res_ex; wp = lola_readw(chip, BAR0, RIRBWP); if (wp == chip->rirb.wp) return; chip->rirb.wp = wp; while (chip->rirb.rp != wp) { chip->rirb.rp++; chip->rirb.rp %= LOLA_CORB_ENTRIES; rp = chip->rirb.rp << 1; /* an RIRB entry is 8-bytes */ res_ex = le32_to_cpu(chip->rirb.buf[rp + 1]); res = le32_to_cpu(chip->rirb.buf[rp]); if (res_ex & LOLA_RIRB_EX_UNSOL_EV) lola_queue_unsol_event(chip, res, res_ex); else if (chip->rirb.cmds) { chip->res = res; chip->res_ex = res_ex; smp_wmb(); chip->rirb.cmds--; } } } static int rirb_get_response(struct lola *chip, unsigned int *val, unsigned int *extval) { unsigned long timeout; again: timeout = jiffies + msecs_to_jiffies(1000); for (;;) { if (chip->polling_mode) { spin_lock_irq(&chip->reg_lock); lola_update_rirb(chip); spin_unlock_irq(&chip->reg_lock); } if (!chip->rirb.cmds) { *val = chip->res; if (extval) *extval = chip->res_ex; verbose_debug("get_response: %x, %x\n", chip->res, chip->res_ex); if (chip->res_ex & LOLA_RIRB_EX_ERROR) { printk(KERN_WARNING SFX "RIRB ERROR: " "NID=%x, verb=%x, data=%x, ext=%x\n", chip->last_cmd_nid, chip->last_verb, chip->last_data, chip->last_extdata); return -EIO; } return 0; } if (time_after(jiffies, timeout)) break; udelay(20); cond_resched(); } printk(KERN_WARNING SFX "RIRB response error\n"); if (!chip->polling_mode) { printk(KERN_WARNING SFX "switching to polling mode\n"); chip->polling_mode = 1; goto again; } return -EIO; } /* aynchronous write of a codec verb with data */ int lola_codec_write(struct lola *chip, unsigned int nid, unsigned int verb, unsigned int data, unsigned int extdata) { verbose_debug("codec_write NID=%x, verb=%x, data=%x, ext=%x\n", nid, verb, data, extdata); return corb_send_verb(chip, nid, verb, data, extdata); } /* write a codec verb with data and read the returned status */ int lola_codec_read(struct lola *chip, unsigned int nid, unsigned int verb, unsigned int data, unsigned int extdata, unsigned int *val, unsigned int *extval) { int err; verbose_debug("codec_read NID=%x, verb=%x, data=%x, ext=%x\n", nid, verb, data, extdata); err = corb_send_verb(chip, nid, verb, data, extdata); if (err < 0) return err; err = rirb_get_response(chip, val, extval); return err; } /* flush all pending codec writes */ int lola_codec_flush(struct lola *chip) { unsigned int tmp; return rirb_get_response(chip, &tmp, NULL); } /* * interrupt handler */ static irqreturn_t lola_interrupt(int irq, void *dev_id) { struct lola *chip = dev_id; unsigned int notify_ins, notify_outs, error_ins, error_outs; int handled = 0; int i; notify_ins = notify_outs = error_ins = error_outs = 0; spin_lock(&chip->reg_lock); for (;;) { unsigned int status, in_sts, out_sts; unsigned int reg; status = lola_readl(chip, BAR1, DINTSTS); if (!status || status == -1) break; in_sts = lola_readl(chip, BAR1, DIINTSTS); out_sts = lola_readl(chip, BAR1, DOINTSTS); /* clear Input Interrupts */ for (i = 0; in_sts && i < chip->pcm[CAPT].num_streams; i++) { if (!(in_sts & (1 << i))) continue; in_sts &= ~(1 << i); reg = lola_dsd_read(chip, i, STS); if (reg & LOLA_DSD_STS_DESE) /* error */ error_ins |= (1 << i); if (reg & LOLA_DSD_STS_BCIS) /* notify */ notify_ins |= (1 << i); /* clear */ lola_dsd_write(chip, i, STS, reg); } /* clear Output Interrupts */ for (i = 0; out_sts && i < chip->pcm[PLAY].num_streams; i++) { if (!(out_sts & (1 << i))) continue; out_sts &= ~(1 << i); reg = lola_dsd_read(chip, i + MAX_STREAM_IN_COUNT, STS); if (reg & LOLA_DSD_STS_DESE) /* error */ error_outs |= (1 << i); if (reg & LOLA_DSD_STS_BCIS) /* notify */ notify_outs |= (1 << i); lola_dsd_write(chip, i + MAX_STREAM_IN_COUNT, STS, reg); } if (status & LOLA_DINT_CTRL) { unsigned char rbsts; /* ring status is byte access */ rbsts = lola_readb(chip, BAR0, RIRBSTS); rbsts &= LOLA_RIRB_INT_MASK; if (rbsts) lola_writeb(chip, BAR0, RIRBSTS, rbsts); rbsts = lola_readb(chip, BAR0, CORBSTS); rbsts &= LOLA_CORB_INT_MASK; if (rbsts) lola_writeb(chip, BAR0, CORBSTS, rbsts); lola_update_rirb(chip); } if (status & (LOLA_DINT_FIFOERR | LOLA_DINT_MUERR)) { /* clear global fifo error interrupt */ lola_writel(chip, BAR1, DINTSTS, (status & (LOLA_DINT_FIFOERR | LOLA_DINT_MUERR))); } handled = 1; } spin_unlock(&chip->reg_lock); lola_pcm_update(chip, &chip->pcm[CAPT], notify_ins); lola_pcm_update(chip, &chip->pcm[PLAY], notify_outs); return IRQ_RETVAL(handled); } /* * controller */ static int reset_controller(struct lola *chip) { unsigned int gctl = lola_readl(chip, BAR0, GCTL); unsigned long end_time; if (gctl) { /* to be sure */ lola_writel(chip, BAR1, BOARD_MODE, 0); return 0; } chip->cold_reset = 1; lola_writel(chip, BAR0, GCTL, LOLA_GCTL_RESET); end_time = jiffies + msecs_to_jiffies(200); do { msleep(1); gctl = lola_readl(chip, BAR0, GCTL); if (gctl) break; } while (time_before(jiffies, end_time)); if (!gctl) { printk(KERN_ERR SFX "cannot reset controller\n"); return -EIO; } return 0; } static void lola_irq_enable(struct lola *chip) { unsigned int val; /* enalbe all I/O streams */ val = (1 << chip->pcm[PLAY].num_streams) - 1; lola_writel(chip, BAR1, DOINTCTL, val); val = (1 << chip->pcm[CAPT].num_streams) - 1; lola_writel(chip, BAR1, DIINTCTL, val); /* enable global irqs */ val = LOLA_DINT_GLOBAL | LOLA_DINT_CTRL | LOLA_DINT_FIFOERR | LOLA_DINT_MUERR; lola_writel(chip, BAR1, DINTCTL, val); } static void lola_irq_disable(struct lola *chip) { lola_writel(chip, BAR1, DINTCTL, 0); lola_writel(chip, BAR1, DIINTCTL, 0); lola_writel(chip, BAR1, DOINTCTL, 0); } static int setup_corb_rirb(struct lola *chip) { int err; unsigned char tmp; unsigned long end_time; err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), PAGE_SIZE, &chip->rb); if (err < 0) return err; chip->corb.addr = chip->rb.addr; chip->corb.buf = (u32 *)chip->rb.area; chip->rirb.addr = chip->rb.addr + 2048; chip->rirb.buf = (u32 *)(chip->rb.area + 2048); /* disable ringbuffer DMAs */ lola_writeb(chip, BAR0, RIRBCTL, 0); lola_writeb(chip, BAR0, CORBCTL, 0); end_time = jiffies + msecs_to_jiffies(200); do { if (!lola_readb(chip, BAR0, RIRBCTL) && !lola_readb(chip, BAR0, CORBCTL)) break; msleep(1); } while (time_before(jiffies, end_time)); /* CORB set up */ lola_writel(chip, BAR0, CORBLBASE, (u32)chip->corb.addr); lola_writel(chip, BAR0, CORBUBASE, upper_32_bits(chip->corb.addr)); /* set the corb size to 256 entries */ lola_writeb(chip, BAR0, CORBSIZE, 0x02); /* set the corb write pointer to 0 */ lola_writew(chip, BAR0, CORBWP, 0); /* reset the corb hw read pointer */ lola_writew(chip, BAR0, CORBRP, LOLA_RBRWP_CLR); /* enable corb dma */ lola_writeb(chip, BAR0, CORBCTL, LOLA_RBCTL_DMA_EN); /* clear flags if set */ tmp = lola_readb(chip, BAR0, CORBSTS) & LOLA_CORB_INT_MASK; if (tmp) lola_writeb(chip, BAR0, CORBSTS, tmp); chip->corb.wp = 0; /* RIRB set up */ lola_writel(chip, BAR0, RIRBLBASE, (u32)chip->rirb.addr); lola_writel(chip, BAR0, RIRBUBASE, upper_32_bits(chip->rirb.addr)); /* set the rirb size to 256 entries */ lola_writeb(chip, BAR0, RIRBSIZE, 0x02); /* reset the rirb hw write pointer */ lola_writew(chip, BAR0, RIRBWP, LOLA_RBRWP_CLR); /* set N=1, get RIRB response interrupt for new entry */ lola_writew(chip, BAR0, RINTCNT, 1); /* enable rirb dma and response irq */ lola_writeb(chip, BAR0, RIRBCTL, LOLA_RBCTL_DMA_EN | LOLA_RBCTL_IRQ_EN); /* clear flags if set */ tmp = lola_readb(chip, BAR0, RIRBSTS) & LOLA_RIRB_INT_MASK; if (tmp) lola_writeb(chip, BAR0, RIRBSTS, tmp); chip->rirb.rp = chip->rirb.cmds = 0; return 0; } static void stop_corb_rirb(struct lola *chip) { /* disable ringbuffer DMAs */ lola_writeb(chip, BAR0, RIRBCTL, 0); lola_writeb(chip, BAR0, CORBCTL, 0); } static void lola_reset_setups(struct lola *chip) { /* update the granularity */ lola_set_granularity(chip, chip->granularity, true); /* update the sample clock */ lola_set_clock_index(chip, chip->clock.cur_index); /* enable unsolicited events of the clock widget */ lola_enable_clock_events(chip); /* update the analog gains */ lola_setup_all_analog_gains(chip, CAPT, false); /* input, update */ /* update SRC configuration if applicable */ lola_set_src_config(chip, chip->input_src_mask, false); /* update the analog outputs */ lola_setup_all_analog_gains(chip, PLAY, false); /* output, update */ } static int __devinit lola_parse_tree(struct lola *chip) { unsigned int val; int nid, err; err = lola_read_param(chip, 0, LOLA_PAR_VENDOR_ID, &val); if (err < 0) { printk(KERN_ERR SFX "Can't read VENDOR_ID\n"); return err; } val >>= 16; if (val != 0x1369) { printk(KERN_ERR SFX "Unknown codec vendor 0x%x\n", val); return -EINVAL; } err = lola_read_param(chip, 1, LOLA_PAR_FUNCTION_TYPE, &val); if (err < 0) { printk(KERN_ERR SFX "Can't read FUNCTION_TYPE for 0x%x\n", nid); return err; } if (val != 1) { printk(KERN_ERR SFX "Unknown function type %d\n", val); return -EINVAL; } err = lola_read_param(chip, 1, LOLA_PAR_SPECIFIC_CAPS, &val); if (err < 0) { printk(KERN_ERR SFX "Can't read SPECCAPS\n"); return err; } chip->lola_caps = val; chip->pin[CAPT].num_pins = LOLA_AFG_INPUT_PIN_COUNT(chip->lola_caps); chip->pin[PLAY].num_pins = LOLA_AFG_OUTPUT_PIN_COUNT(chip->lola_caps); snd_printdd(SFX "speccaps=0x%x, pins in=%d, out=%d\n", chip->lola_caps, chip->pin[CAPT].num_pins, chip->pin[PLAY].num_pins); if (chip->pin[CAPT].num_pins > MAX_AUDIO_INOUT_COUNT || chip->pin[PLAY].num_pins > MAX_AUDIO_INOUT_COUNT) { printk(KERN_ERR SFX "Invalid Lola-spec caps 0x%x\n", val); return -EINVAL; } nid = 0x02; err = lola_init_pcm(chip, CAPT, &nid); if (err < 0) return err; err = lola_init_pcm(chip, PLAY, &nid); if (err < 0) return err; err = lola_init_pins(chip, CAPT, &nid); if (err < 0) return err; err = lola_init_pins(chip, PLAY, &nid); if (err < 0) return err; if (LOLA_AFG_CLOCK_WIDGET_PRESENT(chip->lola_caps)) { err = lola_init_clock_widget(chip, nid); if (err < 0) return err; nid++; } if (LOLA_AFG_MIXER_WIDGET_PRESENT(chip->lola_caps)) { err = lola_init_mixer_widget(chip, nid); if (err < 0) return err; nid++; } /* enable unsolicited events of the clock widget */ err = lola_enable_clock_events(chip); if (err < 0) return err; /* if last ResetController was not a ColdReset, we don't know * the state of the card; initialize here again */ if (!chip->cold_reset) { lola_reset_setups(chip); chip->cold_reset = 1; } else { /* set the granularity if it is not the default */ if (chip->granularity != LOLA_GRANULARITY_MIN) lola_set_granularity(chip, chip->granularity, true); } return 0; } static void lola_stop_hw(struct lola *chip) { stop_corb_rirb(chip); lola_irq_disable(chip); } static void lola_free(struct lola *chip) { if (chip->initialized) lola_stop_hw(chip); lola_free_pcm(chip); lola_free_mixer(chip); if (chip->irq >= 0) free_irq(chip->irq, (void *)chip); if (chip->bar[0].remap_addr) iounmap(chip->bar[0].remap_addr); if (chip->bar[1].remap_addr) iounmap(chip->bar[1].remap_addr); if (chip->rb.area) snd_dma_free_pages(&chip->rb); pci_release_regions(chip->pci); pci_disable_device(chip->pci); kfree(chip); } static int lola_dev_free(struct snd_device *device) { lola_free(device->device_data); return 0; } static int __devinit lola_create(struct snd_card *card, struct pci_dev *pci, int dev, struct lola **rchip) { struct lola *chip; int err; unsigned int dever; static struct snd_device_ops ops = { .dev_free = lola_dev_free, }; *rchip = NULL; err = pci_enable_device(pci); if (err < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) { snd_printk(KERN_ERR SFX "cannot allocate chip\n"); pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&chip->reg_lock); mutex_init(&chip->open_mutex); chip->card = card; chip->pci = pci; chip->irq = -1; chip->granularity = granularity[dev]; switch (chip->granularity) { case 8: chip->sample_rate_max = 48000; break; case 16: chip->sample_rate_max = 96000; break; case 32: chip->sample_rate_max = 192000; break; default: snd_printk(KERN_WARNING SFX "Invalid granularity %d, reset to %d\n", chip->granularity, LOLA_GRANULARITY_MAX); chip->granularity = LOLA_GRANULARITY_MAX; chip->sample_rate_max = 192000; break; } chip->sample_rate_min = sample_rate_min[dev]; if (chip->sample_rate_min > chip->sample_rate_max) { snd_printk(KERN_WARNING SFX "Invalid sample_rate_min %d, reset to 16000\n", chip->sample_rate_min); chip->sample_rate_min = 16000; } err = pci_request_regions(pci, DRVNAME); if (err < 0) { kfree(chip); pci_disable_device(pci); return err; } chip->bar[0].addr = pci_resource_start(pci, 0); chip->bar[0].remap_addr = pci_ioremap_bar(pci, 0); chip->bar[1].addr = pci_resource_start(pci, 2); chip->bar[1].remap_addr = pci_ioremap_bar(pci, 2); if (!chip->bar[0].remap_addr || !chip->bar[1].remap_addr) { snd_printk(KERN_ERR SFX "ioremap error\n"); err = -ENXIO; goto errout; } pci_set_master(pci); err = reset_controller(chip); if (err < 0) goto errout; if (request_irq(pci->irq, lola_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { printk(KERN_ERR SFX "unable to grab IRQ %d\n", pci->irq); err = -EBUSY; goto errout; } chip->irq = pci->irq; synchronize_irq(chip->irq); dever = lola_readl(chip, BAR1, DEVER); chip->pcm[CAPT].num_streams = (dever >> 0) & 0x3ff; chip->pcm[PLAY].num_streams = (dever >> 10) & 0x3ff; chip->version = (dever >> 24) & 0xff; snd_printdd(SFX "streams in=%d, out=%d, version=0x%x\n", chip->pcm[CAPT].num_streams, chip->pcm[PLAY].num_streams, chip->version); /* Test LOLA_BAR1_DEVER */ if (chip->pcm[CAPT].num_streams > MAX_STREAM_IN_COUNT || chip->pcm[PLAY].num_streams > MAX_STREAM_OUT_COUNT || (!chip->pcm[CAPT].num_streams && !chip->pcm[PLAY].num_streams)) { printk(KERN_ERR SFX "invalid DEVER = %x\n", dever); err = -EINVAL; goto errout; } err = setup_corb_rirb(chip); if (err < 0) goto errout; err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) { snd_printk(KERN_ERR SFX "Error creating device [card]!\n"); goto errout; } strcpy(card->driver, "Lola"); strlcpy(card->shortname, "Digigram Lola", sizeof(card->shortname)); snprintf(card->longname, sizeof(card->longname), "%s at 0x%lx irq %i", card->shortname, chip->bar[0].addr, chip->irq); strcpy(card->mixername, card->shortname); lola_irq_enable(chip); chip->initialized = 1; *rchip = chip; return 0; errout: lola_free(chip); return err; } static int __devinit lola_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct lola *chip; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) { snd_printk(KERN_ERR SFX "Error creating card!\n"); return err; } snd_card_set_dev(card, &pci->dev); err = lola_create(card, pci, dev, &chip); if (err < 0) goto out_free; card->private_data = chip; err = lola_parse_tree(chip); if (err < 0) goto out_free; err = lola_create_pcm(chip); if (err < 0) goto out_free; err = lola_create_mixer(chip); if (err < 0) goto out_free; lola_proc_debug_new(chip); err = snd_card_register(card); if (err < 0) goto out_free; pci_set_drvdata(pci, card); dev++; return err; out_free: snd_card_free(card); return err; } static void __devexit lola_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } /* PCI IDs */ static DEFINE_PCI_DEVICE_TABLE(lola_ids) = { { PCI_VDEVICE(DIGIGRAM, 0x0001) }, { 0, } }; MODULE_DEVICE_TABLE(pci, lola_ids); /* pci_driver definition */ static struct pci_driver driver = { .name = KBUILD_MODNAME, .id_table = lola_ids, .probe = lola_probe, .remove = __devexit_p(lola_remove), }; static int __init alsa_card_lola_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_lola_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_lola_init) module_exit(alsa_card_lola_exit)