/* * Copyright (c) by Jaroslav Kysela * Creative Labs, Inc. * Routines for control of EMU10K1 chips * * BUGS: * -- * * TODO: * -- * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include "p17v.h" unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; unsigned int mask; mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK; regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK); if (reg & 0xff000000) { unsigned char size, offset; size = (reg >> 24) & 0x3f; offset = (reg >> 16) & 0x1f; mask = ((1 << size) - 1) << offset; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); val = inl(emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return (val & mask) >> offset; } else { spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); val = inl(emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } } EXPORT_SYMBOL(snd_emu10k1_ptr_read); void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; unsigned int mask; if (!emu) { snd_printk(KERN_ERR "ptr_write: emu is null!\n"); dump_stack(); return; } mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK; regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK); if (reg & 0xff000000) { unsigned char size, offset; size = (reg >> 24) & 0x3f; offset = (reg >> 16) & 0x1f; mask = ((1 << size) - 1) << offset; data = (data << offset) & mask; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); data |= inl(emu->port + DATA) & ~mask; outl(data, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } else { spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); outl(data, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } } EXPORT_SYMBOL(snd_emu10k1_ptr_write); unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + 0x20 + PTR); val = inl(emu->port + 0x20 + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + 0x20 + PTR); outl(data, emu->port + 0x20 + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } int snd_emu10k1_spi_write(struct snd_emu10k1 * emu, unsigned int data) { unsigned int reset, set; unsigned int reg, tmp; int n, result; int err = 0; /* This function is not re-entrant, so protect against it. */ spin_lock(&emu->spi_lock); if (emu->card_capabilities->ca0108_chip) reg = 0x3c; /* PTR20, reg 0x3c */ else { /* For other chip types the SPI register * is currently unknown. */ err = 1; goto spi_write_exit; } if (data > 0xffff) { /* Only 16bit values allowed */ err = 1; goto spi_write_exit; } tmp = snd_emu10k1_ptr20_read(emu, reg, 0); reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */ set = reset | 0x10000; /* Set xxx1xxxx */ snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */ snd_emu10k1_ptr20_write(emu, reg, 0, set | data); result = 1; /* Wait for status bit to return to 0 */ for (n = 0; n < 100; n++) { udelay(10); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); if (!(tmp & 0x10000)) { result = 0; break; } } if (result) { /* Timed out */ err = 1; goto spi_write_exit; } snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */ err = 0; spi_write_exit: spin_unlock(&emu->spi_lock); return err; } /* The ADC does not support i2c read, so only write is implemented */ int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu, u32 reg, u32 value) { u32 tmp; int timeout = 0; int status; int retry; int err = 0; if ((reg > 0x7f) || (value > 0x1ff)) { snd_printk(KERN_ERR "i2c_write: invalid values.\n"); return -EINVAL; } /* This function is not re-entrant, so protect against it. */ spin_lock(&emu->i2c_lock); tmp = reg << 25 | value << 16; /* This controls the I2C connected to the WM8775 ADC Codec */ snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp); tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */ for (retry = 0; retry < 10; retry++) { /* Send the data to i2c */ tmp = 0; tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD); snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp); /* Wait till the transaction ends */ while (1) { mdelay(1); status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0); timeout++; if ((status & I2C_A_ADC_START) == 0) break; if (timeout > 1000) { snd_printk(KERN_WARNING "emu10k1:I2C:timeout status=0x%x\n", status); break; } } //Read back and see if the transaction is successful if ((status & I2C_A_ADC_ABORT) == 0) break; } if (retry == 10) { snd_printk(KERN_ERR "Writing to ADC failed!\n"); snd_printk(KERN_ERR "status=0x%x, reg=%d, value=%d\n", status, reg, value); /* dump_stack(); */ err = -EINVAL; } spin_unlock(&emu->i2c_lock); return err; } int snd_emu1010_fpga_write(struct snd_emu10k1 * emu, u32 reg, u32 value) { unsigned long flags; if (reg > 0x3f) return 1; reg += 0x40; /* 0x40 upwards are registers. */ if (value > 0x3f) /* 0 to 0x3f are values */ return 1; spin_lock_irqsave(&emu->emu_lock, flags); outl(reg, emu->port + A_IOCFG); udelay(10); outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */ udelay(10); outl(value, emu->port + A_IOCFG); udelay(10); outl(value | 0x80 , emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */ spin_unlock_irqrestore(&emu->emu_lock, flags); return 0; } int snd_emu1010_fpga_read(struct snd_emu10k1 * emu, u32 reg, u32 *value) { unsigned long flags; if (reg > 0x3f) return 1; reg += 0x40; /* 0x40 upwards are registers. */ spin_lock_irqsave(&emu->emu_lock, flags); outl(reg, emu->port + A_IOCFG); udelay(10); outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */ udelay(10); *value = ((inl(emu->port + A_IOCFG) >> 8) & 0x7f); spin_unlock_irqrestore(&emu->emu_lock, flags); return 0; } /* Each Destination has one and only one Source, * but one Source can feed any number of Destinations simultaneously. */ int snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 * emu, u32 dst, u32 src) { snd_emu1010_fpga_write(emu, 0x00, ((dst >> 8) & 0x3f) ); snd_emu1010_fpga_write(emu, 0x01, (dst & 0x3f) ); snd_emu1010_fpga_write(emu, 0x02, ((src >> 8) & 0x3f) ); snd_emu1010_fpga_write(emu, 0x03, (src & 0x3f) ); return 0; } void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) | intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) & ~intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(CLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << (voicenum - 32); } else { outl(CLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << voicenum; } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(CLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << (voicenum - 32)); } else { outl(CLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << voicenum); } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(CLIPH << 16, emu->port + PTR); voicenum = 1 << (voicenum - 32); } else { outl(CLIPL << 16, emu->port + PTR); voicenum = 1 << voicenum; } outl(voicenum, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(HLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << (voicenum - 32); } else { outl(HLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val |= 1 << voicenum; } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int val; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(HLIEH << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << (voicenum - 32)); } else { outl(HLIEL << 16, emu->port + PTR); val = inl(emu->port + DATA); val &= ~(1 << voicenum); } outl(val, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(HLIPH << 16, emu->port + PTR); voicenum = 1 << (voicenum - 32); } else { outl(HLIPL << 16, emu->port + PTR); voicenum = 1 << voicenum; } outl(voicenum, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int sol; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(SOLEH << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol |= 1 << (voicenum - 32); } else { outl(SOLEL << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol |= 1 << voicenum; } outl(sol, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) { unsigned long flags; unsigned int sol; spin_lock_irqsave(&emu->emu_lock, flags); /* voice interrupt */ if (voicenum >= 32) { outl(SOLEH << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol &= ~(1 << (voicenum - 32)); } else { outl(SOLEL << 16, emu->port + PTR); sol = inl(emu->port + DATA); sol &= ~(1 << voicenum); } outl(sol, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait) { volatile unsigned count; unsigned int newtime = 0, curtime; curtime = inl(emu->port + WC) >> 6; while (wait-- > 0) { count = 0; while (count++ < 16384) { newtime = inl(emu->port + WC) >> 6; if (newtime != curtime) break; } if (count > 16384) break; curtime = newtime; } } unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct snd_emu10k1 *emu = ac97->private_data; unsigned long flags; unsigned short val; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); val = inw(emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data) { struct snd_emu10k1 *emu = ac97->private_data; unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); outw(data, emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } /* * convert rate to pitch */ unsigned int snd_emu10k1_rate_to_pitch(unsigned int rate) { static u32 logMagTable[128] = { 0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3, 0x13aa2, 0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a, 0x2655d, 0x28ed5, 0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb, 0x381b6, 0x3a93d, 0x3d081, 0x3f782, 0x41e42, 0x444c1, 0x46b01, 0x49101, 0x4b6c4, 0x4dc49, 0x50191, 0x5269e, 0x54b6f, 0x57006, 0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7, 0x646ee, 0x66a00, 0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829, 0x759d4, 0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e, 0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20, 0x93d26, 0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec, 0xa11d8, 0xa2f9d, 0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241, 0xadf26, 0xafbe7, 0xb1885, 0xb3500, 0xb5157, 0xb6d8c, 0xb899f, 0xba58f, 0xbc15e, 0xbdd0c, 0xbf899, 0xc1404, 0xc2f50, 0xc4a7b, 0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c, 0xceaec, 0xd053f, 0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3, 0xdba4a, 0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3, 0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a, 0xf2c83, 0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57, 0xfd1a7, 0xfe8df }; static char logSlopeTable[128] = { 0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58, 0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53, 0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f, 0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b, 0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47, 0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44, 0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41, 0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e, 0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c, 0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39, 0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37, 0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35, 0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34, 0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32, 0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30, 0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f }; int i; if (rate == 0) return 0; /* Bail out if no leading "1" */ rate *= 11185; /* Scale 48000 to 0x20002380 */ for (i = 31; i > 0; i--) { if (rate & 0x80000000) { /* Detect leading "1" */ return (((unsigned int) (i - 15) << 20) + logMagTable[0x7f & (rate >> 24)] + (0x7f & (rate >> 17)) * logSlopeTable[0x7f & (rate >> 24)]); } rate <<= 1; } return 0; /* Should never reach this point */ }