/* * Driver for C-Media CMI8338 and 8738 PCI soundcards. * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Does not work. Warning may block system in capture mode */ /* #define USE_VAR48KRATE */ #include <asm/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/gameport.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/info.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/rawmidi.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/sb.h> #include <sound/asoundef.h> #include <sound/initval.h> MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," "{C-Media,CMI8738B}," "{C-Media,CMI8338A}," "{C-Media,CMI8338B}}"); #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) #define SUPPORT_JOYSTICK 1 #endif static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ static long mpu_port[SNDRV_CARDS]; static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; #ifdef SUPPORT_JOYSTICK static int joystick_port[SNDRV_CARDS]; #endif module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); module_param_array(mpu_port, long, NULL, 0444); MODULE_PARM_DESC(mpu_port, "MPU-401 port."); module_param_array(fm_port, long, NULL, 0444); MODULE_PARM_DESC(fm_port, "FM port."); module_param_array(soft_ac3, bool, NULL, 0444); MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); #ifdef SUPPORT_JOYSTICK module_param_array(joystick_port, int, NULL, 0444); MODULE_PARM_DESC(joystick_port, "Joystick port address."); #endif /* * CM8x38 registers definition */ #define CM_REG_FUNCTRL0 0x00 #define CM_RST_CH1 0x00080000 #define CM_RST_CH0 0x00040000 #define CM_CHEN1 0x00020000 /* ch1: enable */ #define CM_CHEN0 0x00010000 /* ch0: enable */ #define CM_PAUSE1 0x00000008 /* ch1: pause */ #define CM_PAUSE0 0x00000004 /* ch0: pause */ #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ #define CM_REG_FUNCTRL1 0x04 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ #define CM_DSFC_SHIFT 13 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ #define CM_ASFC_SHIFT 10 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ #define CM_BREQ 0x00000010 /* bus master enabled */ #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ #define CM_UART_EN 0x00000004 /* legacy UART */ #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ #define CM_ZVPORT 0x00000001 /* ZVPORT */ #define CM_REG_CHFORMAT 0x08 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ #define CM_CHB3D 0x20000000 /* 4 channels */ #define CM_CHIP_MASK1 0x1f000000 #define CM_CHIP_037 0x01000000 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ #define CM_ADCBITLEN_MASK 0x0000C000 #define CM_ADCBITLEN_16 0x00000000 #define CM_ADCBITLEN_15 0x00004000 #define CM_ADCBITLEN_14 0x00008000 #define CM_ADCBITLEN_13 0x0000C000 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ #define CM_ADCDACLEN_060 0x00000000 #define CM_ADCDACLEN_066 0x00001000 #define CM_ADCDACLEN_130 0x00002000 #define CM_ADCDACLEN_280 0x00003000 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ #define CM_ADCDLEN_ORIGINAL 0x00000000 #define CM_ADCDLEN_EXTRA 0x00001000 #define CM_ADCDLEN_24K 0x00002000 #define CM_ADCDLEN_WEIGHT 0x00003000 #define CM_CH1_SRATE_176K 0x00000800 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ #define CM_CH1_SRATE_88K 0x00000400 #define CM_CH0_SRATE_176K 0x00000200 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ #define CM_CH0_SRATE_88K 0x00000100 #define CM_CH0_SRATE_128K 0x00000300 #define CM_CH0_SRATE_MASK 0x00000300 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ #define CM_SPDLOCKED 0x00000010 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ #define CM_CH1FMT_SHIFT 2 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ #define CM_CH0FMT_SHIFT 0 #define CM_REG_INT_HLDCLR 0x0C #define CM_CHIP_MASK2 0xff000000 #define CM_CHIP_8768 0x20000000 #define CM_CHIP_055 0x08000000 #define CM_CHIP_039 0x04000000 #define CM_CHIP_039_6CH 0x01000000 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ #define CM_TDMA_INT_EN 0x00040000 #define CM_CH1_INT_EN 0x00020000 #define CM_CH0_INT_EN 0x00010000 #define CM_REG_INT_STATUS 0x10 #define CM_INTR 0x80000000 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ #define CM_UARTINT 0x00010000 #define CM_LTDMAINT 0x00008000 #define CM_HTDMAINT 0x00004000 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ #define CM_CH1BUSY 0x00000008 #define CM_CH0BUSY 0x00000004 #define CM_CHINT1 0x00000002 #define CM_CHINT0 0x00000001 #define CM_REG_LEGACY_CTRL 0x14 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ #define CM_VMPU_330 0x00000000 #define CM_VMPU_320 0x20000000 #define CM_VMPU_310 0x40000000 #define CM_VMPU_300 0x60000000 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ #define CM_VSBSEL_220 0x00000000 #define CM_VSBSEL_240 0x04000000 #define CM_VSBSEL_260 0x08000000 #define CM_VSBSEL_280 0x0C000000 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ #define CM_FMSEL_388 0x00000000 #define CM_FMSEL_3C8 0x01000000 #define CM_FMSEL_3E0 0x02000000 #define CM_FMSEL_3E8 0x03000000 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ #define CM_C_EECS 0x00040000 #define CM_C_EEDI46 0x00020000 #define CM_C_EECK46 0x00010000 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ #define CM_EXBASEN 0x00001000 /* external bass input enable */ #define CM_REG_MISC_CTRL 0x18 #define CM_PWD 0x80000000 /* power down */ #define CM_RESET 0x40000000 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ #define CM_TXVX 0x08000000 /* model 037? */ #define CM_N4SPK3D 0x04000000 /* copy front to rear */ #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ #define CM_SPDIF48K 0x01000000 /* write */ #define CM_SPATUS48K 0x01000000 /* read */ #define CM_ENDBDAC 0x00800000 /* enable double dac */ #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ #define CM_FM_EN 0x00080000 /* enable legacy FM */ #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ #define CM_VIDWPDSB 0x00010000 /* model 037? */ #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ #define CM_VIDWPPRT 0x00002000 /* model 037? */ #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ #define CM_ENCENTER 0x00000080 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ #define CM_UPDDMA_2048 0x00000000 #define CM_UPDDMA_1024 0x00000004 #define CM_UPDDMA_512 0x00000008 #define CM_UPDDMA_256 0x0000000C #define CM_TWAIT_MASK 0x00000003 /* model 037 */ #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ #define CM_REG_TDMA_POSITION 0x1C #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ /* byte */ #define CM_REG_MIXER0 0x20 #define CM_REG_SBVR 0x20 /* write: sb16 version */ #define CM_REG_DEV 0x20 /* read: hardware device version */ #define CM_REG_MIXER21 0x21 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ #define CM_PROINV 0x02 /* SBPro left/right channel switching */ #define CM_X_SB16 0x01 /* SB16 compatible */ #define CM_REG_SB16_DATA 0x22 #define CM_REG_SB16_ADDR 0x23 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ #define CM_REG_MIXER1 0x24 #define CM_FMMUTE 0x80 /* mute FM */ #define CM_FMMUTE_SHIFT 7 #define CM_WSMUTE 0x40 /* mute PCM */ #define CM_WSMUTE_SHIFT 6 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ #define CM_REAR2LIN_SHIFT 5 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ #define CM_REAR2FRONT_SHIFT 4 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ #define CM_WAVEINL_SHIFT 3 #define CM_WAVEINR 0x04 /* digical wave rec. right */ #define CM_WAVEINR_SHIFT 2 #define CM_X3DEN 0x02 /* 3D surround enable */ #define CM_X3DEN_SHIFT 1 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ #define CM_CDPLAY_SHIFT 0 #define CM_REG_MIXER2 0x25 #define CM_RAUXREN 0x80 /* AUX right capture */ #define CM_RAUXREN_SHIFT 7 #define CM_RAUXLEN 0x40 /* AUX left capture */ #define CM_RAUXLEN_SHIFT 6 #define CM_VAUXRM 0x20 /* AUX right mute */ #define CM_VAUXRM_SHIFT 5 #define CM_VAUXLM 0x10 /* AUX left mute */ #define CM_VAUXLM_SHIFT 4 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ #define CM_VADMIC_SHIFT 1 #define CM_MICGAINZ 0x01 /* mic boost */ #define CM_MICGAINZ_SHIFT 0 #define CM_REG_MIXER3 0x24 #define CM_REG_AUX_VOL 0x26 #define CM_VAUXL_MASK 0xf0 #define CM_VAUXR_MASK 0x0f #define CM_REG_MISC 0x27 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ #define CM_XGPO1 0x20 // #define CM_XGPBIO 0x04 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ #define CM_SPDVALID 0x02 /* spdif input valid check */ #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ /* * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 * or identical with AC97 codec? */ #define CM_REG_EXTERN_CODEC CM_REG_AC97 /* * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) */ #define CM_REG_MPU_PCI 0x40 /* * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) */ #define CM_REG_FM_PCI 0x50 /* * access from SB-mixer port */ #define CM_REG_EXTENT_IND 0xf0 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ #define CM_VPHONE_SHIFT 5 #define CM_VPHOM 0x10 /* Phone mute control */ #define CM_VSPKM 0x08 /* Speaker mute control, default high */ #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ #define CM_VADMIC3 0x01 /* Mic record boost */ /* * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL * unit (readonly?). */ #define CM_REG_PLL 0xf8 /* * extended registers */ #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ #define CM_REG_EXT_MISC 0x90 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ /* * size of i/o region */ #define CM_EXTENT_CODEC 0x100 #define CM_EXTENT_MIDI 0x2 #define CM_EXTENT_SYNTH 0x4 /* * channels for playback / capture */ #define CM_CH_PLAY 0 #define CM_CH_CAPT 1 /* * flags to check device open/close */ #define CM_OPEN_NONE 0 #define CM_OPEN_CH_MASK 0x01 #define CM_OPEN_DAC 0x10 #define CM_OPEN_ADC 0x20 #define CM_OPEN_SPDIF 0x40 #define CM_OPEN_MCHAN 0x80 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) #if CM_CH_PLAY == 1 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K #define CM_PLAYBACK_SPDF CM_SPDF_1 #define CM_CAPTURE_SPDF CM_SPDF_0 #else #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K #define CM_PLAYBACK_SPDF CM_SPDF_0 #define CM_CAPTURE_SPDF CM_SPDF_1 #endif /* * driver data */ struct cmipci_pcm { struct snd_pcm_substream *substream; u8 running; /* dac/adc running? */ u8 fmt; /* format bits */ u8 is_dac; u8 needs_silencing; unsigned int dma_size; /* in frames */ unsigned int shift; unsigned int ch; /* channel (0/1) */ unsigned int offset; /* physical address of the buffer */ }; /* mixer elements toggled/resumed during ac3 playback */ struct cmipci_mixer_auto_switches { const char *name; /* switch to toggle */ int toggle_on; /* value to change when ac3 mode */ }; static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { {"PCM Playback Switch", 0}, {"IEC958 Output Switch", 1}, {"IEC958 Mix Analog", 0}, // {"IEC958 Out To DAC", 1}, // no longer used {"IEC958 Loop", 0}, }; #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) struct cmipci { struct snd_card *card; struct pci_dev *pci; unsigned int device; /* device ID */ int irq; unsigned long iobase; unsigned int ctrl; /* FUNCTRL0 current value */ struct snd_pcm *pcm; /* DAC/ADC PCM */ struct snd_pcm *pcm2; /* 2nd DAC */ struct snd_pcm *pcm_spdif; /* SPDIF */ int chip_version; int max_channels; unsigned int can_ac3_sw: 1; unsigned int can_ac3_hw: 1; unsigned int can_multi_ch: 1; unsigned int can_96k: 1; /* samplerate above 48k */ unsigned int do_soft_ac3: 1; unsigned int spdif_playback_avail: 1; /* spdif ready? */ unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ int spdif_counter; /* for software AC3 */ unsigned int dig_status; unsigned int dig_pcm_status; struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ int opened[2]; /* open mode */ struct mutex open_mutex; unsigned int mixer_insensitive: 1; struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; int mixer_res_status[CM_SAVED_MIXERS]; struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ /* external MIDI */ struct snd_rawmidi *rmidi; #ifdef SUPPORT_JOYSTICK struct gameport *gameport; #endif spinlock_t reg_lock; #ifdef CONFIG_PM unsigned int saved_regs[0x20]; unsigned char saved_mixers[0x20]; #endif }; /* read/write operations for dword register */ static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) { outl(data, cm->iobase + cmd); } static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) { return inl(cm->iobase + cmd); } /* read/write operations for word register */ static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) { outw(data, cm->iobase + cmd); } static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) { return inw(cm->iobase + cmd); } /* read/write operations for byte register */ static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) { outb(data, cm->iobase + cmd); } static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) { return inb(cm->iobase + cmd); } /* bit operations for dword register */ static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) { unsigned int val, oval; val = oval = inl(cm->iobase + cmd); val |= flag; if (val == oval) return 0; outl(val, cm->iobase + cmd); return 1; } static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) { unsigned int val, oval; val = oval = inl(cm->iobase + cmd); val &= ~flag; if (val == oval) return 0; outl(val, cm->iobase + cmd); return 1; } /* bit operations for byte register */ static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) { unsigned char val, oval; val = oval = inb(cm->iobase + cmd); val |= flag; if (val == oval) return 0; outb(val, cm->iobase + cmd); return 1; } static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) { unsigned char val, oval; val = oval = inb(cm->iobase + cmd); val &= ~flag; if (val == oval) return 0; outb(val, cm->iobase + cmd); return 1; } /* * PCM interface */ /* * calculate frequency */ static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; static unsigned int snd_cmipci_rate_freq(unsigned int rate) { unsigned int i; for (i = 0; i < ARRAY_SIZE(rates); i++) { if (rates[i] == rate) return i; } snd_BUG(); return 0; } #ifdef USE_VAR48KRATE /* * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) * does it this way .. maybe not. Never get any information from C-Media about * that <werner@suse.de>. */ static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) { unsigned int delta, tolerance; int xm, xn, xr; for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) rate <<= 1; *n = -1; if (*r > 0xff) goto out; tolerance = rate*CM_TOLERANCE_RATE; for (xn = (1+2); xn < (0x1f+2); xn++) { for (xm = (1+2); xm < (0xff+2); xm++) { xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; if (xr < rate) delta = rate - xr; else delta = xr - rate; /* * If we found one, remember this, * and try to find a closer one */ if (delta < tolerance) { tolerance = delta; *m = xm - 2; *n = xn - 2; } } } out: return (*n > -1); } /* * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen * at the register CM_REG_FUNCTRL1 (0x04). * Problem: other ways are also possible (any information about that?) */ static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) { unsigned int reg = CM_REG_PLL + slot; /* * Guess that this programs at reg. 0x04 the pos 15:13/12:10 * for DSFC/ASFC (000 up to 111). */ /* FIXME: Init (Do we've to set an other register first before programming?) */ /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ snd_cmipci_write_b(cm, reg, rate>>8); snd_cmipci_write_b(cm, reg, rate&0xff); /* FIXME: Setup (Do we've to set an other register first to enable this?) */ } #endif /* USE_VAR48KRATE */ static int snd_cmipci_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct cmipci *cm = snd_pcm_substream_chip(substream); if (params_channels(hw_params) > 2) { mutex_lock(&cm->open_mutex); if (cm->opened[CM_CH_PLAY]) { mutex_unlock(&cm->open_mutex); return -EBUSY; } /* reserve the channel A */ cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; mutex_unlock(&cm->open_mutex); } return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) { int reset = CM_RST_CH0 << (cm->channel[ch].ch); snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); udelay(10); } static int snd_cmipci_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } /* */ static unsigned int hw_channels[] = {1, 2, 4, 6, 8}; static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { .count = 3, .list = hw_channels, .mask = 0, }; static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { .count = 4, .list = hw_channels, .mask = 0, }; static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { .count = 5, .list = hw_channels, .mask = 0, }; static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) { if (channels > 2) { if (!cm->can_multi_ch || !rec->ch) return -EINVAL; if (rec->fmt != 0x03) /* stereo 16bit only */ return -EINVAL; } if (cm->can_multi_ch) { spin_lock_irq(&cm->reg_lock); if (channels > 2) { snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); } else { snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); } if (channels == 8) snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); else snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); if (channels == 6) { snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); } else { snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); } if (channels == 4) snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); else snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); spin_unlock_irq(&cm->reg_lock); } return 0; } /* * prepare playback/capture channel * channel to be used must have been set in rec->ch. */ static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, struct snd_pcm_substream *substream) { unsigned int reg, freq, freq_ext, val; unsigned int period_size; struct snd_pcm_runtime *runtime = substream->runtime; rec->fmt = 0; rec->shift = 0; if (snd_pcm_format_width(runtime->format) >= 16) { rec->fmt |= 0x02; if (snd_pcm_format_width(runtime->format) > 16) rec->shift++; /* 24/32bit */ } if (runtime->channels > 1) rec->fmt |= 0x01; if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { snd_printd("cannot set dac channels\n"); return -EINVAL; } rec->offset = runtime->dma_addr; /* buffer and period sizes in frame */ rec->dma_size = runtime->buffer_size << rec->shift; period_size = runtime->period_size << rec->shift; if (runtime->channels > 2) { /* multi-channels */ rec->dma_size = (rec->dma_size * runtime->channels) / 2; period_size = (period_size * runtime->channels) / 2; } spin_lock_irq(&cm->reg_lock); /* set buffer address */ reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; snd_cmipci_write(cm, reg, rec->offset); /* program sample counts */ reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; snd_cmipci_write_w(cm, reg, rec->dma_size - 1); snd_cmipci_write_w(cm, reg + 2, period_size - 1); /* set adc/dac flag */ val = rec->ch ? CM_CHADC1 : CM_CHADC0; if (rec->is_dac) cm->ctrl &= ~val; else cm->ctrl |= val; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); /* set sample rate */ freq = 0; freq_ext = 0; if (runtime->rate > 48000) switch (runtime->rate) { case 88200: freq_ext = CM_CH0_SRATE_88K; break; case 96000: freq_ext = CM_CH0_SRATE_96K; break; case 128000: freq_ext = CM_CH0_SRATE_128K; break; default: snd_BUG(); break; } else freq = snd_cmipci_rate_freq(runtime->rate); val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); if (rec->ch) { val &= ~CM_DSFC_MASK; val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; } else { val &= ~CM_ASFC_MASK; val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; } snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); //snd_printd("cmipci: functrl1 = %08x\n", val); /* set format */ val = snd_cmipci_read(cm, CM_REG_CHFORMAT); if (rec->ch) { val &= ~CM_CH1FMT_MASK; val |= rec->fmt << CM_CH1FMT_SHIFT; } else { val &= ~CM_CH0FMT_MASK; val |= rec->fmt << CM_CH0FMT_SHIFT; } if (cm->can_96k) { val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); val |= freq_ext << (rec->ch * 2); } snd_cmipci_write(cm, CM_REG_CHFORMAT, val); //snd_printd("cmipci: chformat = %08x\n", val); if (!rec->is_dac && cm->chip_version) { if (runtime->rate > 44100) snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); else snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); } rec->running = 0; spin_unlock_irq(&cm->reg_lock); return 0; } /* * PCM trigger/stop */ static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, int cmd) { unsigned int inthld, chen, reset, pause; int result = 0; inthld = CM_CH0_INT_EN << rec->ch; chen = CM_CHEN0 << rec->ch; reset = CM_RST_CH0 << rec->ch; pause = CM_PAUSE0 << rec->ch; spin_lock(&cm->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: rec->running = 1; /* set interrupt */ snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); cm->ctrl |= chen; /* enable channel */ snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); break; case SNDRV_PCM_TRIGGER_STOP: rec->running = 0; /* disable interrupt */ snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); /* reset */ cm->ctrl &= ~chen; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); rec->needs_silencing = rec->is_dac; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: cm->ctrl |= pause; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: cm->ctrl &= ~pause; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); break; default: result = -EINVAL; break; } spin_unlock(&cm->reg_lock); return result; } /* * return the current pointer */ static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, struct snd_pcm_substream *substream) { size_t ptr; unsigned int reg, rem, tries; if (!rec->running) return 0; #if 1 // this seems better.. reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; for (tries = 0; tries < 3; tries++) { rem = snd_cmipci_read_w(cm, reg); if (rem < rec->dma_size) goto ok; } printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem); return SNDRV_PCM_POS_XRUN; ok: ptr = (rec->dma_size - (rem + 1)) >> rec->shift; #else reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; ptr = snd_cmipci_read(cm, reg) - rec->offset; ptr = bytes_to_frames(substream->runtime, ptr); #endif if (substream->runtime->channels > 2) ptr = (ptr * 2) / substream->runtime->channels; return ptr; } /* * playback */ static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct cmipci *cm = snd_pcm_substream_chip(substream); return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); } static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); } /* * capture */ static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct cmipci *cm = snd_pcm_substream_chip(substream); return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); } static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); } /* * hw preparation for spdif */ static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *chip = snd_kcontrol_chip(kcontrol); int i; spin_lock_irq(&chip->reg_lock); for (i = 0; i < 4; i++) ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *chip = snd_kcontrol_chip(kcontrol); int i, change; unsigned int val; val = 0; spin_lock_irq(&chip->reg_lock); for (i = 0; i < 4; i++) val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); change = val != chip->dig_status; chip->dig_status = val; spin_unlock_irq(&chip->reg_lock); return change; } static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_cmipci_spdif_default_info, .get = snd_cmipci_spdif_default_get, .put = snd_cmipci_spdif_default_put }; static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), .info = snd_cmipci_spdif_mask_info, .get = snd_cmipci_spdif_mask_get, }; static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *chip = snd_kcontrol_chip(kcontrol); int i; spin_lock_irq(&chip->reg_lock); for (i = 0; i < 4; i++) ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *chip = snd_kcontrol_chip(kcontrol); int i, change; unsigned int val; val = 0; spin_lock_irq(&chip->reg_lock); for (i = 0; i < 4; i++) val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); change = val != chip->dig_pcm_status; chip->dig_pcm_status = val; spin_unlock_irq(&chip->reg_lock); return change; } static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata = { .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_cmipci_spdif_stream_info, .get = snd_cmipci_spdif_stream_get, .put = snd_cmipci_spdif_stream_put }; /* */ /* save mixer setting and mute for AC3 playback */ static int save_mixer_state(struct cmipci *cm) { if (! cm->mixer_insensitive) { struct snd_ctl_elem_value *val; unsigned int i; val = kmalloc(sizeof(*val), GFP_ATOMIC); if (!val) return -ENOMEM; for (i = 0; i < CM_SAVED_MIXERS; i++) { struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; if (ctl) { int event; memset(val, 0, sizeof(*val)); ctl->get(ctl, val); cm->mixer_res_status[i] = val->value.integer.value[0]; val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; event = SNDRV_CTL_EVENT_MASK_INFO; if (cm->mixer_res_status[i] != val->value.integer.value[0]) { ctl->put(ctl, val); /* toggle */ event |= SNDRV_CTL_EVENT_MASK_VALUE; } ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(cm->card, event, &ctl->id); } } kfree(val); cm->mixer_insensitive = 1; } return 0; } /* restore the previously saved mixer status */ static void restore_mixer_state(struct cmipci *cm) { if (cm->mixer_insensitive) { struct snd_ctl_elem_value *val; unsigned int i; val = kmalloc(sizeof(*val), GFP_KERNEL); if (!val) return; cm->mixer_insensitive = 0; /* at first clear this; otherwise the changes will be ignored */ for (i = 0; i < CM_SAVED_MIXERS; i++) { struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; if (ctl) { int event; memset(val, 0, sizeof(*val)); ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; ctl->get(ctl, val); event = SNDRV_CTL_EVENT_MASK_INFO; if (val->value.integer.value[0] != cm->mixer_res_status[i]) { val->value.integer.value[0] = cm->mixer_res_status[i]; ctl->put(ctl, val); event |= SNDRV_CTL_EVENT_MASK_VALUE; } snd_ctl_notify(cm->card, event, &ctl->id); } } kfree(val); } } /* spinlock held! */ static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) { if (do_ac3) { /* AC3EN for 037 */ snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); /* AC3EN for 039 */ snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); if (cm->can_ac3_hw) { /* SPD24SEL for 037, 0x02 */ /* SPD24SEL for 039, 0x20, but cannot be set */ snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); } else { /* can_ac3_sw */ /* SPD32SEL for 037 & 039, 0x20 */ snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); /* set 176K sample rate to fix 033 HW bug */ if (cm->chip_version == 33) { if (rate >= 48000) { snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); } else { snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); } } } } else { snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); if (cm->can_ac3_hw) { /* chip model >= 37 */ if (snd_pcm_format_width(subs->runtime->format) > 16) { snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); } else { snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); } } else { snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); } } } static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) { int rate, err; rate = subs->runtime->rate; if (up && do_ac3) if ((err = save_mixer_state(cm)) < 0) return err; spin_lock_irq(&cm->reg_lock); cm->spdif_playback_avail = up; if (up) { /* they are controlled via "IEC958 Output Switch" */ /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ if (cm->spdif_playback_enabled) snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); setup_ac3(cm, subs, do_ac3, rate); if (rate == 48000 || rate == 96000) snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); else snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); if (rate > 48000) snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); else snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); } else { /* they are controlled via "IEC958 Output Switch" */ /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); setup_ac3(cm, subs, 0, 0); } spin_unlock_irq(&cm->reg_lock); return 0; } /* * preparation */ /* playback - enable spdif only on the certain condition */ static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); int rate = substream->runtime->rate; int err, do_spdif, do_ac3 = 0; do_spdif = (rate >= 44100 && rate <= 96000 && substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && substream->runtime->channels == 2); if (do_spdif && cm->can_ac3_hw) do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) return err; return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); } /* playback (via device #2) - enable spdif always */ static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); int err, do_ac3; if (cm->can_ac3_hw) do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; else do_ac3 = 1; /* doesn't matter */ if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) return err; return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); } /* * Apparently, the samples last played on channel A stay in some buffer, even * after the channel is reset, and get added to the data for the rear DACs when * playing a multichannel stream on channel B. This is likely to generate * wraparounds and thus distortions. * To avoid this, we play at least one zero sample after the actual stream has * stopped. */ static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) { struct snd_pcm_runtime *runtime = rec->substream->runtime; unsigned int reg, val; if (rec->needs_silencing && runtime && runtime->dma_area) { /* set up a small silence buffer */ memset(runtime->dma_area, 0, PAGE_SIZE); reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); snd_cmipci_write(cm, reg, val); /* configure for 16 bits, 2 channels, 8 kHz */ if (runtime->channels > 2) set_dac_channels(cm, rec, 2); spin_lock_irq(&cm->reg_lock); val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); val &= ~(CM_ASFC_MASK << (rec->ch * 3)); val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); val = snd_cmipci_read(cm, CM_REG_CHFORMAT); val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); if (cm->can_96k) val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); snd_cmipci_write(cm, CM_REG_CHFORMAT, val); /* start stream (we don't need interrupts) */ cm->ctrl |= CM_CHEN0 << rec->ch; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); spin_unlock_irq(&cm->reg_lock); msleep(1); /* stop and reset stream */ spin_lock_irq(&cm->reg_lock); cm->ctrl &= ~(CM_CHEN0 << rec->ch); val = CM_RST_CH0 << rec->ch; snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); spin_unlock_irq(&cm->reg_lock); rec->needs_silencing = 0; } } static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); setup_spdif_playback(cm, substream, 0, 0); restore_mixer_state(cm); snd_cmipci_silence_hack(cm, &cm->channel[0]); return snd_cmipci_hw_free(substream); } static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); snd_cmipci_silence_hack(cm, &cm->channel[1]); return snd_cmipci_hw_free(substream); } /* capture */ static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); } /* capture with spdif (via device #2) */ static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); spin_lock_irq(&cm->reg_lock); snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); if (cm->can_96k) { if (substream->runtime->rate > 48000) snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); else snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); } if (snd_pcm_format_width(substream->runtime->format) > 16) snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); else snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); spin_unlock_irq(&cm->reg_lock); return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); } static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) { struct cmipci *cm = snd_pcm_substream_chip(subs); spin_lock_irq(&cm->reg_lock); snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); spin_unlock_irq(&cm->reg_lock); return snd_cmipci_hw_free(subs); } /* * interrupt handler */ static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) { struct cmipci *cm = dev_id; unsigned int status, mask = 0; /* fastpath out, to ease interrupt sharing */ status = snd_cmipci_read(cm, CM_REG_INT_STATUS); if (!(status & CM_INTR)) return IRQ_NONE; /* acknowledge interrupt */ spin_lock(&cm->reg_lock); if (status & CM_CHINT0) mask |= CM_CH0_INT_EN; if (status & CM_CHINT1) mask |= CM_CH1_INT_EN; snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); spin_unlock(&cm->reg_lock); if (cm->rmidi && (status & CM_UARTINT)) snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); if (cm->pcm) { if ((status & CM_CHINT0) && cm->channel[0].running) snd_pcm_period_elapsed(cm->channel[0].substream); if ((status & CM_CHINT1) && cm->channel[1].running) snd_pcm_period_elapsed(cm->channel[1].substream); } return IRQ_HANDLED; } /* * h/w infos */ /* playback on channel A */ static struct snd_pcm_hardware snd_cmipci_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* capture on channel B */ static struct snd_pcm_hardware snd_cmipci_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* playback on channel B - stereo 16bit only? */ static struct snd_pcm_hardware snd_cmipci_playback2 = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, .rate_min = 5512, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* spdif playback on channel A */ static struct snd_pcm_hardware snd_cmipci_playback_spdif = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .rate_min = 44100, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* spdif playback on channel A (32bit, IEC958 subframes) */ static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .rate_min = 44100, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* spdif capture on channel B */ static struct snd_pcm_hardware snd_cmipci_capture_spdif = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .rate_min = 44100, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 88200, 96000, 128000 }; static struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rate_constraints), .list = rate_constraints, .mask = 0, }; /* * check device open/close */ static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) { int ch = mode & CM_OPEN_CH_MASK; /* FIXME: a file should wait until the device becomes free * when it's opened on blocking mode. however, since the current * pcm framework doesn't pass file pointer before actually opened, * we can't know whether blocking mode or not in open callback.. */ mutex_lock(&cm->open_mutex); if (cm->opened[ch]) { mutex_unlock(&cm->open_mutex); return -EBUSY; } cm->opened[ch] = mode; cm->channel[ch].substream = subs; if (! (mode & CM_OPEN_DAC)) { /* disable dual DAC mode */ cm->channel[ch].is_dac = 0; spin_lock_irq(&cm->reg_lock); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); spin_unlock_irq(&cm->reg_lock); } mutex_unlock(&cm->open_mutex); return 0; } static void close_device_check(struct cmipci *cm, int mode) { int ch = mode & CM_OPEN_CH_MASK; mutex_lock(&cm->open_mutex); if (cm->opened[ch] == mode) { if (cm->channel[ch].substream) { snd_cmipci_ch_reset(cm, ch); cm->channel[ch].running = 0; cm->channel[ch].substream = NULL; } cm->opened[ch] = 0; if (! cm->channel[ch].is_dac) { /* enable dual DAC mode again */ cm->channel[ch].is_dac = 1; spin_lock_irq(&cm->reg_lock); snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); spin_unlock_irq(&cm->reg_lock); } } mutex_unlock(&cm->open_mutex); } /* */ static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) return err; runtime->hw = snd_cmipci_playback; if (cm->chip_version == 68) { runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } else if (cm->chip_version == 55) { err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (err < 0) return err; runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; runtime->hw.rate_max = 128000; } snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); cm->dig_pcm_status = cm->dig_status; return 0; } static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) return err; runtime->hw = snd_cmipci_capture; if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording runtime->hw.rate_min = 41000; runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; } else if (cm->chip_version == 55) { err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (err < 0) return err; runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; runtime->hw.rate_max = 128000; } snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); return 0; } static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ return err; runtime->hw = snd_cmipci_playback2; mutex_lock(&cm->open_mutex); if (! cm->opened[CM_CH_PLAY]) { if (cm->can_multi_ch) { runtime->hw.channels_max = cm->max_channels; if (cm->max_channels == 4) snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); else if (cm->max_channels == 6) snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); else if (cm->max_channels == 8) snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); } } mutex_unlock(&cm->open_mutex); if (cm->chip_version == 68) { runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } else if (cm->chip_version == 55) { err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (err < 0) return err; runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; runtime->hw.rate_max = 128000; } snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); return 0; } static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ return err; if (cm->can_ac3_hw) { runtime->hw = snd_cmipci_playback_spdif; if (cm->chip_version >= 37) { runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); } if (cm->can_96k) { runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } } else { runtime->hw = snd_cmipci_playback_iec958_subframe; } snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); cm->dig_pcm_status = cm->dig_status; return 0; } static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ return err; runtime->hw = snd_cmipci_capture_spdif; if (cm->can_96k && !(cm->chip_version == 68)) { runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); return 0; } /* */ static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); close_device_check(cm, CM_OPEN_PLAYBACK); return 0; } static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); close_device_check(cm, CM_OPEN_CAPTURE); return 0; } static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); close_device_check(cm, CM_OPEN_PLAYBACK2); close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); return 0; } static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); return 0; } static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) { struct cmipci *cm = snd_pcm_substream_chip(substream); close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); return 0; } /* */ static struct snd_pcm_ops snd_cmipci_playback_ops = { .open = snd_cmipci_playback_open, .close = snd_cmipci_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cmipci_hw_params, .hw_free = snd_cmipci_playback_hw_free, .prepare = snd_cmipci_playback_prepare, .trigger = snd_cmipci_playback_trigger, .pointer = snd_cmipci_playback_pointer, }; static struct snd_pcm_ops snd_cmipci_capture_ops = { .open = snd_cmipci_capture_open, .close = snd_cmipci_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cmipci_hw_params, .hw_free = snd_cmipci_hw_free, .prepare = snd_cmipci_capture_prepare, .trigger = snd_cmipci_capture_trigger, .pointer = snd_cmipci_capture_pointer, }; static struct snd_pcm_ops snd_cmipci_playback2_ops = { .open = snd_cmipci_playback2_open, .close = snd_cmipci_playback2_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cmipci_playback2_hw_params, .hw_free = snd_cmipci_playback2_hw_free, .prepare = snd_cmipci_capture_prepare, /* channel B */ .trigger = snd_cmipci_capture_trigger, /* channel B */ .pointer = snd_cmipci_capture_pointer, /* channel B */ }; static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { .open = snd_cmipci_playback_spdif_open, .close = snd_cmipci_playback_spdif_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cmipci_hw_params, .hw_free = snd_cmipci_playback_hw_free, .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ .trigger = snd_cmipci_playback_trigger, .pointer = snd_cmipci_playback_pointer, }; static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { .open = snd_cmipci_capture_spdif_open, .close = snd_cmipci_capture_spdif_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cmipci_hw_params, .hw_free = snd_cmipci_capture_spdif_hw_free, .prepare = snd_cmipci_capture_spdif_prepare, .trigger = snd_cmipci_capture_trigger, .pointer = snd_cmipci_capture_pointer, }; /* */ static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); pcm->private_data = cm; pcm->info_flags = 0; strcpy(pcm->name, "C-Media PCI DAC/ADC"); cm->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(cm->pci), 64*1024, 128*1024); return 0; } static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); pcm->private_data = cm; pcm->info_flags = 0; strcpy(pcm->name, "C-Media PCI 2nd DAC"); cm->pcm2 = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(cm->pci), 64*1024, 128*1024); return 0; } static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); pcm->private_data = cm; pcm->info_flags = 0; strcpy(pcm->name, "C-Media PCI IEC958"); cm->pcm_spdif = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(cm->pci), 64*1024, 128*1024); return 0; } /* * mixer interface: * - CM8338/8738 has a compatible mixer interface with SB16, but * lack of some elements like tone control, i/o gain and AGC. * - Access to native registers: * - A 3D switch * - Output mute switches */ static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) { outb(idx, s->iobase + CM_REG_SB16_ADDR); outb(data, s->iobase + CM_REG_SB16_DATA); } static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) { unsigned char v; outb(idx, s->iobase + CM_REG_SB16_ADDR); v = inb(s->iobase + CM_REG_SB16_DATA); return v; } /* * general mixer element */ struct cmipci_sb_reg { unsigned int left_reg, right_reg; unsigned int left_shift, right_shift; unsigned int mask; unsigned int invert: 1; unsigned int stereo: 1; }; #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_volume, \ .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ } #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) { r->left_reg = val & 0xff; r->right_reg = (val >> 8) & 0xff; r->left_shift = (val >> 16) & 0x07; r->right_shift = (val >> 19) & 0x07; r->invert = (val >> 22) & 1; r->stereo = (val >> 23) & 1; r->mask = (val >> 24) & 0xff; } static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct cmipci_sb_reg reg; cmipci_sb_reg_decode(®, kcontrol->private_value); uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = reg.stereo + 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = reg.mask; return 0; } static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; int val; cmipci_sb_reg_decode(®, kcontrol->private_value); spin_lock_irq(&cm->reg_lock); val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; if (reg.invert) val = reg.mask - val; ucontrol->value.integer.value[0] = val; if (reg.stereo) { val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; if (reg.invert) val = reg.mask - val; ucontrol->value.integer.value[1] = val; } spin_unlock_irq(&cm->reg_lock); return 0; } static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; int change; int left, right, oleft, oright; cmipci_sb_reg_decode(®, kcontrol->private_value); left = ucontrol->value.integer.value[0] & reg.mask; if (reg.invert) left = reg.mask - left; left <<= reg.left_shift; if (reg.stereo) { right = ucontrol->value.integer.value[1] & reg.mask; if (reg.invert) right = reg.mask - right; right <<= reg.right_shift; } else right = 0; spin_lock_irq(&cm->reg_lock); oleft = snd_cmipci_mixer_read(cm, reg.left_reg); left |= oleft & ~(reg.mask << reg.left_shift); change = left != oleft; if (reg.stereo) { if (reg.left_reg != reg.right_reg) { snd_cmipci_mixer_write(cm, reg.left_reg, left); oright = snd_cmipci_mixer_read(cm, reg.right_reg); } else oright = left; right |= oright & ~(reg.mask << reg.right_shift); change |= right != oright; snd_cmipci_mixer_write(cm, reg.right_reg, right); } else snd_cmipci_mixer_write(cm, reg.left_reg, left); spin_unlock_irq(&cm->reg_lock); return change; } /* * input route (left,right) -> (left,right) */ #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_input_sw, \ .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ } static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 4; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; int val1, val2; cmipci_sb_reg_decode(®, kcontrol->private_value); spin_lock_irq(&cm->reg_lock); val1 = snd_cmipci_mixer_read(cm, reg.left_reg); val2 = snd_cmipci_mixer_read(cm, reg.right_reg); spin_unlock_irq(&cm->reg_lock); ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; return 0; } static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; int change; int val1, val2, oval1, oval2; cmipci_sb_reg_decode(®, kcontrol->private_value); spin_lock_irq(&cm->reg_lock); oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; change = val1 != oval1 || val2 != oval2; snd_cmipci_mixer_write(cm, reg.left_reg, val1); snd_cmipci_mixer_write(cm, reg.right_reg, val2); spin_unlock_irq(&cm->reg_lock); return change; } /* * native mixer switches/volumes */ #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_native_mixer, \ .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ } #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_native_mixer, \ .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ } #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_native_mixer, \ .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ } #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_cmipci_info_native_mixer, \ .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ } static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct cmipci_sb_reg reg; cmipci_sb_reg_decode(®, kcontrol->private_value); uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = reg.stereo + 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = reg.mask; return 0; } static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; unsigned char oreg, val; cmipci_sb_reg_decode(®, kcontrol->private_value); spin_lock_irq(&cm->reg_lock); oreg = inb(cm->iobase + reg.left_reg); val = (oreg >> reg.left_shift) & reg.mask; if (reg.invert) val = reg.mask - val; ucontrol->value.integer.value[0] = val; if (reg.stereo) { val = (oreg >> reg.right_shift) & reg.mask; if (reg.invert) val = reg.mask - val; ucontrol->value.integer.value[1] = val; } spin_unlock_irq(&cm->reg_lock); return 0; } static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); struct cmipci_sb_reg reg; unsigned char oreg, nreg, val; cmipci_sb_reg_decode(®, kcontrol->private_value); spin_lock_irq(&cm->reg_lock); oreg = inb(cm->iobase + reg.left_reg); val = ucontrol->value.integer.value[0] & reg.mask; if (reg.invert) val = reg.mask - val; nreg = oreg & ~(reg.mask << reg.left_shift); nreg |= (val << reg.left_shift); if (reg.stereo) { val = ucontrol->value.integer.value[1] & reg.mask; if (reg.invert) val = reg.mask - val; nreg &= ~(reg.mask << reg.right_shift); nreg |= (val << reg.right_shift); } outb(nreg, cm->iobase + reg.left_reg); spin_unlock_irq(&cm->reg_lock); return (nreg != oreg); } /* * special case - check mixer sensitivity */ static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { //struct cmipci *cm = snd_kcontrol_chip(kcontrol); return snd_cmipci_get_native_mixer(kcontrol, ucontrol); } static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); if (cm->mixer_insensitive) { /* ignored */ return 0; } return snd_cmipci_put_native_mixer(kcontrol, ucontrol); } static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = { CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), { /* switch with sensitivity */ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PCM Playback Switch", .info = snd_cmipci_info_native_mixer, .get = snd_cmipci_get_native_mixer_sensitive, .put = snd_cmipci_put_native_mixer_sensitive, .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), }, CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), }; /* * other switches */ struct cmipci_switch_args { int reg; /* register index */ unsigned int mask; /* mask bits */ unsigned int mask_on; /* mask bits to turn on */ unsigned int is_byte: 1; /* byte access? */ unsigned int ac3_sensitive: 1; /* access forbidden during * non-audio operation? */ }; #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, struct cmipci_switch_args *args) { unsigned int val; struct cmipci *cm = snd_kcontrol_chip(kcontrol); spin_lock_irq(&cm->reg_lock); if (args->ac3_sensitive && cm->mixer_insensitive) { ucontrol->value.integer.value[0] = 0; spin_unlock_irq(&cm->reg_lock); return 0; } if (args->is_byte) val = inb(cm->iobase + args->reg); else val = snd_cmipci_read(cm, args->reg); ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; spin_unlock_irq(&cm->reg_lock); return 0; } static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci_switch_args *args; args = (struct cmipci_switch_args *)kcontrol->private_value; if (snd_BUG_ON(!args)) return -EINVAL; return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); } static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol, struct cmipci_switch_args *args) { unsigned int val; int change; struct cmipci *cm = snd_kcontrol_chip(kcontrol); spin_lock_irq(&cm->reg_lock); if (args->ac3_sensitive && cm->mixer_insensitive) { /* ignored */ spin_unlock_irq(&cm->reg_lock); return 0; } if (args->is_byte) val = inb(cm->iobase + args->reg); else val = snd_cmipci_read(cm, args->reg); change = (val & args->mask) != (ucontrol->value.integer.value[0] ? args->mask_on : (args->mask & ~args->mask_on)); if (change) { val &= ~args->mask; if (ucontrol->value.integer.value[0]) val |= args->mask_on; else val |= (args->mask & ~args->mask_on); if (args->is_byte) outb((unsigned char)val, cm->iobase + args->reg); else snd_cmipci_write(cm, args->reg, val); } spin_unlock_irq(&cm->reg_lock); return change; } static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci_switch_args *args; args = (struct cmipci_switch_args *)kcontrol->private_value; if (snd_BUG_ON(!args)) return -EINVAL; return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); } #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ .reg = xreg, \ .mask = xmask, \ .mask_on = xmask_on, \ .is_byte = xis_byte, \ .ac3_sensitive = xac3, \ } #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) #if 0 /* these will be controlled in pcm device */ DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); #endif DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); #if CM_CH_PLAY == 1 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ #else DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); #endif DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); #define DEFINE_SWITCH(sname, stype, sarg) \ { .name = sname, \ .iface = stype, \ .info = snd_cmipci_uswitch_info, \ .get = snd_cmipci_uswitch_get, \ .put = snd_cmipci_uswitch_put, \ .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ } #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) /* * callbacks for spdif output switch * needs toggle two registers.. */ static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int changed; changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); return changed; } static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *chip = snd_kcontrol_chip(kcontrol); int changed; changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); if (changed) { if (ucontrol->value.integer.value[0]) { if (chip->spdif_playback_avail) snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); } else { if (chip->spdif_playback_avail) snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); } } chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; return changed; } static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); static const char *const texts[3] = { "Line-In", "Rear Output", "Bass Output" }; return snd_ctl_enum_info(uinfo, 1, cm->chip_version >= 39 ? 3 : 2, texts); } static inline unsigned int get_line_in_mode(struct cmipci *cm) { unsigned int val; if (cm->chip_version >= 39) { val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); if (val & (CM_CENTR2LIN | CM_BASE2LIN)) return 2; } val = snd_cmipci_read_b(cm, CM_REG_MIXER1); if (val & CM_REAR2LIN) return 1; return 0; } static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); spin_lock_irq(&cm->reg_lock); ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); spin_unlock_irq(&cm->reg_lock); return 0; } static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); int change; spin_lock_irq(&cm->reg_lock); if (ucontrol->value.enumerated.item[0] == 2) change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); else change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); if (ucontrol->value.enumerated.item[0] == 1) change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); else change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); spin_unlock_irq(&cm->reg_lock); return change; } static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); /* same bit as spdi_phase */ spin_lock_irq(&cm->reg_lock); ucontrol->value.enumerated.item[0] = (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; spin_unlock_irq(&cm->reg_lock); return 0; } static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct cmipci *cm = snd_kcontrol_chip(kcontrol); int change; spin_lock_irq(&cm->reg_lock); if (ucontrol->value.enumerated.item[0]) change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); else change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); spin_unlock_irq(&cm->reg_lock); return change; } /* both for CM8338/8738 */ static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = { DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), { .name = "Line-In Mode", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .info = snd_cmipci_line_in_mode_info, .get = snd_cmipci_line_in_mode_get, .put = snd_cmipci_line_in_mode_put, }, }; /* for non-multichannel chips */ static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata = DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); /* only for CM8738 */ static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = { #if 0 /* controlled in pcm device */ DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), #endif // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), { .name = "IEC958 Output Switch", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .info = snd_cmipci_uswitch_info, .get = snd_cmipci_spdout_enable_get, .put = snd_cmipci_spdout_enable_put, }, DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), }; /* only for model 033/037 */ static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = { DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), }; /* only for model 039 or later */ static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = { DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), { .name = "Mic-In Mode", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .info = snd_cmipci_mic_in_mode_info, .get = snd_cmipci_mic_in_mode_get, .put = snd_cmipci_mic_in_mode_put, } }; /* card control switches */ static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata = DEFINE_CARD_SWITCH("Modem", modem); static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) { struct snd_card *card; struct snd_kcontrol_new *sw; struct snd_kcontrol *kctl; unsigned int idx; int err; if (snd_BUG_ON(!cm || !cm->card)) return -EINVAL; card = cm->card; strcpy(card->mixername, "CMedia PCI"); spin_lock_irq(&cm->reg_lock); snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ spin_unlock_irq(&cm->reg_lock); for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { if (cm->chip_version == 68) { // 8768 has no PCM volume if (!strcmp(snd_cmipci_mixers[idx].name, "PCM Playback Volume")) continue; } if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) return err; } /* mixer switches */ sw = snd_cmipci_mixer_switches; for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); if (err < 0) return err; } if (! cm->can_multi_ch) { err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); if (err < 0) return err; } if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { sw = snd_cmipci_8738_mixer_switches; for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); if (err < 0) return err; } if (cm->can_ac3_hw) { if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) return err; kctl->id.device = pcm_spdif_device; if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) return err; kctl->id.device = pcm_spdif_device; if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) return err; kctl->id.device = pcm_spdif_device; } if (cm->chip_version <= 37) { sw = snd_cmipci_old_mixer_switches; for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); if (err < 0) return err; } } } if (cm->chip_version >= 39) { sw = snd_cmipci_extra_mixer_switches; for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); if (err < 0) return err; } } /* card switches */ /* * newer chips don't have the register bits to force modem link * detection; the bit that was FLINKON now mutes CH1 */ if (cm->chip_version < 39) { err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_modem_switch, cm)); if (err < 0) return err; } for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { struct snd_ctl_elem_id elem_id; struct snd_kcontrol *ctl; memset(&elem_id, 0, sizeof(elem_id)); elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; strcpy(elem_id.name, cm_saved_mixer[idx].name); ctl = snd_ctl_find_id(cm->card, &elem_id); if (ctl) cm->mixer_res_ctl[idx] = ctl; } return 0; } /* * proc interface */ #ifdef CONFIG_PROC_FS static void snd_cmipci_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct cmipci *cm = entry->private_data; int i, v; snd_iprintf(buffer, "%s\n", cm->card->longname); for (i = 0; i < 0x94; i++) { if (i == 0x28) i = 0x90; v = inb(cm->iobase + i); if (i % 4 == 0) snd_iprintf(buffer, "\n%02x:", i); snd_iprintf(buffer, " %02x", v); } snd_iprintf(buffer, "\n"); } static void __devinit snd_cmipci_proc_init(struct cmipci *cm) { struct snd_info_entry *entry; if (! snd_card_proc_new(cm->card, "cmipci", &entry)) snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read); } #else /* !CONFIG_PROC_FS */ static inline void snd_cmipci_proc_init(struct cmipci *cm) {} #endif static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = { {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, {0,}, }; /* * check chip version and capabilities * driver name is modified according to the chip model */ static void __devinit query_chip(struct cmipci *cm) { unsigned int detect; /* check reg 0Ch, bit 24-31 */ detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; if (! detect) { /* check reg 08h, bit 24-28 */ detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; switch (detect) { case 0: cm->chip_version = 33; if (cm->do_soft_ac3) cm->can_ac3_sw = 1; else cm->can_ac3_hw = 1; break; case CM_CHIP_037: cm->chip_version = 37; cm->can_ac3_hw = 1; break; default: cm->chip_version = 39; cm->can_ac3_hw = 1; break; } cm->max_channels = 2; } else { if (detect & CM_CHIP_039) { cm->chip_version = 39; if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ cm->max_channels = 6; else cm->max_channels = 4; } else if (detect & CM_CHIP_8768) { cm->chip_version = 68; cm->max_channels = 8; cm->can_96k = 1; } else { cm->chip_version = 55; cm->max_channels = 6; cm->can_96k = 1; } cm->can_ac3_hw = 1; cm->can_multi_ch = 1; } } #ifdef SUPPORT_JOYSTICK static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev) { static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ struct gameport *gp; struct resource *r = NULL; int i, io_port = 0; if (joystick_port[dev] == 0) return -ENODEV; if (joystick_port[dev] == 1) { /* auto-detect */ for (i = 0; ports[i]; i++) { io_port = ports[i]; r = request_region(io_port, 1, "CMIPCI gameport"); if (r) break; } } else { io_port = joystick_port[dev]; r = request_region(io_port, 1, "CMIPCI gameport"); } if (!r) { printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n"); return -EBUSY; } cm->gameport = gp = gameport_allocate_port(); if (!gp) { printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n"); release_and_free_resource(r); return -ENOMEM; } gameport_set_name(gp, "C-Media Gameport"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); gameport_set_dev_parent(gp, &cm->pci->dev); gp->io = io_port; gameport_set_port_data(gp, r); snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); gameport_register_port(cm->gameport); return 0; } static void snd_cmipci_free_gameport(struct cmipci *cm) { if (cm->gameport) { struct resource *r = gameport_get_port_data(cm->gameport); gameport_unregister_port(cm->gameport); cm->gameport = NULL; snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); release_and_free_resource(r); } } #else static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } #endif static int snd_cmipci_free(struct cmipci *cm) { if (cm->irq >= 0) { snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ snd_cmipci_ch_reset(cm, CM_CH_PLAY); snd_cmipci_ch_reset(cm, CM_CH_CAPT); snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); /* reset mixer */ snd_cmipci_mixer_write(cm, 0, 0); free_irq(cm->irq, cm); } snd_cmipci_free_gameport(cm); pci_release_regions(cm->pci); pci_disable_device(cm->pci); kfree(cm); return 0; } static int snd_cmipci_dev_free(struct snd_device *device) { struct cmipci *cm = device->device_data; return snd_cmipci_free(cm); } static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port) { long iosynth; unsigned int val; struct snd_opl3 *opl3; int err; if (!fm_port) goto disable_fm; if (cm->chip_version >= 39) { /* first try FM regs in PCI port range */ iosynth = cm->iobase + CM_REG_FM_PCI; err = snd_opl3_create(cm->card, iosynth, iosynth + 2, OPL3_HW_OPL3, 1, &opl3); } else { err = -EIO; } if (err < 0) { /* then try legacy ports */ val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; iosynth = fm_port; switch (iosynth) { case 0x3E8: val |= CM_FMSEL_3E8; break; case 0x3E0: val |= CM_FMSEL_3E0; break; case 0x3C8: val |= CM_FMSEL_3C8; break; case 0x388: val |= CM_FMSEL_388; break; default: goto disable_fm; } snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); /* enable FM */ snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); if (snd_opl3_create(cm->card, iosynth, iosynth + 2, OPL3_HW_OPL3, 0, &opl3) < 0) { printk(KERN_ERR "cmipci: no OPL device at %#lx, " "skipping...\n", iosynth); goto disable_fm; } } if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n"); return err; } return 0; disable_fm: snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); return 0; } static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, int dev, struct cmipci **rcmipci) { struct cmipci *cm; int err; static struct snd_device_ops ops = { .dev_free = snd_cmipci_dev_free, }; unsigned int val; long iomidi = 0; int integrated_midi = 0; char modelstr[16]; int pcm_index, pcm_spdif_index; static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, { }, }; *rcmipci = NULL; if ((err = pci_enable_device(pci)) < 0) return err; cm = kzalloc(sizeof(*cm), GFP_KERNEL); if (cm == NULL) { pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&cm->reg_lock); mutex_init(&cm->open_mutex); cm->device = pci->device; cm->card = card; cm->pci = pci; cm->irq = -1; cm->channel[0].ch = 0; cm->channel[1].ch = 1; cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ if ((err = pci_request_regions(pci, card->driver)) < 0) { kfree(cm); pci_disable_device(pci); return err; } cm->iobase = pci_resource_start(pci, 0); if (request_irq(pci->irq, snd_cmipci_interrupt, IRQF_SHARED, KBUILD_MODNAME, cm)) { snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); snd_cmipci_free(cm); return -EBUSY; } cm->irq = pci->irq; pci_set_master(cm->pci); /* * check chip version, max channels and capabilities */ cm->chip_version = 0; cm->max_channels = 2; cm->do_soft_ac3 = soft_ac3[dev]; if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) query_chip(cm); /* added -MCx suffix for chip supporting multi-channels */ if (cm->can_multi_ch) sprintf(cm->card->driver + strlen(cm->card->driver), "-MC%d", cm->max_channels); else if (cm->can_ac3_sw) strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; #if CM_CH_PLAY == 1 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ #else cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ #endif /* initialize codec registers */ snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ snd_cmipci_ch_reset(cm, CM_CH_PLAY); snd_cmipci_ch_reset(cm, CM_CH_CAPT); snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); #if CM_CH_PLAY == 1 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); #else snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); #endif if (cm->chip_version) { snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ } /* Set Bus Master Request */ snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ switch (pci->device) { case PCI_DEVICE_ID_CMEDIA_CM8738: case PCI_DEVICE_ID_CMEDIA_CM8738B: if (!pci_dev_present(intel_82437vx)) snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); break; default: break; } if (cm->chip_version < 68) { val = pci->device < 0x110 ? 8338 : 8738; } else { switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { case 0: val = 8769; break; case 2: val = 8762; break; default: switch ((pci->subsystem_vendor << 16) | pci->subsystem_device) { case 0x13f69761: case 0x584d3741: case 0x584d3751: case 0x584d3761: case 0x584d3771: case 0x72848384: val = 8770; break; default: val = 8768; break; } } } sprintf(card->shortname, "C-Media CMI%d", val); if (cm->chip_version < 68) sprintf(modelstr, " (model %d)", cm->chip_version); else modelstr[0] = '\0'; sprintf(card->longname, "%s%s at %#lx, irq %i", card->shortname, modelstr, cm->iobase, cm->irq); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { snd_cmipci_free(cm); return err; } if (cm->chip_version >= 39) { val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); if (val != 0x00 && val != 0xff) { iomidi = cm->iobase + CM_REG_MPU_PCI; integrated_midi = 1; } } if (!integrated_midi) { val = 0; iomidi = mpu_port[dev]; switch (iomidi) { case 0x320: val = CM_VMPU_320; break; case 0x310: val = CM_VMPU_310; break; case 0x300: val = CM_VMPU_300; break; case 0x330: val = CM_VMPU_330; break; default: iomidi = 0; break; } if (iomidi > 0) { snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); /* enable UART */ snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); if (inb(iomidi + 1) == 0xff) { snd_printk(KERN_ERR "cannot enable MPU-401 port" " at %#lx\n", iomidi); snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); iomidi = 0; } } } if (cm->chip_version < 68) { err = snd_cmipci_create_fm(cm, fm_port[dev]); if (err < 0) return err; } /* reset mixer */ snd_cmipci_mixer_write(cm, 0, 0); snd_cmipci_proc_init(cm); /* create pcm devices */ pcm_index = pcm_spdif_index = 0; if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) return err; pcm_index++; if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) return err; pcm_index++; if (cm->can_ac3_hw || cm->can_ac3_sw) { pcm_spdif_index = pcm_index; if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) return err; } /* create mixer interface & switches */ if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) return err; if (iomidi > 0) { if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, iomidi, (integrated_midi ? MPU401_INFO_INTEGRATED : 0) | MPU401_INFO_IRQ_HOOK, -1, &cm->rmidi)) < 0) { printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi); } } #ifdef USE_VAR48KRATE for (val = 0; val < ARRAY_SIZE(rates); val++) snd_cmipci_set_pll(cm, rates[val], val); /* * (Re-)Enable external switch spdo_48k */ snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); #endif /* USE_VAR48KRATE */ if (snd_cmipci_create_gameport(cm, dev) < 0) snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); snd_card_set_dev(card, &pci->dev); *rcmipci = cm; return 0; } /* */ MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); static int __devinit snd_cmipci_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct cmipci *cm; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (! enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) return err; switch (pci->device) { case PCI_DEVICE_ID_CMEDIA_CM8738: case PCI_DEVICE_ID_CMEDIA_CM8738B: strcpy(card->driver, "CMI8738"); break; case PCI_DEVICE_ID_CMEDIA_CM8338A: case PCI_DEVICE_ID_CMEDIA_CM8338B: strcpy(card->driver, "CMI8338"); break; default: strcpy(card->driver, "CMIPCI"); break; } if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) { snd_card_free(card); return err; } card->private_data = cm; if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_cmipci_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } #ifdef CONFIG_PM /* * power management */ static unsigned char saved_regs[] = { CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, }; static unsigned char saved_mixers[] = { SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, }; static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct cmipci *cm = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(cm->pcm); snd_pcm_suspend_all(cm->pcm2); snd_pcm_suspend_all(cm->pcm_spdif); /* save registers */ for (i = 0; i < ARRAY_SIZE(saved_regs); i++) cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); /* disable ints */ snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } static int snd_cmipci_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct cmipci *cm = card->private_data; int i; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "cmipci: pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); /* reset / initialize to a sane state */ snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); snd_cmipci_ch_reset(cm, CM_CH_PLAY); snd_cmipci_ch_reset(cm, CM_CH_CAPT); snd_cmipci_mixer_write(cm, 0, 0); /* restore registers */ for (i = 0; i < ARRAY_SIZE(saved_regs); i++) snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } #endif /* CONFIG_PM */ static struct pci_driver driver = { .name = KBUILD_MODNAME, .id_table = snd_cmipci_ids, .probe = snd_cmipci_probe, .remove = __devexit_p(snd_cmipci_remove), #ifdef CONFIG_PM .suspend = snd_cmipci_suspend, .resume = snd_cmipci_resume, #endif }; static int __init alsa_card_cmipci_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_cmipci_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_cmipci_init) module_exit(alsa_card_cmipci_exit)