/* * linux/sound/arm/aaci.c - ARM PrimeCell AACI PL041 driver * * Copyright (C) 2003 Deep Blue Solutions Ltd, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Documentation: ARM DDI 0173B */ #include <linux/module.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/device.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/amba/bus.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/sizes.h> #include <sound/driver.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/ac97_codec.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "aaci.h" #include "devdma.h" #define DRIVER_NAME "aaci-pl041" /* * PM support is not complete. Turn it off. */ #undef CONFIG_PM static void aaci_ac97_select_codec(struct aaci *aaci, struct snd_ac97 *ac97) { u32 v, maincr = aaci->maincr | MAINCR_SCRA(ac97->num); /* * Ensure that the slot 1/2 RX registers are empty. */ v = readl(aaci->base + AACI_SLFR); if (v & SLFR_2RXV) readl(aaci->base + AACI_SL2RX); if (v & SLFR_1RXV) readl(aaci->base + AACI_SL1RX); writel(maincr, aaci->base + AACI_MAINCR); } /* * P29: * The recommended use of programming the external codec through slot 1 * and slot 2 data is to use the channels during setup routines and the * slot register at any other time. The data written into slot 1, slot 2 * and slot 12 registers is transmitted only when their corresponding * SI1TxEn, SI2TxEn and SI12TxEn bits are set in the AACI_MAINCR * register. */ static void aaci_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct aaci *aaci = ac97->private_data; u32 v; if (ac97->num >= 4) return; mutex_lock(&aaci->ac97_sem); aaci_ac97_select_codec(aaci, ac97); /* * P54: You must ensure that AACI_SL2TX is always written * to, if required, before data is written to AACI_SL1TX. */ writel(val << 4, aaci->base + AACI_SL2TX); writel(reg << 12, aaci->base + AACI_SL1TX); /* * Wait for the transmission of both slots to complete. */ do { v = readl(aaci->base + AACI_SLFR); } while (v & (SLFR_1TXB|SLFR_2TXB)); mutex_unlock(&aaci->ac97_sem); } /* * Read an AC'97 register. */ static unsigned short aaci_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct aaci *aaci = ac97->private_data; u32 v; if (ac97->num >= 4) return ~0; mutex_lock(&aaci->ac97_sem); aaci_ac97_select_codec(aaci, ac97); /* * Write the register address to slot 1. */ writel((reg << 12) | (1 << 19), aaci->base + AACI_SL1TX); /* * Wait for the transmission to complete. */ do { v = readl(aaci->base + AACI_SLFR); } while (v & SLFR_1TXB); /* * Give the AC'97 codec more than enough time * to respond. (42us = ~2 frames at 48kHz.) */ udelay(42); /* * Wait for slot 2 to indicate data. */ do { cond_resched(); v = readl(aaci->base + AACI_SLFR) & (SLFR_1RXV|SLFR_2RXV); } while (v != (SLFR_1RXV|SLFR_2RXV)); v = readl(aaci->base + AACI_SL1RX) >> 12; if (v == reg) { v = readl(aaci->base + AACI_SL2RX) >> 4; } else { dev_err(&aaci->dev->dev, "wrong ac97 register read back (%x != %x)\n", v, reg); v = ~0; } mutex_unlock(&aaci->ac97_sem); return v; } static inline void aaci_chan_wait_ready(struct aaci_runtime *aacirun) { u32 val; int timeout = 5000; do { val = readl(aacirun->base + AACI_SR); } while (val & (SR_TXB|SR_RXB) && timeout--); } /* * Interrupt support. */ static void aaci_fifo_irq(struct aaci *aaci, u32 mask) { if (mask & ISR_URINTR) { writel(ICLR_TXUEC1, aaci->base + AACI_INTCLR); } if (mask & ISR_TXINTR) { struct aaci_runtime *aacirun = &aaci->playback; void *ptr; if (!aacirun->substream || !aacirun->start) { dev_warn(&aaci->dev->dev, "TX interrupt???"); writel(0, aacirun->base + AACI_IE); return; } ptr = aacirun->ptr; do { unsigned int len = aacirun->fifosz; u32 val; if (aacirun->bytes <= 0) { aacirun->bytes += aacirun->period; aacirun->ptr = ptr; spin_unlock(&aaci->lock); snd_pcm_period_elapsed(aacirun->substream); spin_lock(&aaci->lock); } if (!(aacirun->cr & TXCR_TXEN)) break; val = readl(aacirun->base + AACI_SR); if (!(val & SR_TXHE)) break; if (!(val & SR_TXFE)) len >>= 1; aacirun->bytes -= len; /* writing 16 bytes at a time */ for ( ; len > 0; len -= 16) { asm( "ldmia %0!, {r0, r1, r2, r3}\n\t" "stmia %1, {r0, r1, r2, r3}" : "+r" (ptr) : "r" (aacirun->fifo) : "r0", "r1", "r2", "r3", "cc"); if (ptr >= aacirun->end) ptr = aacirun->start; } } while (1); aacirun->ptr = ptr; } } static irqreturn_t aaci_irq(int irq, void *devid, struct pt_regs *regs) { struct aaci *aaci = devid; u32 mask; int i; spin_lock(&aaci->lock); mask = readl(aaci->base + AACI_ALLINTS); if (mask) { u32 m = mask; for (i = 0; i < 4; i++, m >>= 7) { if (m & 0x7f) { aaci_fifo_irq(aaci, m); } } } spin_unlock(&aaci->lock); return mask ? IRQ_HANDLED : IRQ_NONE; } /* * ALSA support. */ struct aaci_stream { unsigned char codec_idx; unsigned char rate_idx; }; static struct aaci_stream aaci_streams[] = { [ACSTREAM_FRONT] = { .codec_idx = 0, .rate_idx = AC97_RATES_FRONT_DAC, }, [ACSTREAM_SURROUND] = { .codec_idx = 0, .rate_idx = AC97_RATES_SURR_DAC, }, [ACSTREAM_LFE] = { .codec_idx = 0, .rate_idx = AC97_RATES_LFE_DAC, }, }; static inline unsigned int aaci_rate_mask(struct aaci *aaci, int streamid) { struct aaci_stream *s = aaci_streams + streamid; return aaci->ac97_bus->codec[s->codec_idx]->rates[s->rate_idx]; } static unsigned int rate_list[] = { 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000 }; /* * Double-rate rule: we can support double rate iff channels == 2 * (unimplemented) */ static int aaci_rule_rate_by_channels(struct snd_pcm_hw_params *p, struct snd_pcm_hw_rule *rule) { struct aaci *aaci = rule->private; unsigned int rate_mask = SNDRV_PCM_RATE_8000_48000|SNDRV_PCM_RATE_5512; struct snd_interval *c = hw_param_interval(p, SNDRV_PCM_HW_PARAM_CHANNELS); switch (c->max) { case 6: rate_mask &= aaci_rate_mask(aaci, ACSTREAM_LFE); case 4: rate_mask &= aaci_rate_mask(aaci, ACSTREAM_SURROUND); case 2: rate_mask &= aaci_rate_mask(aaci, ACSTREAM_FRONT); } return snd_interval_list(hw_param_interval(p, rule->var), ARRAY_SIZE(rate_list), rate_list, rate_mask); } static struct snd_pcm_hardware aaci_hw_info = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME, /* * ALSA doesn't support 18-bit or 20-bit packed into 32-bit * words. It also doesn't support 12-bit at all. */ .formats = SNDRV_PCM_FMTBIT_S16_LE, /* should this be continuous or knot? */ .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_max = 48000, .rate_min = 4000, .channels_min = 2, .channels_max = 6, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 256, .period_bytes_max = PAGE_SIZE, .periods_min = 4, .periods_max = PAGE_SIZE / 16, }; static int aaci_pcm_open(struct aaci *aaci, struct snd_pcm_substream *substream, struct aaci_runtime *aacirun) { struct snd_pcm_runtime *runtime = substream->runtime; int ret; aacirun->substream = substream; runtime->private_data = aacirun; runtime->hw = aaci_hw_info; /* * FIXME: ALSA specifies fifo_size in bytes. If we're in normal * mode, each 32-bit word contains one sample. If we're in * compact mode, each 32-bit word contains two samples, effectively * halving the FIFO size. However, we don't know for sure which * we'll be using at this point. We set this to the lower limit. */ runtime->hw.fifo_size = aaci->fifosize * 2; /* * Add rule describing hardware rate dependency * on the number of channels. */ ret = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, aaci_rule_rate_by_channels, aaci, SNDRV_PCM_HW_PARAM_CHANNELS, SNDRV_PCM_HW_PARAM_RATE, -1); if (ret) goto out; ret = request_irq(aaci->dev->irq[0], aaci_irq, SA_SHIRQ|SA_INTERRUPT, DRIVER_NAME, aaci); if (ret) goto out; return 0; out: return ret; } /* * Common ALSA stuff */ static int aaci_pcm_close(struct snd_pcm_substream *substream) { struct aaci *aaci = substream->private_data; struct aaci_runtime *aacirun = substream->runtime->private_data; WARN_ON(aacirun->cr & TXCR_TXEN); aacirun->substream = NULL; free_irq(aaci->dev->irq[0], aaci); return 0; } static int aaci_pcm_hw_free(struct snd_pcm_substream *substream) { struct aaci_runtime *aacirun = substream->runtime->private_data; /* * This must not be called with the device enabled. */ WARN_ON(aacirun->cr & TXCR_TXEN); if (aacirun->pcm_open) snd_ac97_pcm_close(aacirun->pcm); aacirun->pcm_open = 0; /* * Clear out the DMA and any allocated buffers. */ devdma_hw_free(NULL, substream); return 0; } static int aaci_pcm_hw_params(struct snd_pcm_substream *substream, struct aaci_runtime *aacirun, struct snd_pcm_hw_params *params) { int err; aaci_pcm_hw_free(substream); err = devdma_hw_alloc(NULL, substream, params_buffer_bytes(params)); if (err < 0) goto out; err = snd_ac97_pcm_open(aacirun->pcm, params_rate(params), params_channels(params), aacirun->pcm->r[0].slots); if (err) goto out; aacirun->pcm_open = 1; out: return err; } static int aaci_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci_runtime *aacirun = runtime->private_data; aacirun->start = (void *)runtime->dma_area; aacirun->end = aacirun->start + runtime->dma_bytes; aacirun->ptr = aacirun->start; aacirun->period = aacirun->bytes = frames_to_bytes(runtime, runtime->period_size); return 0; } static snd_pcm_uframes_t aaci_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct aaci_runtime *aacirun = runtime->private_data; ssize_t bytes = aacirun->ptr - aacirun->start; return bytes_to_frames(runtime, bytes); } static int aaci_pcm_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { return devdma_mmap(NULL, substream, vma); } /* * Playback specific ALSA stuff */ static const u32 channels_to_txmask[] = { [2] = TXCR_TX3 | TXCR_TX4, [4] = TXCR_TX3 | TXCR_TX4 | TXCR_TX7 | TXCR_TX8, [6] = TXCR_TX3 | TXCR_TX4 | TXCR_TX7 | TXCR_TX8 | TXCR_TX6 | TXCR_TX9, }; /* * We can support two and four channel audio. Unfortunately * six channel audio requires a non-standard channel ordering: * 2 -> FL(3), FR(4) * 4 -> FL(3), FR(4), SL(7), SR(8) * 6 -> FL(3), FR(4), SL(7), SR(8), C(6), LFE(9) (required) * FL(3), FR(4), C(6), SL(7), SR(8), LFE(9) (actual) * This requires an ALSA configuration file to correct. */ static unsigned int channel_list[] = { 2, 4, 6 }; static int aaci_rule_channels(struct snd_pcm_hw_params *p, struct snd_pcm_hw_rule *rule) { struct aaci *aaci = rule->private; unsigned int chan_mask = 1 << 0, slots; /* * pcms[0] is the our 5.1 PCM instance. */ slots = aaci->ac97_bus->pcms[0].r[0].slots; if (slots & (1 << AC97_SLOT_PCM_SLEFT)) { chan_mask |= 1 << 1; if (slots & (1 << AC97_SLOT_LFE)) chan_mask |= 1 << 2; } return snd_interval_list(hw_param_interval(p, rule->var), ARRAY_SIZE(channel_list), channel_list, chan_mask); } static int aaci_pcm_playback_open(struct snd_pcm_substream *substream) { struct aaci *aaci = substream->private_data; int ret; /* * Add rule describing channel dependency. */ ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, aaci_rule_channels, aaci, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (ret) return ret; return aaci_pcm_open(aaci, substream, &aaci->playback); } static int aaci_pcm_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct aaci *aaci = substream->private_data; struct aaci_runtime *aacirun = substream->runtime->private_data; unsigned int channels = params_channels(params); int ret; WARN_ON(channels >= ARRAY_SIZE(channels_to_txmask) || !channels_to_txmask[channels]); ret = aaci_pcm_hw_params(substream, aacirun, params); /* * Enable FIFO, compact mode, 16 bits per sample. * FIXME: double rate slots? */ if (ret >= 0) { aacirun->cr = TXCR_FEN | TXCR_COMPACT | TXCR_TSZ16; aacirun->cr |= channels_to_txmask[channels]; aacirun->fifosz = aaci->fifosize * 4; if (aacirun->cr & TXCR_COMPACT) aacirun->fifosz >>= 1; } return ret; } static void aaci_pcm_playback_stop(struct aaci_runtime *aacirun) { u32 ie; ie = readl(aacirun->base + AACI_IE); ie &= ~(IE_URIE|IE_TXIE); writel(ie, aacirun->base + AACI_IE); aacirun->cr &= ~TXCR_TXEN; aaci_chan_wait_ready(aacirun); writel(aacirun->cr, aacirun->base + AACI_TXCR); } static void aaci_pcm_playback_start(struct aaci_runtime *aacirun) { u32 ie; aaci_chan_wait_ready(aacirun); aacirun->cr |= TXCR_TXEN; ie = readl(aacirun->base + AACI_IE); ie |= IE_URIE | IE_TXIE; writel(ie, aacirun->base + AACI_IE); writel(aacirun->cr, aacirun->base + AACI_TXCR); } static int aaci_pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct aaci *aaci = substream->private_data; struct aaci_runtime *aacirun = substream->runtime->private_data; unsigned long flags; int ret = 0; spin_lock_irqsave(&aaci->lock, flags); switch (cmd) { case SNDRV_PCM_TRIGGER_START: aaci_pcm_playback_start(aacirun); break; case SNDRV_PCM_TRIGGER_RESUME: aaci_pcm_playback_start(aacirun); break; case SNDRV_PCM_TRIGGER_STOP: aaci_pcm_playback_stop(aacirun); break; case SNDRV_PCM_TRIGGER_SUSPEND: aaci_pcm_playback_stop(aacirun); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: break; default: ret = -EINVAL; } spin_unlock_irqrestore(&aaci->lock, flags); return ret; } static struct snd_pcm_ops aaci_playback_ops = { .open = aaci_pcm_playback_open, .close = aaci_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = aaci_pcm_playback_hw_params, .hw_free = aaci_pcm_hw_free, .prepare = aaci_pcm_prepare, .trigger = aaci_pcm_playback_trigger, .pointer = aaci_pcm_pointer, .mmap = aaci_pcm_mmap, }; /* * Power Management. */ #ifdef CONFIG_PM static int aaci_do_suspend(struct snd_card *card, unsigned int state) { struct aaci *aaci = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3cold); snd_pcm_suspend_all(aaci->pcm); return 0; } static int aaci_do_resume(struct snd_card *card, unsigned int state) { snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static int aaci_suspend(struct amba_device *dev, pm_message_t state) { struct snd_card *card = amba_get_drvdata(dev); return card ? aaci_do_suspend(card) : 0; } static int aaci_resume(struct amba_device *dev) { struct snd_card *card = amba_get_drvdata(dev); return card ? aaci_do_resume(card) : 0; } #else #define aaci_do_suspend NULL #define aaci_do_resume NULL #define aaci_suspend NULL #define aaci_resume NULL #endif static struct ac97_pcm ac97_defs[] __devinitdata = { [0] = { /* Front PCM */ .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT) | (1 << AC97_SLOT_PCM_CENTER) | (1 << AC97_SLOT_PCM_SLEFT) | (1 << AC97_SLOT_PCM_SRIGHT) | (1 << AC97_SLOT_LFE), }, }, }, [1] = { /* PCM in */ .stream = 1, .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_PCM_LEFT) | (1 << AC97_SLOT_PCM_RIGHT), }, }, }, [2] = { /* Mic in */ .stream = 1, .exclusive = 1, .r = { [0] = { .slots = (1 << AC97_SLOT_MIC), }, }, } }; static struct snd_ac97_bus_ops aaci_bus_ops = { .write = aaci_ac97_write, .read = aaci_ac97_read, }; static int __devinit aaci_probe_ac97(struct aaci *aaci) { struct snd_ac97_template ac97_template; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; int ret; /* * Assert AACIRESET for 2us */ writel(0, aaci->base + AACI_RESET); udelay(2); writel(RESET_NRST, aaci->base + AACI_RESET); /* * Give the AC'97 codec more than enough time * to wake up. (42us = ~2 frames at 48kHz.) */ udelay(42); ret = snd_ac97_bus(aaci->card, 0, &aaci_bus_ops, aaci, &ac97_bus); if (ret) goto out; ac97_bus->clock = 48000; aaci->ac97_bus = ac97_bus; memset(&ac97_template, 0, sizeof(struct snd_ac97_template)); ac97_template.private_data = aaci; ac97_template.num = 0; ac97_template.scaps = AC97_SCAP_SKIP_MODEM; ret = snd_ac97_mixer(ac97_bus, &ac97_template, &ac97); if (ret) goto out; /* * Disable AC97 PC Beep input on audio codecs. */ if (ac97_is_audio(ac97)) snd_ac97_write_cache(ac97, AC97_PC_BEEP, 0x801e); ret = snd_ac97_pcm_assign(ac97_bus, ARRAY_SIZE(ac97_defs), ac97_defs); if (ret) goto out; aaci->playback.pcm = &ac97_bus->pcms[0]; out: return ret; } static void aaci_free_card(struct snd_card *card) { struct aaci *aaci = card->private_data; if (aaci->base) iounmap(aaci->base); } static struct aaci * __devinit aaci_init_card(struct amba_device *dev) { struct aaci *aaci; struct snd_card *card; card = snd_card_new(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, THIS_MODULE, sizeof(struct aaci)); if (card == NULL) return ERR_PTR(-ENOMEM); card->private_free = aaci_free_card; strlcpy(card->driver, DRIVER_NAME, sizeof(card->driver)); strlcpy(card->shortname, "ARM AC'97 Interface", sizeof(card->shortname)); snprintf(card->longname, sizeof(card->longname), "%s at 0x%08lx, irq %d", card->shortname, dev->res.start, dev->irq[0]); aaci = card->private_data; mutex_init(&aaci->ac97_sem); spin_lock_init(&aaci->lock); aaci->card = card; aaci->dev = dev; /* Set MAINCR to allow slot 1 and 2 data IO */ aaci->maincr = MAINCR_IE | MAINCR_SL1RXEN | MAINCR_SL1TXEN | MAINCR_SL2RXEN | MAINCR_SL2TXEN; return aaci; } static int __devinit aaci_init_pcm(struct aaci *aaci) { struct snd_pcm *pcm; int ret; ret = snd_pcm_new(aaci->card, "AACI AC'97", 0, 1, 0, &pcm); if (ret == 0) { aaci->pcm = pcm; pcm->private_data = aaci; pcm->info_flags = 0; strlcpy(pcm->name, DRIVER_NAME, sizeof(pcm->name)); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &aaci_playback_ops); } return ret; } static unsigned int __devinit aaci_size_fifo(struct aaci *aaci) { void __iomem *base = aaci->base + AACI_CSCH1; int i; writel(TXCR_FEN | TXCR_TSZ16 | TXCR_TXEN, base + AACI_TXCR); for (i = 0; !(readl(base + AACI_SR) & SR_TXFF) && i < 4096; i++) writel(0, aaci->base + AACI_DR1); writel(0, base + AACI_TXCR); /* * Re-initialise the AACI after the FIFO depth test, to * ensure that the FIFOs are empty. Unfortunately, merely * disabling the channel doesn't clear the FIFO. */ writel(aaci->maincr & ~MAINCR_IE, aaci->base + AACI_MAINCR); writel(aaci->maincr, aaci->base + AACI_MAINCR); /* * If we hit 4096, we failed. Go back to the specified * fifo depth. */ if (i == 4096) i = 8; return i; } static int __devinit aaci_probe(struct amba_device *dev, void *id) { struct aaci *aaci; int ret, i; ret = amba_request_regions(dev, NULL); if (ret) return ret; aaci = aaci_init_card(dev); if (IS_ERR(aaci)) { ret = PTR_ERR(aaci); goto out; } aaci->base = ioremap(dev->res.start, SZ_4K); if (!aaci->base) { ret = -ENOMEM; goto out; } /* * Playback uses AACI channel 0 */ aaci->playback.base = aaci->base + AACI_CSCH1; aaci->playback.fifo = aaci->base + AACI_DR1; for (i = 0; i < 4; i++) { void __iomem *base = aaci->base + i * 0x14; writel(0, base + AACI_IE); writel(0, base + AACI_TXCR); writel(0, base + AACI_RXCR); } writel(0x1fff, aaci->base + AACI_INTCLR); writel(aaci->maincr, aaci->base + AACI_MAINCR); ret = aaci_probe_ac97(aaci); if (ret) goto out; /* * Size the FIFOs (must be multiple of 16). */ aaci->fifosize = aaci_size_fifo(aaci); if (aaci->fifosize & 15) { printk(KERN_WARNING "AACI: fifosize = %d not supported\n", aaci->fifosize); ret = -ENODEV; goto out; } ret = aaci_init_pcm(aaci); if (ret) goto out; snd_card_set_dev(aaci->card, &dev->dev); ret = snd_card_register(aaci->card); if (ret == 0) { dev_info(&dev->dev, "%s, fifo %d\n", aaci->card->longname, aaci->fifosize); amba_set_drvdata(dev, aaci->card); return ret; } out: if (aaci) snd_card_free(aaci->card); amba_release_regions(dev); return ret; } static int __devexit aaci_remove(struct amba_device *dev) { struct snd_card *card = amba_get_drvdata(dev); amba_set_drvdata(dev, NULL); if (card) { struct aaci *aaci = card->private_data; writel(0, aaci->base + AACI_MAINCR); snd_card_free(card); amba_release_regions(dev); } return 0; } static struct amba_id aaci_ids[] = { { .id = 0x00041041, .mask = 0x000fffff, }, { 0, 0 }, }; static struct amba_driver aaci_driver = { .drv = { .name = DRIVER_NAME, }, .probe = aaci_probe, .remove = __devexit_p(aaci_remove), .suspend = aaci_suspend, .resume = aaci_resume, .id_table = aaci_ids, }; static int __init aaci_init(void) { return amba_driver_register(&aaci_driver); } static void __exit aaci_exit(void) { amba_driver_unregister(&aaci_driver); } module_init(aaci_init); module_exit(aaci_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ARM PrimeCell PL041 Advanced Audio CODEC Interface driver");