/* * linux/net/sunrpc/svc_xprt.c * * Author: Tom Tucker <tom@opengridcomputing.com> */ #include <linux/sched.h> #include <linux/errno.h> #include <linux/freezer.h> #include <linux/kthread.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/svc_xprt.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/xprt.h> #include <linux/module.h> #define RPCDBG_FACILITY RPCDBG_SVCXPRT static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); static int svc_deferred_recv(struct svc_rqst *rqstp); static struct cache_deferred_req *svc_defer(struct cache_req *req); static void svc_age_temp_xprts(unsigned long closure); static void svc_delete_xprt(struct svc_xprt *xprt); /* apparently the "standard" is that clients close * idle connections after 5 minutes, servers after * 6 minutes * http://www.connectathon.org/talks96/nfstcp.pdf */ static int svc_conn_age_period = 6*60; /* List of registered transport classes */ static DEFINE_SPINLOCK(svc_xprt_class_lock); static LIST_HEAD(svc_xprt_class_list); /* SMP locking strategy: * * svc_pool->sp_lock protects most of the fields of that pool. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. * when both need to be taken (rare), svc_serv->sv_lock is first. * BKL protects svc_serv->sv_nrthread. * svc_sock->sk_lock protects the svc_sock->sk_deferred list * and the ->sk_info_authunix cache. * * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being * enqueued multiply. During normal transport processing this bit * is set by svc_xprt_enqueue and cleared by svc_xprt_received. * Providers should not manipulate this bit directly. * * Some flags can be set to certain values at any time * providing that certain rules are followed: * * XPT_CONN, XPT_DATA: * - Can be set or cleared at any time. * - After a set, svc_xprt_enqueue must be called to enqueue * the transport for processing. * - After a clear, the transport must be read/accepted. * If this succeeds, it must be set again. * XPT_CLOSE: * - Can set at any time. It is never cleared. * XPT_DEAD: * - Can only be set while XPT_BUSY is held which ensures * that no other thread will be using the transport or will * try to set XPT_DEAD. */ int svc_reg_xprt_class(struct svc_xprt_class *xcl) { struct svc_xprt_class *cl; int res = -EEXIST; dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); INIT_LIST_HEAD(&xcl->xcl_list); spin_lock(&svc_xprt_class_lock); /* Make sure there isn't already a class with the same name */ list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) goto out; } list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); res = 0; out: spin_unlock(&svc_xprt_class_lock); return res; } EXPORT_SYMBOL_GPL(svc_reg_xprt_class); void svc_unreg_xprt_class(struct svc_xprt_class *xcl) { dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); spin_lock(&svc_xprt_class_lock); list_del_init(&xcl->xcl_list); spin_unlock(&svc_xprt_class_lock); } EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); /* * Format the transport list for printing */ int svc_print_xprts(char *buf, int maxlen) { struct svc_xprt_class *xcl; char tmpstr[80]; int len = 0; buf[0] = '\0'; spin_lock(&svc_xprt_class_lock); list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { int slen; sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); slen = strlen(tmpstr); if (len + slen > maxlen) break; len += slen; strcat(buf, tmpstr); } spin_unlock(&svc_xprt_class_lock); return len; } static void svc_xprt_free(struct kref *kref) { struct svc_xprt *xprt = container_of(kref, struct svc_xprt, xpt_ref); struct module *owner = xprt->xpt_class->xcl_owner; if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) svcauth_unix_info_release(xprt); put_net(xprt->xpt_net); /* See comment on corresponding get in xs_setup_bc_tcp(): */ if (xprt->xpt_bc_xprt) xprt_put(xprt->xpt_bc_xprt); xprt->xpt_ops->xpo_free(xprt); module_put(owner); } void svc_xprt_put(struct svc_xprt *xprt) { kref_put(&xprt->xpt_ref, svc_xprt_free); } EXPORT_SYMBOL_GPL(svc_xprt_put); /* * Called by transport drivers to initialize the transport independent * portion of the transport instance. */ void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, struct svc_xprt *xprt, struct svc_serv *serv) { memset(xprt, 0, sizeof(*xprt)); xprt->xpt_class = xcl; xprt->xpt_ops = xcl->xcl_ops; kref_init(&xprt->xpt_ref); xprt->xpt_server = serv; INIT_LIST_HEAD(&xprt->xpt_list); INIT_LIST_HEAD(&xprt->xpt_ready); INIT_LIST_HEAD(&xprt->xpt_deferred); INIT_LIST_HEAD(&xprt->xpt_users); mutex_init(&xprt->xpt_mutex); spin_lock_init(&xprt->xpt_lock); set_bit(XPT_BUSY, &xprt->xpt_flags); rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); xprt->xpt_net = get_net(net); } EXPORT_SYMBOL_GPL(svc_xprt_init); static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, struct svc_serv *serv, struct net *net, const int family, const unsigned short port, int flags) { struct sockaddr_in sin = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_ANY), .sin_port = htons(port), }; #if IS_ENABLED(CONFIG_IPV6) struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, .sin6_port = htons(port), }; #endif struct sockaddr *sap; size_t len; switch (family) { case PF_INET: sap = (struct sockaddr *)&sin; len = sizeof(sin); break; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: sap = (struct sockaddr *)&sin6; len = sizeof(sin6); break; #endif default: return ERR_PTR(-EAFNOSUPPORT); } return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); } /* * svc_xprt_received conditionally queues the transport for processing * by another thread. The caller must hold the XPT_BUSY bit and must * not thereafter touch transport data. * * Note: XPT_DATA only gets cleared when a read-attempt finds no (or * insufficient) data. */ static void svc_xprt_received(struct svc_xprt *xprt) { WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags)); if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) return; /* As soon as we clear busy, the xprt could be closed and * 'put', so we need a reference to call svc_xprt_enqueue with: */ svc_xprt_get(xprt); clear_bit(XPT_BUSY, &xprt->xpt_flags); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) { clear_bit(XPT_TEMP, &new->xpt_flags); spin_lock_bh(&serv->sv_lock); list_add(&new->xpt_list, &serv->sv_permsocks); spin_unlock_bh(&serv->sv_lock); svc_xprt_received(new); } int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, struct net *net, const int family, const unsigned short port, int flags) { struct svc_xprt_class *xcl; dprintk("svc: creating transport %s[%d]\n", xprt_name, port); spin_lock(&svc_xprt_class_lock); list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { struct svc_xprt *newxprt; unsigned short newport; if (strcmp(xprt_name, xcl->xcl_name)) continue; if (!try_module_get(xcl->xcl_owner)) goto err; spin_unlock(&svc_xprt_class_lock); newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); if (IS_ERR(newxprt)) { module_put(xcl->xcl_owner); return PTR_ERR(newxprt); } svc_add_new_perm_xprt(serv, newxprt); newport = svc_xprt_local_port(newxprt); return newport; } err: spin_unlock(&svc_xprt_class_lock); dprintk("svc: transport %s not found\n", xprt_name); /* This errno is exposed to user space. Provide a reasonable * perror msg for a bad transport. */ return -EPROTONOSUPPORT; } EXPORT_SYMBOL_GPL(svc_create_xprt); /* * Copy the local and remote xprt addresses to the rqstp structure */ void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) { memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); rqstp->rq_addrlen = xprt->xpt_remotelen; /* * Destination address in request is needed for binding the * source address in RPC replies/callbacks later. */ memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); rqstp->rq_daddrlen = xprt->xpt_locallen; } EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); /** * svc_print_addr - Format rq_addr field for printing * @rqstp: svc_rqst struct containing address to print * @buf: target buffer for formatted address * @len: length of target buffer * */ char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) { return __svc_print_addr(svc_addr(rqstp), buf, len); } EXPORT_SYMBOL_GPL(svc_print_addr); /* * Queue up an idle server thread. Must have pool->sp_lock held. * Note: this is really a stack rather than a queue, so that we only * use as many different threads as we need, and the rest don't pollute * the cache. */ static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) { list_add(&rqstp->rq_list, &pool->sp_threads); } /* * Dequeue an nfsd thread. Must have pool->sp_lock held. */ static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) { list_del(&rqstp->rq_list); } static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) { if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) return true; if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) return xprt->xpt_ops->xpo_has_wspace(xprt); return false; } /* * Queue up a transport with data pending. If there are idle nfsd * processes, wake 'em up. * */ void svc_xprt_enqueue(struct svc_xprt *xprt) { struct svc_pool *pool; struct svc_rqst *rqstp; int cpu; if (!svc_xprt_has_something_to_do(xprt)) return; cpu = get_cpu(); pool = svc_pool_for_cpu(xprt->xpt_server, cpu); put_cpu(); spin_lock_bh(&pool->sp_lock); if (!list_empty(&pool->sp_threads) && !list_empty(&pool->sp_sockets)) printk(KERN_ERR "svc_xprt_enqueue: " "threads and transports both waiting??\n"); pool->sp_stats.packets++; /* Mark transport as busy. It will remain in this state until * the provider calls svc_xprt_received. We update XPT_BUSY * atomically because it also guards against trying to enqueue * the transport twice. */ if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { /* Don't enqueue transport while already enqueued */ dprintk("svc: transport %p busy, not enqueued\n", xprt); goto out_unlock; } if (!list_empty(&pool->sp_threads)) { rqstp = list_entry(pool->sp_threads.next, struct svc_rqst, rq_list); dprintk("svc: transport %p served by daemon %p\n", xprt, rqstp); svc_thread_dequeue(pool, rqstp); if (rqstp->rq_xprt) printk(KERN_ERR "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", rqstp, rqstp->rq_xprt); rqstp->rq_xprt = xprt; svc_xprt_get(xprt); pool->sp_stats.threads_woken++; wake_up(&rqstp->rq_wait); } else { dprintk("svc: transport %p put into queue\n", xprt); list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); pool->sp_stats.sockets_queued++; } out_unlock: spin_unlock_bh(&pool->sp_lock); } EXPORT_SYMBOL_GPL(svc_xprt_enqueue); /* * Dequeue the first transport. Must be called with the pool->sp_lock held. */ static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) { struct svc_xprt *xprt; if (list_empty(&pool->sp_sockets)) return NULL; xprt = list_entry(pool->sp_sockets.next, struct svc_xprt, xpt_ready); list_del_init(&xprt->xpt_ready); dprintk("svc: transport %p dequeued, inuse=%d\n", xprt, atomic_read(&xprt->xpt_ref.refcount)); return xprt; } /** * svc_reserve - change the space reserved for the reply to a request. * @rqstp: The request in question * @space: new max space to reserve * * Each request reserves some space on the output queue of the transport * to make sure the reply fits. This function reduces that reserved * space to be the amount of space used already, plus @space. * */ void svc_reserve(struct svc_rqst *rqstp, int space) { space += rqstp->rq_res.head[0].iov_len; if (space < rqstp->rq_reserved) { struct svc_xprt *xprt = rqstp->rq_xprt; atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); rqstp->rq_reserved = space; svc_xprt_enqueue(xprt); } } EXPORT_SYMBOL_GPL(svc_reserve); static void svc_xprt_release(struct svc_rqst *rqstp) { struct svc_xprt *xprt = rqstp->rq_xprt; rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); kfree(rqstp->rq_deferred); rqstp->rq_deferred = NULL; svc_free_res_pages(rqstp); rqstp->rq_res.page_len = 0; rqstp->rq_res.page_base = 0; /* Reset response buffer and release * the reservation. * But first, check that enough space was reserved * for the reply, otherwise we have a bug! */ if ((rqstp->rq_res.len) > rqstp->rq_reserved) printk(KERN_ERR "RPC request reserved %d but used %d\n", rqstp->rq_reserved, rqstp->rq_res.len); rqstp->rq_res.head[0].iov_len = 0; svc_reserve(rqstp, 0); rqstp->rq_xprt = NULL; svc_xprt_put(xprt); } /* * External function to wake up a server waiting for data * This really only makes sense for services like lockd * which have exactly one thread anyway. */ void svc_wake_up(struct svc_serv *serv) { struct svc_rqst *rqstp; unsigned int i; struct svc_pool *pool; for (i = 0; i < serv->sv_nrpools; i++) { pool = &serv->sv_pools[i]; spin_lock_bh(&pool->sp_lock); if (!list_empty(&pool->sp_threads)) { rqstp = list_entry(pool->sp_threads.next, struct svc_rqst, rq_list); dprintk("svc: daemon %p woken up.\n", rqstp); /* svc_thread_dequeue(pool, rqstp); rqstp->rq_xprt = NULL; */ wake_up(&rqstp->rq_wait); } spin_unlock_bh(&pool->sp_lock); } } EXPORT_SYMBOL_GPL(svc_wake_up); int svc_port_is_privileged(struct sockaddr *sin) { switch (sin->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sin)->sin_port) < PROT_SOCK; case AF_INET6: return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) < PROT_SOCK; default: return 0; } } /* * Make sure that we don't have too many active connections. If we have, * something must be dropped. It's not clear what will happen if we allow * "too many" connections, but when dealing with network-facing software, * we have to code defensively. Here we do that by imposing hard limits. * * There's no point in trying to do random drop here for DoS * prevention. The NFS clients does 1 reconnect in 15 seconds. An * attacker can easily beat that. * * The only somewhat efficient mechanism would be if drop old * connections from the same IP first. But right now we don't even * record the client IP in svc_sock. * * single-threaded services that expect a lot of clients will probably * need to set sv_maxconn to override the default value which is based * on the number of threads */ static void svc_check_conn_limits(struct svc_serv *serv) { unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : (serv->sv_nrthreads+3) * 20; if (serv->sv_tmpcnt > limit) { struct svc_xprt *xprt = NULL; spin_lock_bh(&serv->sv_lock); if (!list_empty(&serv->sv_tempsocks)) { /* Try to help the admin */ net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", serv->sv_name, serv->sv_maxconn ? "max number of connections" : "number of threads"); /* * Always select the oldest connection. It's not fair, * but so is life */ xprt = list_entry(serv->sv_tempsocks.prev, struct svc_xprt, xpt_list); set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_xprt_get(xprt); } spin_unlock_bh(&serv->sv_lock); if (xprt) { svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } } } int svc_alloc_arg(struct svc_rqst *rqstp) { struct svc_serv *serv = rqstp->rq_server; struct xdr_buf *arg; int pages; int i; /* now allocate needed pages. If we get a failure, sleep briefly */ pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES); if (pages >= RPCSVC_MAXPAGES) /* use as many pages as possible */ pages = RPCSVC_MAXPAGES - 1; for (i = 0; i < pages ; i++) while (rqstp->rq_pages[i] == NULL) { struct page *p = alloc_page(GFP_KERNEL); if (!p) { set_current_state(TASK_INTERRUPTIBLE); if (signalled() || kthread_should_stop()) { set_current_state(TASK_RUNNING); return -EINTR; } schedule_timeout(msecs_to_jiffies(500)); } rqstp->rq_pages[i] = p; } rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ /* Make arg->head point to first page and arg->pages point to rest */ arg = &rqstp->rq_arg; arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); arg->head[0].iov_len = PAGE_SIZE; arg->pages = rqstp->rq_pages + 1; arg->page_base = 0; /* save at least one page for response */ arg->page_len = (pages-2)*PAGE_SIZE; arg->len = (pages-1)*PAGE_SIZE; arg->tail[0].iov_len = 0; return 0; } struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) { struct svc_xprt *xprt; struct svc_pool *pool = rqstp->rq_pool; DECLARE_WAITQUEUE(wait, current); long time_left; /* Normally we will wait up to 5 seconds for any required * cache information to be provided. */ rqstp->rq_chandle.thread_wait = 5*HZ; spin_lock_bh(&pool->sp_lock); xprt = svc_xprt_dequeue(pool); if (xprt) { rqstp->rq_xprt = xprt; svc_xprt_get(xprt); /* As there is a shortage of threads and this request * had to be queued, don't allow the thread to wait so * long for cache updates. */ rqstp->rq_chandle.thread_wait = 1*HZ; } else { /* No data pending. Go to sleep */ svc_thread_enqueue(pool, rqstp); /* * We have to be able to interrupt this wait * to bring down the daemons ... */ set_current_state(TASK_INTERRUPTIBLE); /* * checking kthread_should_stop() here allows us to avoid * locking and signalling when stopping kthreads that call * svc_recv. If the thread has already been woken up, then * we can exit here without sleeping. If not, then it * it'll be woken up quickly during the schedule_timeout */ if (kthread_should_stop()) { set_current_state(TASK_RUNNING); spin_unlock_bh(&pool->sp_lock); return ERR_PTR(-EINTR); } add_wait_queue(&rqstp->rq_wait, &wait); spin_unlock_bh(&pool->sp_lock); time_left = schedule_timeout(timeout); try_to_freeze(); spin_lock_bh(&pool->sp_lock); remove_wait_queue(&rqstp->rq_wait, &wait); if (!time_left) pool->sp_stats.threads_timedout++; xprt = rqstp->rq_xprt; if (!xprt) { svc_thread_dequeue(pool, rqstp); spin_unlock_bh(&pool->sp_lock); dprintk("svc: server %p, no data yet\n", rqstp); if (signalled() || kthread_should_stop()) return ERR_PTR(-EINTR); else return ERR_PTR(-EAGAIN); } } spin_unlock_bh(&pool->sp_lock); return xprt; } void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) { spin_lock_bh(&serv->sv_lock); set_bit(XPT_TEMP, &newxpt->xpt_flags); list_add(&newxpt->xpt_list, &serv->sv_tempsocks); serv->sv_tmpcnt++; if (serv->sv_temptimer.function == NULL) { /* setup timer to age temp transports */ setup_timer(&serv->sv_temptimer, svc_age_temp_xprts, (unsigned long)serv); mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); } spin_unlock_bh(&serv->sv_lock); svc_xprt_received(newxpt); } static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) { struct svc_serv *serv = rqstp->rq_server; int len = 0; if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { dprintk("svc_recv: found XPT_CLOSE\n"); svc_delete_xprt(xprt); /* Leave XPT_BUSY set on the dead xprt: */ return 0; } if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { struct svc_xprt *newxpt; /* * We know this module_get will succeed because the * listener holds a reference too */ __module_get(xprt->xpt_class->xcl_owner); svc_check_conn_limits(xprt->xpt_server); newxpt = xprt->xpt_ops->xpo_accept(xprt); if (newxpt) svc_add_new_temp_xprt(serv, newxpt); } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) { /* XPT_DATA|XPT_DEFERRED case: */ dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", rqstp, rqstp->rq_pool->sp_id, xprt, atomic_read(&xprt->xpt_ref.refcount)); rqstp->rq_deferred = svc_deferred_dequeue(xprt); if (rqstp->rq_deferred) len = svc_deferred_recv(rqstp); else len = xprt->xpt_ops->xpo_recvfrom(rqstp); dprintk("svc: got len=%d\n", len); rqstp->rq_reserved = serv->sv_max_mesg; atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); } /* clear XPT_BUSY: */ svc_xprt_received(xprt); return len; } /* * Receive the next request on any transport. This code is carefully * organised not to touch any cachelines in the shared svc_serv * structure, only cachelines in the local svc_pool. */ int svc_recv(struct svc_rqst *rqstp, long timeout) { struct svc_xprt *xprt = NULL; struct svc_serv *serv = rqstp->rq_server; int len, err; dprintk("svc: server %p waiting for data (to = %ld)\n", rqstp, timeout); if (rqstp->rq_xprt) printk(KERN_ERR "svc_recv: service %p, transport not NULL!\n", rqstp); if (waitqueue_active(&rqstp->rq_wait)) printk(KERN_ERR "svc_recv: service %p, wait queue active!\n", rqstp); err = svc_alloc_arg(rqstp); if (err) return err; try_to_freeze(); cond_resched(); if (signalled() || kthread_should_stop()) return -EINTR; xprt = svc_get_next_xprt(rqstp, timeout); if (IS_ERR(xprt)) return PTR_ERR(xprt); len = svc_handle_xprt(rqstp, xprt); /* No data, incomplete (TCP) read, or accept() */ if (len <= 0) goto out; clear_bit(XPT_OLD, &xprt->xpt_flags); rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); rqstp->rq_chandle.defer = svc_defer; if (serv->sv_stats) serv->sv_stats->netcnt++; return len; out: rqstp->rq_res.len = 0; svc_xprt_release(rqstp); return -EAGAIN; } EXPORT_SYMBOL_GPL(svc_recv); /* * Drop request */ void svc_drop(struct svc_rqst *rqstp) { dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); svc_xprt_release(rqstp); } EXPORT_SYMBOL_GPL(svc_drop); /* * Return reply to client. */ int svc_send(struct svc_rqst *rqstp) { struct svc_xprt *xprt; int len; struct xdr_buf *xb; xprt = rqstp->rq_xprt; if (!xprt) return -EFAULT; /* release the receive skb before sending the reply */ rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); /* calculate over-all length */ xb = &rqstp->rq_res; xb->len = xb->head[0].iov_len + xb->page_len + xb->tail[0].iov_len; /* Grab mutex to serialize outgoing data. */ mutex_lock(&xprt->xpt_mutex); if (test_bit(XPT_DEAD, &xprt->xpt_flags) || test_bit(XPT_CLOSE, &xprt->xpt_flags)) len = -ENOTCONN; else len = xprt->xpt_ops->xpo_sendto(rqstp); mutex_unlock(&xprt->xpt_mutex); rpc_wake_up(&xprt->xpt_bc_pending); svc_xprt_release(rqstp); if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) return 0; return len; } /* * Timer function to close old temporary transports, using * a mark-and-sweep algorithm. */ static void svc_age_temp_xprts(unsigned long closure) { struct svc_serv *serv = (struct svc_serv *)closure; struct svc_xprt *xprt; struct list_head *le, *next; LIST_HEAD(to_be_aged); dprintk("svc_age_temp_xprts\n"); if (!spin_trylock_bh(&serv->sv_lock)) { /* busy, try again 1 sec later */ dprintk("svc_age_temp_xprts: busy\n"); mod_timer(&serv->sv_temptimer, jiffies + HZ); return; } list_for_each_safe(le, next, &serv->sv_tempsocks) { xprt = list_entry(le, struct svc_xprt, xpt_list); /* First time through, just mark it OLD. Second time * through, close it. */ if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) continue; if (atomic_read(&xprt->xpt_ref.refcount) > 1 || test_bit(XPT_BUSY, &xprt->xpt_flags)) continue; svc_xprt_get(xprt); list_move(le, &to_be_aged); set_bit(XPT_CLOSE, &xprt->xpt_flags); set_bit(XPT_DETACHED, &xprt->xpt_flags); } spin_unlock_bh(&serv->sv_lock); while (!list_empty(&to_be_aged)) { le = to_be_aged.next; /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ list_del_init(le); xprt = list_entry(le, struct svc_xprt, xpt_list); dprintk("queuing xprt %p for closing\n", xprt); /* a thread will dequeue and close it soon */ svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); } static void call_xpt_users(struct svc_xprt *xprt) { struct svc_xpt_user *u; spin_lock(&xprt->xpt_lock); while (!list_empty(&xprt->xpt_users)) { u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); list_del(&u->list); u->callback(u); } spin_unlock(&xprt->xpt_lock); } /* * Remove a dead transport */ static void svc_delete_xprt(struct svc_xprt *xprt) { struct svc_serv *serv = xprt->xpt_server; struct svc_deferred_req *dr; /* Only do this once */ if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) BUG(); dprintk("svc: svc_delete_xprt(%p)\n", xprt); xprt->xpt_ops->xpo_detach(xprt); spin_lock_bh(&serv->sv_lock); if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) list_del_init(&xprt->xpt_list); WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); if (test_bit(XPT_TEMP, &xprt->xpt_flags)) serv->sv_tmpcnt--; spin_unlock_bh(&serv->sv_lock); while ((dr = svc_deferred_dequeue(xprt)) != NULL) kfree(dr); call_xpt_users(xprt); svc_xprt_put(xprt); } void svc_close_xprt(struct svc_xprt *xprt) { set_bit(XPT_CLOSE, &xprt->xpt_flags); if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) /* someone else will have to effect the close */ return; /* * We expect svc_close_xprt() to work even when no threads are * running (e.g., while configuring the server before starting * any threads), so if the transport isn't busy, we delete * it ourself: */ svc_delete_xprt(xprt); } EXPORT_SYMBOL_GPL(svc_close_xprt); static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) { struct svc_xprt *xprt; spin_lock(&serv->sv_lock); list_for_each_entry(xprt, xprt_list, xpt_list) { if (xprt->xpt_net != net) continue; set_bit(XPT_CLOSE, &xprt->xpt_flags); set_bit(XPT_BUSY, &xprt->xpt_flags); } spin_unlock(&serv->sv_lock); } static void svc_clear_pools(struct svc_serv *serv, struct net *net) { struct svc_pool *pool; struct svc_xprt *xprt; struct svc_xprt *tmp; int i; for (i = 0; i < serv->sv_nrpools; i++) { pool = &serv->sv_pools[i]; spin_lock_bh(&pool->sp_lock); list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { if (xprt->xpt_net != net) continue; list_del_init(&xprt->xpt_ready); } spin_unlock_bh(&pool->sp_lock); } } static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) { struct svc_xprt *xprt; struct svc_xprt *tmp; LIST_HEAD(victims); spin_lock(&serv->sv_lock); list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { if (xprt->xpt_net != net) continue; list_move(&xprt->xpt_list, &victims); } spin_unlock(&serv->sv_lock); list_for_each_entry_safe(xprt, tmp, &victims, xpt_list) svc_delete_xprt(xprt); } void svc_close_net(struct svc_serv *serv, struct net *net) { svc_close_list(serv, &serv->sv_tempsocks, net); svc_close_list(serv, &serv->sv_permsocks, net); svc_clear_pools(serv, net); /* * At this point the sp_sockets lists will stay empty, since * svc_xprt_enqueue will not add new entries without taking the * sp_lock and checking XPT_BUSY. */ svc_clear_list(serv, &serv->sv_tempsocks, net); svc_clear_list(serv, &serv->sv_permsocks, net); } /* * Handle defer and revisit of requests */ static void svc_revisit(struct cache_deferred_req *dreq, int too_many) { struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); struct svc_xprt *xprt = dr->xprt; spin_lock(&xprt->xpt_lock); set_bit(XPT_DEFERRED, &xprt->xpt_flags); if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { spin_unlock(&xprt->xpt_lock); dprintk("revisit canceled\n"); svc_xprt_put(xprt); kfree(dr); return; } dprintk("revisit queued\n"); dr->xprt = NULL; list_add(&dr->handle.recent, &xprt->xpt_deferred); spin_unlock(&xprt->xpt_lock); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } /* * Save the request off for later processing. The request buffer looks * like this: * * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> * * This code can only handle requests that consist of an xprt-header * and rpc-header. */ static struct cache_deferred_req *svc_defer(struct cache_req *req) { struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); struct svc_deferred_req *dr; if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) return NULL; /* if more than a page, give up FIXME */ if (rqstp->rq_deferred) { dr = rqstp->rq_deferred; rqstp->rq_deferred = NULL; } else { size_t skip; size_t size; /* FIXME maybe discard if size too large */ size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; dr = kmalloc(size, GFP_KERNEL); if (dr == NULL) return NULL; dr->handle.owner = rqstp->rq_server; dr->prot = rqstp->rq_prot; memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); dr->addrlen = rqstp->rq_addrlen; dr->daddr = rqstp->rq_daddr; dr->argslen = rqstp->rq_arg.len >> 2; dr->xprt_hlen = rqstp->rq_xprt_hlen; /* back up head to the start of the buffer and copy */ skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, dr->argslen << 2); } svc_xprt_get(rqstp->rq_xprt); dr->xprt = rqstp->rq_xprt; rqstp->rq_dropme = true; dr->handle.revisit = svc_revisit; return &dr->handle; } /* * recv data from a deferred request into an active one */ static int svc_deferred_recv(struct svc_rqst *rqstp) { struct svc_deferred_req *dr = rqstp->rq_deferred; /* setup iov_base past transport header */ rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); /* The iov_len does not include the transport header bytes */ rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; rqstp->rq_arg.page_len = 0; /* The rq_arg.len includes the transport header bytes */ rqstp->rq_arg.len = dr->argslen<<2; rqstp->rq_prot = dr->prot; memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); rqstp->rq_addrlen = dr->addrlen; /* Save off transport header len in case we get deferred again */ rqstp->rq_xprt_hlen = dr->xprt_hlen; rqstp->rq_daddr = dr->daddr; rqstp->rq_respages = rqstp->rq_pages; return (dr->argslen<<2) - dr->xprt_hlen; } static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) { struct svc_deferred_req *dr = NULL; if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) return NULL; spin_lock(&xprt->xpt_lock); if (!list_empty(&xprt->xpt_deferred)) { dr = list_entry(xprt->xpt_deferred.next, struct svc_deferred_req, handle.recent); list_del_init(&dr->handle.recent); } else clear_bit(XPT_DEFERRED, &xprt->xpt_flags); spin_unlock(&xprt->xpt_lock); return dr; } /** * svc_find_xprt - find an RPC transport instance * @serv: pointer to svc_serv to search * @xcl_name: C string containing transport's class name * @net: owner net pointer * @af: Address family of transport's local address * @port: transport's IP port number * * Return the transport instance pointer for the endpoint accepting * connections/peer traffic from the specified transport class, * address family and port. * * Specifying 0 for the address family or port is effectively a * wild-card, and will result in matching the first transport in the * service's list that has a matching class name. */ struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, struct net *net, const sa_family_t af, const unsigned short port) { struct svc_xprt *xprt; struct svc_xprt *found = NULL; /* Sanity check the args */ if (serv == NULL || xcl_name == NULL) return found; spin_lock_bh(&serv->sv_lock); list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { if (xprt->xpt_net != net) continue; if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) continue; if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) continue; if (port != 0 && port != svc_xprt_local_port(xprt)) continue; found = xprt; svc_xprt_get(xprt); break; } spin_unlock_bh(&serv->sv_lock); return found; } EXPORT_SYMBOL_GPL(svc_find_xprt); static int svc_one_xprt_name(const struct svc_xprt *xprt, char *pos, int remaining) { int len; len = snprintf(pos, remaining, "%s %u\n", xprt->xpt_class->xcl_name, svc_xprt_local_port(xprt)); if (len >= remaining) return -ENAMETOOLONG; return len; } /** * svc_xprt_names - format a buffer with a list of transport names * @serv: pointer to an RPC service * @buf: pointer to a buffer to be filled in * @buflen: length of buffer to be filled in * * Fills in @buf with a string containing a list of transport names, * each name terminated with '\n'. * * Returns positive length of the filled-in string on success; otherwise * a negative errno value is returned if an error occurs. */ int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) { struct svc_xprt *xprt; int len, totlen; char *pos; /* Sanity check args */ if (!serv) return 0; spin_lock_bh(&serv->sv_lock); pos = buf; totlen = 0; list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { len = svc_one_xprt_name(xprt, pos, buflen - totlen); if (len < 0) { *buf = '\0'; totlen = len; } if (len <= 0) break; pos += len; totlen += len; } spin_unlock_bh(&serv->sv_lock); return totlen; } EXPORT_SYMBOL_GPL(svc_xprt_names); /*----------------------------------------------------------------------------*/ static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) { unsigned int pidx = (unsigned int)*pos; struct svc_serv *serv = m->private; dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); if (!pidx) return SEQ_START_TOKEN; return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); } static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) { struct svc_pool *pool = p; struct svc_serv *serv = m->private; dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); if (p == SEQ_START_TOKEN) { pool = &serv->sv_pools[0]; } else { unsigned int pidx = (pool - &serv->sv_pools[0]); if (pidx < serv->sv_nrpools-1) pool = &serv->sv_pools[pidx+1]; else pool = NULL; } ++*pos; return pool; } static void svc_pool_stats_stop(struct seq_file *m, void *p) { } static int svc_pool_stats_show(struct seq_file *m, void *p) { struct svc_pool *pool = p; if (p == SEQ_START_TOKEN) { seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); return 0; } seq_printf(m, "%u %lu %lu %lu %lu\n", pool->sp_id, pool->sp_stats.packets, pool->sp_stats.sockets_queued, pool->sp_stats.threads_woken, pool->sp_stats.threads_timedout); return 0; } static const struct seq_operations svc_pool_stats_seq_ops = { .start = svc_pool_stats_start, .next = svc_pool_stats_next, .stop = svc_pool_stats_stop, .show = svc_pool_stats_show, }; int svc_pool_stats_open(struct svc_serv *serv, struct file *file) { int err; err = seq_open(file, &svc_pool_stats_seq_ops); if (!err) ((struct seq_file *) file->private_data)->private = serv; return err; } EXPORT_SYMBOL(svc_pool_stats_open); /*----------------------------------------------------------------------------*/