/* * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) * * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Meant to be mostly used for locally generated traffic : * Fast classification depends on skb->sk being set before reaching us. * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. * All packets belonging to a socket are considered as a 'flow'. * * Flows are dynamically allocated and stored in a hash table of RB trees * They are also part of one Round Robin 'queues' (new or old flows) * * Burst avoidance (aka pacing) capability : * * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a * bunch of packets, and this packet scheduler adds delay between * packets to respect rate limitation. * * enqueue() : * - lookup one RB tree (out of 1024 or more) to find the flow. * If non existent flow, create it, add it to the tree. * Add skb to the per flow list of skb (fifo). * - Use a special fifo for high prio packets * * dequeue() : serves flows in Round Robin * Note : When a flow becomes empty, we do not immediately remove it from * rb trees, for performance reasons (its expected to send additional packets, * or SLAB cache will reuse socket for another flow) */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/string.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/hash.h> #include <linux/prefetch.h> #include <linux/vmalloc.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/sock.h> #include <net/tcp_states.h> #include <net/tcp.h> /* * Per flow structure, dynamically allocated */ struct fq_flow { struct sk_buff *head; /* list of skbs for this flow : first skb */ union { struct sk_buff *tail; /* last skb in the list */ unsigned long age; /* jiffies when flow was emptied, for gc */ }; struct rb_node fq_node; /* anchor in fq_root[] trees */ struct sock *sk; int qlen; /* number of packets in flow queue */ int credit; u32 socket_hash; /* sk_hash */ struct fq_flow *next; /* next pointer in RR lists, or &detached */ struct rb_node rate_node; /* anchor in q->delayed tree */ u64 time_next_packet; }; struct fq_flow_head { struct fq_flow *first; struct fq_flow *last; }; struct fq_sched_data { struct fq_flow_head new_flows; struct fq_flow_head old_flows; struct rb_root delayed; /* for rate limited flows */ u64 time_next_delayed_flow; struct fq_flow internal; /* for non classified or high prio packets */ u32 quantum; u32 initial_quantum; u32 flow_refill_delay; u32 flow_max_rate; /* optional max rate per flow */ u32 flow_plimit; /* max packets per flow */ u32 orphan_mask; /* mask for orphaned skb */ struct rb_root *fq_root; u8 rate_enable; u8 fq_trees_log; u32 flows; u32 inactive_flows; u32 throttled_flows; u64 stat_gc_flows; u64 stat_internal_packets; u64 stat_tcp_retrans; u64 stat_throttled; u64 stat_flows_plimit; u64 stat_pkts_too_long; u64 stat_allocation_errors; struct qdisc_watchdog watchdog; }; /* special value to mark a detached flow (not on old/new list) */ static struct fq_flow detached, throttled; static void fq_flow_set_detached(struct fq_flow *f) { f->next = &detached; f->age = jiffies; } static bool fq_flow_is_detached(const struct fq_flow *f) { return f->next == &detached; } static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) { struct rb_node **p = &q->delayed.rb_node, *parent = NULL; while (*p) { struct fq_flow *aux; parent = *p; aux = container_of(parent, struct fq_flow, rate_node); if (f->time_next_packet >= aux->time_next_packet) p = &parent->rb_right; else p = &parent->rb_left; } rb_link_node(&f->rate_node, parent, p); rb_insert_color(&f->rate_node, &q->delayed); q->throttled_flows++; q->stat_throttled++; f->next = &throttled; if (q->time_next_delayed_flow > f->time_next_packet) q->time_next_delayed_flow = f->time_next_packet; } static struct kmem_cache *fq_flow_cachep __read_mostly; static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow) { if (head->first) head->last->next = flow; else head->first = flow; head->last = flow; flow->next = NULL; } /* limit number of collected flows per round */ #define FQ_GC_MAX 8 #define FQ_GC_AGE (3*HZ) static bool fq_gc_candidate(const struct fq_flow *f) { return fq_flow_is_detached(f) && time_after(jiffies, f->age + FQ_GC_AGE); } static void fq_gc(struct fq_sched_data *q, struct rb_root *root, struct sock *sk) { struct fq_flow *f, *tofree[FQ_GC_MAX]; struct rb_node **p, *parent; int fcnt = 0; p = &root->rb_node; parent = NULL; while (*p) { parent = *p; f = container_of(parent, struct fq_flow, fq_node); if (f->sk == sk) break; if (fq_gc_candidate(f)) { tofree[fcnt++] = f; if (fcnt == FQ_GC_MAX) break; } if (f->sk > sk) p = &parent->rb_right; else p = &parent->rb_left; } q->flows -= fcnt; q->inactive_flows -= fcnt; q->stat_gc_flows += fcnt; while (fcnt) { struct fq_flow *f = tofree[--fcnt]; rb_erase(&f->fq_node, root); kmem_cache_free(fq_flow_cachep, f); } } static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q) { struct rb_node **p, *parent; struct sock *sk = skb->sk; struct rb_root *root; struct fq_flow *f; /* warning: no starvation prevention... */ if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL)) return &q->internal; /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket * or a listener (SYNCOOKIE mode) * 1) request sockets are not full blown, * they do not contain sk_pacing_rate * 2) They are not part of a 'flow' yet * 3) We do not want to rate limit them (eg SYNFLOOD attack), * especially if the listener set SO_MAX_PACING_RATE * 4) We pretend they are orphaned */ if (!sk || sk_listener(sk)) { unsigned long hash = skb_get_hash(skb) & q->orphan_mask; /* By forcing low order bit to 1, we make sure to not * collide with a local flow (socket pointers are word aligned) */ sk = (struct sock *)((hash << 1) | 1UL); skb_orphan(skb); } root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)]; if (q->flows >= (2U << q->fq_trees_log) && q->inactive_flows > q->flows/2) fq_gc(q, root, sk); p = &root->rb_node; parent = NULL; while (*p) { parent = *p; f = container_of(parent, struct fq_flow, fq_node); if (f->sk == sk) { /* socket might have been reallocated, so check * if its sk_hash is the same. * It not, we need to refill credit with * initial quantum */ if (unlikely(skb->sk && f->socket_hash != sk->sk_hash)) { f->credit = q->initial_quantum; f->socket_hash = sk->sk_hash; f->time_next_packet = 0ULL; } return f; } if (f->sk > sk) p = &parent->rb_right; else p = &parent->rb_left; } f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!f)) { q->stat_allocation_errors++; return &q->internal; } fq_flow_set_detached(f); f->sk = sk; if (skb->sk) f->socket_hash = sk->sk_hash; f->credit = q->initial_quantum; rb_link_node(&f->fq_node, parent, p); rb_insert_color(&f->fq_node, root); q->flows++; q->inactive_flows++; return f; } /* remove one skb from head of flow queue */ static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow) { struct sk_buff *skb = flow->head; if (skb) { flow->head = skb->next; skb->next = NULL; flow->qlen--; qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; } return skb; } /* We might add in the future detection of retransmits * For the time being, just return false */ static bool skb_is_retransmit(struct sk_buff *skb) { return false; } /* add skb to flow queue * flow queue is a linked list, kind of FIFO, except for TCP retransmits * We special case tcp retransmits to be transmitted before other packets. * We rely on fact that TCP retransmits are unlikely, so we do not waste * a separate queue or a pointer. * head-> [retrans pkt 1] * [retrans pkt 2] * [ normal pkt 1] * [ normal pkt 2] * [ normal pkt 3] * tail-> [ normal pkt 4] */ static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) { struct sk_buff *prev, *head = flow->head; skb->next = NULL; if (!head) { flow->head = skb; flow->tail = skb; return; } if (likely(!skb_is_retransmit(skb))) { flow->tail->next = skb; flow->tail = skb; return; } /* This skb is a tcp retransmit, * find the last retrans packet in the queue */ prev = NULL; while (skb_is_retransmit(head)) { prev = head; head = head->next; if (!head) break; } if (!prev) { /* no rtx packet in queue, become the new head */ skb->next = flow->head; flow->head = skb; } else { if (prev == flow->tail) flow->tail = skb; else skb->next = prev->next; prev->next = skb; } } static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch) { struct fq_sched_data *q = qdisc_priv(sch); struct fq_flow *f; if (unlikely(sch->q.qlen >= sch->limit)) return qdisc_drop(skb, sch); f = fq_classify(skb, q); if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) { q->stat_flows_plimit++; return qdisc_drop(skb, sch); } f->qlen++; if (skb_is_retransmit(skb)) q->stat_tcp_retrans++; qdisc_qstats_backlog_inc(sch, skb); if (fq_flow_is_detached(f)) { fq_flow_add_tail(&q->new_flows, f); if (time_after(jiffies, f->age + q->flow_refill_delay)) f->credit = max_t(u32, f->credit, q->quantum); q->inactive_flows--; } /* Note: this overwrites f->age */ flow_queue_add(f, skb); if (unlikely(f == &q->internal)) { q->stat_internal_packets++; } sch->q.qlen++; return NET_XMIT_SUCCESS; } static void fq_check_throttled(struct fq_sched_data *q, u64 now) { struct rb_node *p; if (q->time_next_delayed_flow > now) return; q->time_next_delayed_flow = ~0ULL; while ((p = rb_first(&q->delayed)) != NULL) { struct fq_flow *f = container_of(p, struct fq_flow, rate_node); if (f->time_next_packet > now) { q->time_next_delayed_flow = f->time_next_packet; break; } rb_erase(p, &q->delayed); q->throttled_flows--; fq_flow_add_tail(&q->old_flows, f); } } static struct sk_buff *fq_dequeue(struct Qdisc *sch) { struct fq_sched_data *q = qdisc_priv(sch); u64 now = ktime_get_ns(); struct fq_flow_head *head; struct sk_buff *skb; struct fq_flow *f; u32 rate; skb = fq_dequeue_head(sch, &q->internal); if (skb) goto out; fq_check_throttled(q, now); begin: head = &q->new_flows; if (!head->first) { head = &q->old_flows; if (!head->first) { if (q->time_next_delayed_flow != ~0ULL) qdisc_watchdog_schedule_ns(&q->watchdog, q->time_next_delayed_flow, false); return NULL; } } f = head->first; if (f->credit <= 0) { f->credit += q->quantum; head->first = f->next; fq_flow_add_tail(&q->old_flows, f); goto begin; } skb = f->head; if (unlikely(skb && now < f->time_next_packet && !skb_is_tcp_pure_ack(skb))) { head->first = f->next; fq_flow_set_throttled(q, f); goto begin; } skb = fq_dequeue_head(sch, f); if (!skb) { head->first = f->next; /* force a pass through old_flows to prevent starvation */ if ((head == &q->new_flows) && q->old_flows.first) { fq_flow_add_tail(&q->old_flows, f); } else { fq_flow_set_detached(f); q->inactive_flows++; } goto begin; } prefetch(&skb->end); f->credit -= qdisc_pkt_len(skb); if (f->credit > 0 || !q->rate_enable) goto out; /* Do not pace locally generated ack packets */ if (skb_is_tcp_pure_ack(skb)) goto out; rate = q->flow_max_rate; if (skb->sk) rate = min(skb->sk->sk_pacing_rate, rate); if (rate != ~0U) { u32 plen = max(qdisc_pkt_len(skb), q->quantum); u64 len = (u64)plen * NSEC_PER_SEC; if (likely(rate)) do_div(len, rate); /* Since socket rate can change later, * clamp the delay to 1 second. * Really, providers of too big packets should be fixed ! */ if (unlikely(len > NSEC_PER_SEC)) { len = NSEC_PER_SEC; q->stat_pkts_too_long++; } f->time_next_packet = now + len; } out: qdisc_bstats_update(sch, skb); return skb; } static void fq_reset(struct Qdisc *sch) { struct fq_sched_data *q = qdisc_priv(sch); struct rb_root *root; struct sk_buff *skb; struct rb_node *p; struct fq_flow *f; unsigned int idx; while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL) kfree_skb(skb); if (!q->fq_root) return; for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { root = &q->fq_root[idx]; while ((p = rb_first(root)) != NULL) { f = container_of(p, struct fq_flow, fq_node); rb_erase(p, root); while ((skb = fq_dequeue_head(sch, f)) != NULL) kfree_skb(skb); kmem_cache_free(fq_flow_cachep, f); } } q->new_flows.first = NULL; q->old_flows.first = NULL; q->delayed = RB_ROOT; q->flows = 0; q->inactive_flows = 0; q->throttled_flows = 0; } static void fq_rehash(struct fq_sched_data *q, struct rb_root *old_array, u32 old_log, struct rb_root *new_array, u32 new_log) { struct rb_node *op, **np, *parent; struct rb_root *oroot, *nroot; struct fq_flow *of, *nf; int fcnt = 0; u32 idx; for (idx = 0; idx < (1U << old_log); idx++) { oroot = &old_array[idx]; while ((op = rb_first(oroot)) != NULL) { rb_erase(op, oroot); of = container_of(op, struct fq_flow, fq_node); if (fq_gc_candidate(of)) { fcnt++; kmem_cache_free(fq_flow_cachep, of); continue; } nroot = &new_array[hash_32((u32)(long)of->sk, new_log)]; np = &nroot->rb_node; parent = NULL; while (*np) { parent = *np; nf = container_of(parent, struct fq_flow, fq_node); BUG_ON(nf->sk == of->sk); if (nf->sk > of->sk) np = &parent->rb_right; else np = &parent->rb_left; } rb_link_node(&of->fq_node, parent, np); rb_insert_color(&of->fq_node, nroot); } } q->flows -= fcnt; q->inactive_flows -= fcnt; q->stat_gc_flows += fcnt; } static void *fq_alloc_node(size_t sz, int node) { void *ptr; ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node); if (!ptr) ptr = vmalloc_node(sz, node); return ptr; } static void fq_free(void *addr) { kvfree(addr); } static int fq_resize(struct Qdisc *sch, u32 log) { struct fq_sched_data *q = qdisc_priv(sch); struct rb_root *array; void *old_fq_root; u32 idx; if (q->fq_root && log == q->fq_trees_log) return 0; /* If XPS was setup, we can allocate memory on right NUMA node */ array = fq_alloc_node(sizeof(struct rb_root) << log, netdev_queue_numa_node_read(sch->dev_queue)); if (!array) return -ENOMEM; for (idx = 0; idx < (1U << log); idx++) array[idx] = RB_ROOT; sch_tree_lock(sch); old_fq_root = q->fq_root; if (old_fq_root) fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); q->fq_root = array; q->fq_trees_log = log; sch_tree_unlock(sch); fq_free(old_fq_root); return 0; } static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 }, [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, }; static int fq_change(struct Qdisc *sch, struct nlattr *opt) { struct fq_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_FQ_MAX + 1]; int err, drop_count = 0; unsigned drop_len = 0; u32 fq_log; if (!opt) return -EINVAL; err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy); if (err < 0) return err; sch_tree_lock(sch); fq_log = q->fq_trees_log; if (tb[TCA_FQ_BUCKETS_LOG]) { u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); if (nval >= 1 && nval <= ilog2(256*1024)) fq_log = nval; else err = -EINVAL; } if (tb[TCA_FQ_PLIMIT]) sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); if (tb[TCA_FQ_FLOW_PLIMIT]) q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); if (tb[TCA_FQ_QUANTUM]) { u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); if (quantum > 0) q->quantum = quantum; else err = -EINVAL; } if (tb[TCA_FQ_INITIAL_QUANTUM]) q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); if (tb[TCA_FQ_FLOW_MAX_RATE]) q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); if (tb[TCA_FQ_RATE_ENABLE]) { u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); if (enable <= 1) q->rate_enable = enable; else err = -EINVAL; } if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; q->flow_refill_delay = usecs_to_jiffies(usecs_delay); } if (tb[TCA_FQ_ORPHAN_MASK]) q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); if (!err) { sch_tree_unlock(sch); err = fq_resize(sch, fq_log); sch_tree_lock(sch); } while (sch->q.qlen > sch->limit) { struct sk_buff *skb = fq_dequeue(sch); if (!skb) break; drop_len += qdisc_pkt_len(skb); kfree_skb(skb); drop_count++; } qdisc_tree_reduce_backlog(sch, drop_count, drop_len); sch_tree_unlock(sch); return err; } static void fq_destroy(struct Qdisc *sch) { struct fq_sched_data *q = qdisc_priv(sch); fq_reset(sch); fq_free(q->fq_root); qdisc_watchdog_cancel(&q->watchdog); } static int fq_init(struct Qdisc *sch, struct nlattr *opt) { struct fq_sched_data *q = qdisc_priv(sch); int err; sch->limit = 10000; q->flow_plimit = 100; q->quantum = 2 * psched_mtu(qdisc_dev(sch)); q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); q->flow_refill_delay = msecs_to_jiffies(40); q->flow_max_rate = ~0U; q->rate_enable = 1; q->new_flows.first = NULL; q->old_flows.first = NULL; q->delayed = RB_ROOT; q->fq_root = NULL; q->fq_trees_log = ilog2(1024); q->orphan_mask = 1024 - 1; qdisc_watchdog_init(&q->watchdog, sch); if (opt) err = fq_change(sch, opt); else err = fq_resize(sch, q->fq_trees_log); return err; } static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) { struct fq_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start(skb, TCA_OPTIONS); if (opts == NULL) goto nla_put_failure; /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) || nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, jiffies_to_usecs(q->flow_refill_delay)) || nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log)) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: return -1; } static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct fq_sched_data *q = qdisc_priv(sch); u64 now = ktime_get_ns(); struct tc_fq_qd_stats st = { .gc_flows = q->stat_gc_flows, .highprio_packets = q->stat_internal_packets, .tcp_retrans = q->stat_tcp_retrans, .throttled = q->stat_throttled, .flows_plimit = q->stat_flows_plimit, .pkts_too_long = q->stat_pkts_too_long, .allocation_errors = q->stat_allocation_errors, .flows = q->flows, .inactive_flows = q->inactive_flows, .throttled_flows = q->throttled_flows, .time_next_delayed_flow = q->time_next_delayed_flow - now, }; return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct Qdisc_ops fq_qdisc_ops __read_mostly = { .id = "fq", .priv_size = sizeof(struct fq_sched_data), .enqueue = fq_enqueue, .dequeue = fq_dequeue, .peek = qdisc_peek_dequeued, .init = fq_init, .reset = fq_reset, .destroy = fq_destroy, .change = fq_change, .dump = fq_dump, .dump_stats = fq_dump_stats, .owner = THIS_MODULE, }; static int __init fq_module_init(void) { int ret; fq_flow_cachep = kmem_cache_create("fq_flow_cache", sizeof(struct fq_flow), 0, 0, NULL); if (!fq_flow_cachep) return -ENOMEM; ret = register_qdisc(&fq_qdisc_ops); if (ret) kmem_cache_destroy(fq_flow_cachep); return ret; } static void __exit fq_module_exit(void) { unregister_qdisc(&fq_qdisc_ops); kmem_cache_destroy(fq_flow_cachep); } module_init(fq_module_init) module_exit(fq_module_exit) MODULE_AUTHOR("Eric Dumazet"); MODULE_LICENSE("GPL");