/* Peer event handling, typically ICMP messages. * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include "ar-internal.h" static void rxrpc_store_error(struct rxrpc_peer *, struct sock_exterr_skb *); /* * Find the peer associated with an ICMP packet. */ static struct rxrpc_peer *rxrpc_lookup_peer_icmp_rcu(struct rxrpc_local *local, const struct sk_buff *skb, struct sockaddr_rxrpc *srx) { struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); _enter(""); memset(srx, 0, sizeof(*srx)); srx->transport_type = local->srx.transport_type; srx->transport_len = local->srx.transport_len; srx->transport.family = local->srx.transport.family; /* Can we see an ICMP4 packet on an ICMP6 listening socket? and vice * versa? */ switch (srx->transport.family) { case AF_INET: srx->transport.sin.sin_port = serr->port; switch (serr->ee.ee_origin) { case SO_EE_ORIGIN_ICMP: _net("Rx ICMP"); memcpy(&srx->transport.sin.sin_addr, skb_network_header(skb) + serr->addr_offset, sizeof(struct in_addr)); break; case SO_EE_ORIGIN_ICMP6: _net("Rx ICMP6 on v4 sock"); memcpy(&srx->transport.sin.sin_addr, skb_network_header(skb) + serr->addr_offset + 12, sizeof(struct in_addr)); break; default: memcpy(&srx->transport.sin.sin_addr, &ip_hdr(skb)->saddr, sizeof(struct in_addr)); break; } break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: srx->transport.sin6.sin6_port = serr->port; switch (serr->ee.ee_origin) { case SO_EE_ORIGIN_ICMP6: _net("Rx ICMP6"); memcpy(&srx->transport.sin6.sin6_addr, skb_network_header(skb) + serr->addr_offset, sizeof(struct in6_addr)); break; case SO_EE_ORIGIN_ICMP: _net("Rx ICMP on v6 sock"); srx->transport.sin6.sin6_addr.s6_addr32[0] = 0; srx->transport.sin6.sin6_addr.s6_addr32[1] = 0; srx->transport.sin6.sin6_addr.s6_addr32[2] = htonl(0xffff); memcpy(srx->transport.sin6.sin6_addr.s6_addr + 12, skb_network_header(skb) + serr->addr_offset, sizeof(struct in_addr)); break; default: memcpy(&srx->transport.sin6.sin6_addr, &ipv6_hdr(skb)->saddr, sizeof(struct in6_addr)); break; } break; #endif default: BUG(); } return rxrpc_lookup_peer_rcu(local, srx); } /* * Handle an MTU/fragmentation problem. */ static void rxrpc_adjust_mtu(struct rxrpc_peer *peer, struct sock_exterr_skb *serr) { u32 mtu = serr->ee.ee_info; _net("Rx ICMP Fragmentation Needed (%d)", mtu); /* wind down the local interface MTU */ if (mtu > 0 && peer->if_mtu == 65535 && mtu < peer->if_mtu) { peer->if_mtu = mtu; _net("I/F MTU %u", mtu); } if (mtu == 0) { /* they didn't give us a size, estimate one */ mtu = peer->if_mtu; if (mtu > 1500) { mtu >>= 1; if (mtu < 1500) mtu = 1500; } else { mtu -= 100; if (mtu < peer->hdrsize) mtu = peer->hdrsize + 4; } } if (mtu < peer->mtu) { spin_lock_bh(&peer->lock); peer->mtu = mtu; peer->maxdata = peer->mtu - peer->hdrsize; spin_unlock_bh(&peer->lock); _net("Net MTU %u (maxdata %u)", peer->mtu, peer->maxdata); } } /* * Handle an error received on the local endpoint. */ void rxrpc_error_report(struct sock *sk) { struct sock_exterr_skb *serr; struct sockaddr_rxrpc srx; struct rxrpc_local *local = sk->sk_user_data; struct rxrpc_peer *peer; struct sk_buff *skb; _enter("%p{%d}", sk, local->debug_id); skb = sock_dequeue_err_skb(sk); if (!skb) { _leave("UDP socket errqueue empty"); return; } rxrpc_new_skb(skb, rxrpc_skb_rx_received); serr = SKB_EXT_ERR(skb); if (!skb->len && serr->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) { _leave("UDP empty message"); rxrpc_free_skb(skb, rxrpc_skb_rx_freed); return; } rcu_read_lock(); peer = rxrpc_lookup_peer_icmp_rcu(local, skb, &srx); if (peer && !rxrpc_get_peer_maybe(peer)) peer = NULL; if (!peer) { rcu_read_unlock(); rxrpc_free_skb(skb, rxrpc_skb_rx_freed); _leave(" [no peer]"); return; } trace_rxrpc_rx_icmp(peer, &serr->ee, &srx); if ((serr->ee.ee_origin == SO_EE_ORIGIN_ICMP && serr->ee.ee_type == ICMP_DEST_UNREACH && serr->ee.ee_code == ICMP_FRAG_NEEDED)) { rxrpc_adjust_mtu(peer, serr); rcu_read_unlock(); rxrpc_free_skb(skb, rxrpc_skb_rx_freed); rxrpc_put_peer(peer); _leave(" [MTU update]"); return; } rxrpc_store_error(peer, serr); rcu_read_unlock(); rxrpc_free_skb(skb, rxrpc_skb_rx_freed); /* The ref we obtained is passed off to the work item */ __rxrpc_queue_peer_error(peer); _leave(""); } /* * Map an error report to error codes on the peer record. */ static void rxrpc_store_error(struct rxrpc_peer *peer, struct sock_exterr_skb *serr) { struct sock_extended_err *ee; int err; _enter(""); ee = &serr->ee; err = ee->ee_errno; switch (ee->ee_origin) { case SO_EE_ORIGIN_ICMP: switch (ee->ee_type) { case ICMP_DEST_UNREACH: switch (ee->ee_code) { case ICMP_NET_UNREACH: _net("Rx Received ICMP Network Unreachable"); break; case ICMP_HOST_UNREACH: _net("Rx Received ICMP Host Unreachable"); break; case ICMP_PORT_UNREACH: _net("Rx Received ICMP Port Unreachable"); break; case ICMP_NET_UNKNOWN: _net("Rx Received ICMP Unknown Network"); break; case ICMP_HOST_UNKNOWN: _net("Rx Received ICMP Unknown Host"); break; default: _net("Rx Received ICMP DestUnreach code=%u", ee->ee_code); break; } break; case ICMP_TIME_EXCEEDED: _net("Rx Received ICMP TTL Exceeded"); break; default: _proto("Rx Received ICMP error { type=%u code=%u }", ee->ee_type, ee->ee_code); break; } break; case SO_EE_ORIGIN_NONE: case SO_EE_ORIGIN_LOCAL: _proto("Rx Received local error { error=%d }", err); err += RXRPC_LOCAL_ERROR_OFFSET; break; case SO_EE_ORIGIN_ICMP6: default: _proto("Rx Received error report { orig=%u }", ee->ee_origin); break; } peer->error_report = err; } /* * Distribute an error that occurred on a peer */ void rxrpc_peer_error_distributor(struct work_struct *work) { struct rxrpc_peer *peer = container_of(work, struct rxrpc_peer, error_distributor); struct rxrpc_call *call; enum rxrpc_call_completion compl; int error; _enter(""); error = READ_ONCE(peer->error_report); if (error < RXRPC_LOCAL_ERROR_OFFSET) { compl = RXRPC_CALL_NETWORK_ERROR; } else { compl = RXRPC_CALL_LOCAL_ERROR; error -= RXRPC_LOCAL_ERROR_OFFSET; } _debug("ISSUE ERROR %s %d", rxrpc_call_completions[compl], error); spin_lock_bh(&peer->lock); while (!hlist_empty(&peer->error_targets)) { call = hlist_entry(peer->error_targets.first, struct rxrpc_call, error_link); hlist_del_init(&call->error_link); rxrpc_see_call(call); if (rxrpc_set_call_completion(call, compl, 0, -error)) rxrpc_notify_socket(call); } spin_unlock_bh(&peer->lock); rxrpc_put_peer(peer); _leave(""); } /* * Add RTT information to cache. This is called in softirq mode and has * exclusive access to the peer RTT data. */ void rxrpc_peer_add_rtt(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why, rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial, ktime_t send_time, ktime_t resp_time) { struct rxrpc_peer *peer = call->peer; s64 rtt; u64 sum = peer->rtt_sum, avg; u8 cursor = peer->rtt_cursor, usage = peer->rtt_usage; rtt = ktime_to_ns(ktime_sub(resp_time, send_time)); if (rtt < 0) return; /* Replace the oldest datum in the RTT buffer */ sum -= peer->rtt_cache[cursor]; sum += rtt; peer->rtt_cache[cursor] = rtt; peer->rtt_cursor = (cursor + 1) & (RXRPC_RTT_CACHE_SIZE - 1); peer->rtt_sum = sum; if (usage < RXRPC_RTT_CACHE_SIZE) { usage++; peer->rtt_usage = usage; } /* Now recalculate the average */ if (usage == RXRPC_RTT_CACHE_SIZE) { avg = sum / RXRPC_RTT_CACHE_SIZE; } else { avg = sum; do_div(avg, usage); } peer->rtt = avg; trace_rxrpc_rtt_rx(call, why, send_serial, resp_serial, rtt, usage, avg); } /* * Perform keep-alive pings with VERSION packets to keep any NAT alive. */ void rxrpc_peer_keepalive_worker(struct work_struct *work) { struct rxrpc_net *rxnet = container_of(work, struct rxrpc_net, peer_keepalive_work); struct rxrpc_peer *peer; unsigned long delay; ktime_t base, now = ktime_get_real(); s64 diff; u8 cursor, slot; base = rxnet->peer_keepalive_base; cursor = rxnet->peer_keepalive_cursor; _enter("%u,%lld", cursor, ktime_sub(now, base)); next_bucket: diff = ktime_to_ns(ktime_sub(now, base)); if (diff < 0) goto resched; _debug("at %u", cursor); spin_lock_bh(&rxnet->peer_hash_lock); next_peer: if (!rxnet->live) { spin_unlock_bh(&rxnet->peer_hash_lock); goto out; } /* Everything in the bucket at the cursor is processed this second; the * bucket at cursor + 1 goes now + 1s and so on... */ if (hlist_empty(&rxnet->peer_keepalive[cursor])) { if (hlist_empty(&rxnet->peer_keepalive_new)) { spin_unlock_bh(&rxnet->peer_hash_lock); goto emptied_bucket; } hlist_move_list(&rxnet->peer_keepalive_new, &rxnet->peer_keepalive[cursor]); } peer = hlist_entry(rxnet->peer_keepalive[cursor].first, struct rxrpc_peer, keepalive_link); hlist_del_init(&peer->keepalive_link); if (!rxrpc_get_peer_maybe(peer)) goto next_peer; spin_unlock_bh(&rxnet->peer_hash_lock); _debug("peer %u {%pISp}", peer->debug_id, &peer->srx.transport); recalc: diff = ktime_divns(ktime_sub(peer->last_tx_at, base), NSEC_PER_SEC); if (diff < -30 || diff > 30) goto send; /* LSW of 64-bit time probably wrapped on 32-bit */ diff += RXRPC_KEEPALIVE_TIME - 1; if (diff < 0) goto send; slot = (diff > RXRPC_KEEPALIVE_TIME - 1) ? RXRPC_KEEPALIVE_TIME - 1 : diff; if (slot == 0) goto send; /* A transmission to this peer occurred since last we examined it so * put it into the appropriate future bucket. */ slot = (slot + cursor) % ARRAY_SIZE(rxnet->peer_keepalive); spin_lock_bh(&rxnet->peer_hash_lock); hlist_add_head(&peer->keepalive_link, &rxnet->peer_keepalive[slot]); rxrpc_put_peer(peer); goto next_peer; send: rxrpc_send_keepalive(peer); now = ktime_get_real(); goto recalc; emptied_bucket: cursor++; if (cursor >= ARRAY_SIZE(rxnet->peer_keepalive)) cursor = 0; base = ktime_add_ns(base, NSEC_PER_SEC); goto next_bucket; resched: rxnet->peer_keepalive_base = base; rxnet->peer_keepalive_cursor = cursor; delay = nsecs_to_jiffies(-diff) + 1; timer_reduce(&rxnet->peer_keepalive_timer, jiffies + delay); out: _leave(""); }