/* * linux/mm/vmalloc.c * * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 */ #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> #include <asm/tlbflush.h> DEFINE_RWLOCK(vmlist_lock); struct vm_struct *vmlist; static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, int node); static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); } static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next); } while (pmd++, addr = next, addr != end); } static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) { pud_t *pud; unsigned long next; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next); } while (pud++, addr = next, addr != end); } void unmap_kernel_range(unsigned long addr, unsigned long size) { pgd_t *pgd; unsigned long next; unsigned long start = addr; unsigned long end = addr + size; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); flush_cache_vunmap(addr, end); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; vunmap_pud_range(pgd, addr, next); } while (pgd++, addr = next, addr != end); flush_tlb_kernel_range(start, end); } static void unmap_vm_area(struct vm_struct *area) { unmap_kernel_range((unsigned long)area->addr, area->size); } static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page ***pages) { pte_t *pte; pte = pte_alloc_kernel(pmd, addr); if (!pte) return -ENOMEM; do { struct page *page = **pages; WARN_ON(!pte_none(*pte)); if (!page) return -ENOMEM; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*pages)++; } while (pte++, addr += PAGE_SIZE, addr != end); return 0; } static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page ***pages) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc(&init_mm, pud, addr); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pte_range(pmd, addr, next, prot, pages)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page ***pages) { pud_t *pud; unsigned long next; pud = pud_alloc(&init_mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pmd_range(pud, addr, next, prot, pages)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) { pgd_t *pgd; unsigned long next; unsigned long addr = (unsigned long) area->addr; unsigned long end = addr + area->size - PAGE_SIZE; int err; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); err = vmap_pud_range(pgd, addr, next, prot, pages); if (err) break; } while (pgd++, addr = next, addr != end); flush_cache_vmap((unsigned long) area->addr, end); return err; } EXPORT_SYMBOL_GPL(map_vm_area); /* * Map a vmalloc()-space virtual address to the physical page. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; if (!pgd_none(*pgd)) { pud = pud_offset(pgd, addr); if (!pud_none(*pud)) { pmd = pmd_offset(pud, addr); if (!pmd_none(*pmd)) { ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); } } } return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask) { struct vm_struct **p, *tmp, *area; unsigned long align = 1; unsigned long addr; BUG_ON(in_interrupt()); if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; } addr = ALIGN(start, align); size = PAGE_ALIGN(size); if (unlikely(!size)) return NULL; area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ size += PAGE_SIZE; write_lock(&vmlist_lock); for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { if ((unsigned long)tmp->addr < addr) { if((unsigned long)tmp->addr + tmp->size >= addr) addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); continue; } if ((size + addr) < addr) goto out; if (size + addr <= (unsigned long)tmp->addr) goto found; addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); if (addr > end - size) goto out; } if ((size + addr) < addr) goto out; if (addr > end - size) goto out; found: area->next = *p; *p = area; area->flags = flags; area->addr = (void *)addr; area->size = size; area->pages = NULL; area->nr_pages = 0; area->phys_addr = 0; write_unlock(&vmlist_lock); return area; out: write_unlock(&vmlist_lock); kfree(area); if (printk_ratelimit()) printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); return NULL; } struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, unsigned long start, unsigned long end) { return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL); } EXPORT_SYMBOL_GPL(__get_vm_area); /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); } struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node, gfp_t gfp_mask) { return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, gfp_mask); } /* Caller must hold vmlist_lock */ static struct vm_struct *__find_vm_area(const void *addr) { struct vm_struct *tmp; for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { if (tmp->addr == addr) break; } return tmp; } /* Caller must hold vmlist_lock */ static struct vm_struct *__remove_vm_area(const void *addr) { struct vm_struct **p, *tmp; for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { if (tmp->addr == addr) goto found; } return NULL; found: unmap_vm_area(tmp); *p = tmp->next; /* * Remove the guard page. */ tmp->size -= PAGE_SIZE; return tmp; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. */ struct vm_struct *remove_vm_area(const void *addr) { struct vm_struct *v; write_lock(&vmlist_lock); v = __remove_vm_area(addr); write_unlock(&vmlist_lock); return v; } static void __vunmap(const void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if ((PAGE_SIZE-1) & (unsigned long)addr) { printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); WARN_ON(1); return; } area = remove_vm_area(addr); if (unlikely(!area)) { printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); WARN_ON(1); return; } debug_check_no_locks_freed(addr, area->size); if (deallocate_pages) { int i; for (i = 0; i < area->nr_pages; i++) { struct page *page = area->pages[i]; BUG_ON(!page); __free_page(page); } if (area->flags & VM_VPAGES) vfree(area->pages); else kfree(area->pages); } kfree(area); return; } /** * vfree - release memory allocated by vmalloc() * @addr: memory base address * * Free the virtually continuous memory area starting at @addr, as * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is * NULL, no operation is performed. * * Must not be called in interrupt context. */ void vfree(const void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 1); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { BUG_ON(in_interrupt()); __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual * space. */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; if (count > num_physpages) return NULL; area = get_vm_area((count << PAGE_SHIFT), flags); if (!area) return NULL; if (map_vm_area(area, prot, &pages)) { vunmap(area->addr); return NULL; } return area->addr; } EXPORT_SYMBOL(vmap); static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, int node) { struct page **pages; unsigned int nr_pages, array_size, i; nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, PAGE_KERNEL, node); area->flags |= VM_VPAGES; } else { pages = kmalloc_node(array_size, (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, node); } area->pages = pages; if (!area->pages) { remove_vm_area(area->addr); kfree(area); return NULL; } for (i = 0; i < area->nr_pages; i++) { struct page *page; if (node < 0) page = alloc_page(gfp_mask); else page = alloc_pages_node(node, gfp_mask, 0); if (unlikely(!page)) { /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } area->pages[i] = page; } if (map_vm_area(area, prot, &pages)) goto fail; return area->addr; fail: vfree(area->addr); return NULL; } void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) { return __vmalloc_area_node(area, gfp_mask, prot, -1); } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @node: node to use for allocation or -1 * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, int node) { struct vm_struct *area; size = PAGE_ALIGN(size); if (!size || (size >> PAGE_SHIFT) > num_physpages) return NULL; area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask); if (!area) return NULL; return __vmalloc_area_node(area, gfp_mask, prot, node); } void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) { return __vmalloc_node(size, gfp_mask, prot, -1); } EXPORT_SYMBOL(__vmalloc); /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); } EXPORT_SYMBOL(vmalloc); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. */ void *vmalloc_user(unsigned long size) { struct vm_struct *area; void *ret; ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); if (ret) { write_lock(&vmlist_lock); area = __find_vm_area(ret); area->flags |= VM_USERMAP; write_unlock(&vmlist_lock); } return ret; } EXPORT_SYMBOL(vmalloc_user); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc_node(unsigned long size, int node) { return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); } EXPORT_SYMBOL(vmalloc_node); #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /** * vmalloc_exec - allocate virtually contiguous, executable memory * @size: allocation size * * Kernel-internal function to allocate enough pages to cover @size * the page level allocator and map them into contiguous and * executable kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc_exec(unsigned long size) { return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); } #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL #else #define GFP_VMALLOC32 GFP_KERNEL #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. */ void *vmalloc_32(unsigned long size) { return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); } EXPORT_SYMBOL(vmalloc_32); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. */ void *vmalloc_32_user(unsigned long size) { struct vm_struct *area; void *ret; ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); if (ret) { write_lock(&vmlist_lock); area = __find_vm_area(ret); area->flags |= VM_USERMAP; write_unlock(&vmlist_lock); } return ret; } EXPORT_SYMBOL(vmalloc_32_user); long vread(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr, *buf_start = buf; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; read_lock(&vmlist_lock); for (tmp = vmlist; tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; *buf = '\0'; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; do { if (count == 0) goto finished; *buf = *addr; buf++; addr++; count--; } while (--n > 0); } finished: read_unlock(&vmlist_lock); return buf - buf_start; } long vwrite(char *buf, char *addr, unsigned long count) { struct vm_struct *tmp; char *vaddr, *buf_start = buf; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; read_lock(&vmlist_lock); for (tmp = vmlist; tmp; tmp = tmp->next) { vaddr = (char *) tmp->addr; if (addr >= vaddr + tmp->size - PAGE_SIZE) continue; while (addr < vaddr) { if (count == 0) goto finished; buf++; addr++; count--; } n = vaddr + tmp->size - PAGE_SIZE - addr; do { if (count == 0) goto finished; *addr = *buf; buf++; addr++; count--; } while (--n > 0); } finished: read_unlock(&vmlist_lock); return buf - buf_start; } /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * @returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { struct vm_struct *area; unsigned long uaddr = vma->vm_start; unsigned long usize = vma->vm_end - vma->vm_start; int ret; if ((PAGE_SIZE-1) & (unsigned long)addr) return -EINVAL; read_lock(&vmlist_lock); area = __find_vm_area(addr); if (!area) goto out_einval_locked; if (!(area->flags & VM_USERMAP)) goto out_einval_locked; if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) goto out_einval_locked; read_unlock(&vmlist_lock); addr += pgoff << PAGE_SHIFT; do { struct page *page = vmalloc_to_page(addr); ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; addr += PAGE_SIZE; usize -= PAGE_SIZE; } while (usize > 0); /* Prevent "things" like memory migration? VM_flags need a cleanup... */ vma->vm_flags |= VM_RESERVED; return ret; out_einval_locked: read_unlock(&vmlist_lock); return -EINVAL; } EXPORT_SYMBOL(remap_vmalloc_range); /* * Implement a stub for vmalloc_sync_all() if the architecture chose not to * have one. */ void __attribute__((weak)) vmalloc_sync_all(void) { } static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) { /* apply_to_page_range() does all the hard work. */ return 0; } /** * alloc_vm_area - allocate a range of kernel address space * @size: size of the area * @returns: NULL on failure, vm_struct on success * * This function reserves a range of kernel address space, and * allocates pagetables to map that range. No actual mappings * are created. If the kernel address space is not shared * between processes, it syncs the pagetable across all * processes. */ struct vm_struct *alloc_vm_area(size_t size) { struct vm_struct *area; area = get_vm_area(size, VM_IOREMAP); if (area == NULL) return NULL; /* * This ensures that page tables are constructed for this region * of kernel virtual address space and mapped into init_mm. */ if (apply_to_page_range(&init_mm, (unsigned long)area->addr, area->size, f, NULL)) { free_vm_area(area); return NULL; } /* Make sure the pagetables are constructed in process kernel mappings */ vmalloc_sync_all(); return area; } EXPORT_SYMBOL_GPL(alloc_vm_area); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area);