/* * FSE : Finite State Entropy codec * Public Prototypes declaration * Copyright (C) 2013-2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at : * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy */ #ifndef FSE_H #define FSE_H /*-***************************************** * Dependencies ******************************************/ #include /* size_t, ptrdiff_t */ /*-***************************************** * FSE_PUBLIC_API : control library symbols visibility ******************************************/ #define FSE_PUBLIC_API /*------ Version ------*/ #define FSE_VERSION_MAJOR 0 #define FSE_VERSION_MINOR 9 #define FSE_VERSION_RELEASE 0 #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE #define FSE_QUOTE(str) #str #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR * 100 * 100 + FSE_VERSION_MINOR * 100 + FSE_VERSION_RELEASE) FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ /*-***************************************** * Tool functions ******************************************/ FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ /* Error Management */ FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ /*-***************************************** * FSE detailed API ******************************************/ /*! FSE_compress() does the following: 1. count symbol occurrence from source[] into table count[] 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) 3. save normalized counters to memory buffer using writeNCount() 4. build encoding table 'CTable' from normalized counters 5. encode the data stream using encoding table 'CTable' FSE_decompress() does the following: 1. read normalized counters with readNCount() 2. build decoding table 'DTable' from normalized counters 3. decode the data stream using decoding table 'DTable' The following API allows targeting specific sub-functions for advanced tasks. For example, it's possible to compress several blocks using the same 'CTable', or to save and provide normalized distribution using external method. */ /* *** COMPRESSION *** */ /*! FSE_optimalTableLog(): dynamically downsize 'tableLog' when conditions are met. It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. @return : recommended tableLog (necessarily <= 'maxTableLog') */ FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); /*! FSE_normalizeCount(): normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). @return : tableLog, or an errorCode, which can be tested using FSE_isError() */ FSE_PUBLIC_API size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t srcSize, unsigned maxSymbolValue); /*! FSE_NCountWriteBound(): Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. Typically useful for allocation purpose. */ FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); /*! FSE_writeNCount(): Compactly save 'normalizedCounter' into 'buffer'. @return : size of the compressed table, or an errorCode, which can be tested using FSE_isError(). */ FSE_PUBLIC_API size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); /*! Constructor and Destructor of FSE_CTable. Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ /*! FSE_compress_usingCTable(): Compress `src` using `ct` into `dst` which must be already allocated. @return : size of compressed data (<= `dstCapacity`), or 0 if compressed data could not fit into `dst`, or an errorCode, which can be tested using FSE_isError() */ FSE_PUBLIC_API size_t FSE_compress_usingCTable(void *dst, size_t dstCapacity, const void *src, size_t srcSize, const FSE_CTable *ct); /*! Tutorial : ---------- The first step is to count all symbols. FSE_count() does this job very fast. Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) FSE_count() will return the number of occurrence of the most frequent symbol. This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). The next step is to normalize the frequencies. FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. It also guarantees a minimum of 1 to any Symbol with frequency >= 1. You can use 'tableLog'==0 to mean "use default tableLog value". If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). The result of FSE_normalizeCount() will be saved into a table, called 'normalizedCounter', which is a table of signed short. 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. The return value is tableLog if everything proceeded as expected. It is 0 if there is a single symbol within distribution. If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). 'buffer' must be already allocated. For guaranteed success, buffer size must be at least FSE_headerBound(). The result of the function is the number of bytes written into 'buffer'. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). 'normalizedCounter' can then be used to create the compression table 'CTable'. The space required by 'CTable' must be already allocated, using FSE_createCTable(). You can then use FSE_buildCTable() to fill 'CTable'. If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. If it returns '0', compressed data could not fit into 'dst'. If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). */ /* *** DECOMPRESSION *** */ /*! FSE_readNCount(): Read compactly saved 'normalizedCounter' from 'rBuffer'. @return : size read from 'rBuffer', or an errorCode, which can be tested using FSE_isError(). maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ FSE_PUBLIC_API size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSymbolValuePtr, unsigned *tableLogPtr, const void *rBuffer, size_t rBuffSize); /*! Constructor and Destructor of FSE_DTable. Note that its size depends on 'tableLog' */ typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ /*! FSE_buildDTable(): Builds 'dt', which must be already allocated, using FSE_createDTable(). return : 0, or an errorCode, which can be tested using FSE_isError() */ FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable *dt, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize); /*! FSE_decompress_usingDTable(): Decompress compressed source `cSrc` of size `cSrcSize` using `dt` into `dst` which must be already allocated. @return : size of regenerated data (necessarily <= `dstCapacity`), or an errorCode, which can be tested using FSE_isError() */ FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt); /*! Tutorial : ---------- (Note : these functions only decompress FSE-compressed blocks. If block is uncompressed, use memcpy() instead If block is a single repeated byte, use memset() instead ) The first step is to obtain the normalized frequencies of symbols. This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. In practice, that means it's necessary to know 'maxSymbolValue' beforehand, or size the table to handle worst case situations (typically 256). FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. If there is an error, the function will return an error code, which can be tested using FSE_isError(). The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. This is performed by the function FSE_buildDTable(). The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). If there is an error, the function will return an error code, which can be tested using FSE_isError(). `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). `cSrcSize` must be strictly correct, otherwise decompression will fail. FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) */ /* *** Dependency *** */ #include "bitstream.h" /* ***************************************** * Static allocation *******************************************/ /* FSE buffer bounds */ #define FSE_NCOUNTBOUND 512 #define FSE_BLOCKBOUND(size) (size + (size >> 7)) #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1 << (maxTableLog - 1)) + ((maxSymbolValue + 1) * 2)) #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1 << maxTableLog)) /* ***************************************** * FSE advanced API *******************************************/ /* FSE_count_wksp() : * Same as FSE_count(), but using an externally provided scratch buffer. * `workSpace` size must be table of >= `1024` unsigned */ size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace); /* FSE_countFast_wksp() : * Same as FSE_countFast(), but using an externally provided scratch buffer. * `workSpace` must be a table of minimum `1024` unsigned */ size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize, unsigned *workSpace); /*! FSE_count_simple * Same as FSE_countFast(), but does not use any additional memory (not even on stack). * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`). */ size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize); unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); /**< same as FSE_optimalTableLog(), which used `minus==2` */ size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits); /**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ size_t FSE_buildCTable_rle(FSE_CTable *ct, unsigned char symbolValue); /**< build a fake FSE_CTable, designed to compress always the same symbolValue */ /* FSE_buildCTable_wksp() : * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). * `wkspSize` must be >= `(1<= BIT_DStream_completed When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. Checking if DStream has reached its end is performed by : BIT_endOfDStream(&DStream); Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. FSE_endOfDState(&DState); */ /* ***************************************** * FSE unsafe API *******************************************/ static unsigned char FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD); /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ /* ***************************************** * Implementation of inlined functions *******************************************/ typedef struct { int deltaFindState; U32 deltaNbBits; } FSE_symbolCompressionTransform; /* total 8 bytes */ ZSTD_STATIC void FSE_initCState(FSE_CState_t *statePtr, const FSE_CTable *ct) { const void *ptr = ct; const U16 *u16ptr = (const U16 *)ptr; const U32 tableLog = ZSTD_read16(ptr); statePtr->value = (ptrdiff_t)1 << tableLog; statePtr->stateTable = u16ptr + 2; statePtr->symbolTT = ((const U32 *)ct + 1 + (tableLog ? (1 << (tableLog - 1)) : 1)); statePtr->stateLog = tableLog; } /*! FSE_initCState2() : * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) * uses the smallest state value possible, saving the cost of this symbol */ ZSTD_STATIC void FSE_initCState2(FSE_CState_t *statePtr, const FSE_CTable *ct, U32 symbol) { FSE_initCState(statePtr, ct); { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol]; const U16 *stateTable = (const U16 *)(statePtr->stateTable); U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1 << 15)) >> 16); statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; } } ZSTD_STATIC void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *statePtr, U32 symbol) { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol]; const U16 *const stateTable = (const U16 *)(statePtr->stateTable); U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); BIT_addBits(bitC, statePtr->value, nbBitsOut); statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; } ZSTD_STATIC void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *statePtr) { BIT_addBits(bitC, statePtr->value, statePtr->stateLog); BIT_flushBits(bitC); } /* ====== Decompression ====== */ typedef struct { U16 tableLog; U16 fastMode; } FSE_DTableHeader; /* sizeof U32 */ typedef struct { unsigned short newState; unsigned char symbol; unsigned char nbBits; } FSE_decode_t; /* size == U32 */ ZSTD_STATIC void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt) { const void *ptr = dt; const FSE_DTableHeader *const DTableH = (const FSE_DTableHeader *)ptr; DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); BIT_reloadDStream(bitD); DStatePtr->table = dt + 1; } ZSTD_STATIC BYTE FSE_peekSymbol(const FSE_DState_t *DStatePtr) { FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state]; return DInfo.symbol; } ZSTD_STATIC void FSE_updateState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; size_t const lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; } ZSTD_STATIC BYTE FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; BYTE const symbol = DInfo.symbol; size_t const lowBits = BIT_readBits(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } /*! FSE_decodeSymbolFast() : unsafe, only works if no symbol has a probability > 50% */ ZSTD_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD) { FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state]; U32 const nbBits = DInfo.nbBits; BYTE const symbol = DInfo.symbol; size_t const lowBits = BIT_readBitsFast(bitD, nbBits); DStatePtr->state = DInfo.newState + lowBits; return symbol; } ZSTD_STATIC unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr) { return DStatePtr->state == 0; } /* ************************************************************** * Tuning parameters ****************************************************************/ /*!MEMORY_USAGE : * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) * Increasing memory usage improves compression ratio * Reduced memory usage can improve speed, due to cache effect * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ #ifndef FSE_MAX_MEMORY_USAGE #define FSE_MAX_MEMORY_USAGE 14 #endif #ifndef FSE_DEFAULT_MEMORY_USAGE #define FSE_DEFAULT_MEMORY_USAGE 13 #endif /*!FSE_MAX_SYMBOL_VALUE : * Maximum symbol value authorized. * Required for proper stack allocation */ #ifndef FSE_MAX_SYMBOL_VALUE #define FSE_MAX_SYMBOL_VALUE 255 #endif /* ************************************************************** * template functions type & suffix ****************************************************************/ #define FSE_FUNCTION_TYPE BYTE #define FSE_FUNCTION_EXTENSION #define FSE_DECODE_TYPE FSE_decode_t /* *************************************************************** * Constants *****************************************************************/ #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE - 2) #define FSE_MAX_TABLESIZE (1U << FSE_MAX_TABLELOG) #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE - 1) #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE - 2) #define FSE_MIN_TABLELOG 5 #define FSE_TABLELOG_ABSOLUTE_MAX 15 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" #endif #define FSE_TABLESTEP(tableSize) ((tableSize >> 1) + (tableSize >> 3) + 3) #endif /* FSE_H */