/* * Common functions of New Generation Entropy library * Copyright (C) 2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at : * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy */ /* ************************************* * Dependencies ***************************************/ #include "error_private.h" /* ERR_*, ERROR */ #include "fse.h" #include "huf.h" #include "mem.h" /*=== Version ===*/ unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; } /*=== Error Management ===*/ unsigned FSE_isError(size_t code) { return ERR_isError(code); } unsigned HUF_isError(size_t code) { return ERR_isError(code); } /*-************************************************************** * FSE NCount encoding-decoding ****************************************************************/ size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSVPtr, unsigned *tableLogPtr, const void *headerBuffer, size_t hbSize) { const BYTE *const istart = (const BYTE *)headerBuffer; const BYTE *const iend = istart + hbSize; const BYTE *ip = istart; int nbBits; int remaining; int threshold; U32 bitStream; int bitCount; unsigned charnum = 0; int previous0 = 0; if (hbSize < 4) return ERROR(srcSize_wrong); bitStream = ZSTD_readLE32(ip); nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); bitStream >>= 4; bitCount = 4; *tableLogPtr = nbBits; remaining = (1 << nbBits) + 1; threshold = 1 << nbBits; nbBits++; while ((remaining > 1) & (charnum <= *maxSVPtr)) { if (previous0) { unsigned n0 = charnum; while ((bitStream & 0xFFFF) == 0xFFFF) { n0 += 24; if (ip < iend - 5) { ip += 2; bitStream = ZSTD_readLE32(ip) >> bitCount; } else { bitStream >>= 16; bitCount += 16; } } while ((bitStream & 3) == 3) { n0 += 3; bitStream >>= 2; bitCount += 2; } n0 += bitStream & 3; bitCount += 2; if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); while (charnum < n0) normalizedCounter[charnum++] = 0; if ((ip <= iend - 7) || (ip + (bitCount >> 3) <= iend - 4)) { ip += bitCount >> 3; bitCount &= 7; bitStream = ZSTD_readLE32(ip) >> bitCount; } else { bitStream >>= 2; } } { int const max = (2 * threshold - 1) - remaining; int count; if ((bitStream & (threshold - 1)) < (U32)max) { count = bitStream & (threshold - 1); bitCount += nbBits - 1; } else { count = bitStream & (2 * threshold - 1); if (count >= threshold) count -= max; bitCount += nbBits; } count--; /* extra accuracy */ remaining -= count < 0 ? -count : count; /* -1 means +1 */ normalizedCounter[charnum++] = (short)count; previous0 = !count; while (remaining < threshold) { nbBits--; threshold >>= 1; } if ((ip <= iend - 7) || (ip + (bitCount >> 3) <= iend - 4)) { ip += bitCount >> 3; bitCount &= 7; } else { bitCount -= (int)(8 * (iend - 4 - ip)); ip = iend - 4; } bitStream = ZSTD_readLE32(ip) >> (bitCount & 31); } } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */ if (remaining != 1) return ERROR(corruption_detected); if (bitCount > 32) return ERROR(corruption_detected); *maxSVPtr = charnum - 1; ip += (bitCount + 7) >> 3; return ip - istart; } /*! HUF_readStats() : Read compact Huffman tree, saved by HUF_writeCTable(). `huffWeight` is destination buffer. `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32. @return : size read from `src` , or an error Code . Note : Needed by HUF_readCTable() and HUF_readDTableX?() . */ size_t HUF_readStats_wksp(BYTE *huffWeight, size_t hwSize, U32 *rankStats, U32 *nbSymbolsPtr, U32 *tableLogPtr, const void *src, size_t srcSize, void *workspace, size_t workspaceSize) { U32 weightTotal; const BYTE *ip = (const BYTE *)src; size_t iSize; size_t oSize; if (!srcSize) return ERROR(srcSize_wrong); iSize = ip[0]; /* memset(huffWeight, 0, hwSize); */ /* is not necessary, even though some analyzer complain ... */ if (iSize >= 128) { /* special header */ oSize = iSize - 127; iSize = ((oSize + 1) / 2); if (iSize + 1 > srcSize) return ERROR(srcSize_wrong); if (oSize >= hwSize) return ERROR(corruption_detected); ip += 1; { U32 n; for (n = 0; n < oSize; n += 2) { huffWeight[n] = ip[n / 2] >> 4; huffWeight[n + 1] = ip[n / 2] & 15; } } } else { /* header compressed with FSE (normal case) */ if (iSize + 1 > srcSize) return ERROR(srcSize_wrong); oSize = FSE_decompress_wksp(huffWeight, hwSize - 1, ip + 1, iSize, 6, workspace, workspaceSize); /* max (hwSize-1) values decoded, as last one is implied */ if (FSE_isError(oSize)) return oSize; } /* collect weight stats */ memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32)); weightTotal = 0; { U32 n; for (n = 0; n < oSize; n++) { if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected); rankStats[huffWeight[n]]++; weightTotal += (1 << huffWeight[n]) >> 1; } } if (weightTotal == 0) return ERROR(corruption_detected); /* get last non-null symbol weight (implied, total must be 2^n) */ { U32 const tableLog = BIT_highbit32(weightTotal) + 1; if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected); *tableLogPtr = tableLog; /* determine last weight */ { U32 const total = 1 << tableLog; U32 const rest = total - weightTotal; U32 const verif = 1 << BIT_highbit32(rest); U32 const lastWeight = BIT_highbit32(rest) + 1; if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ huffWeight[oSize] = (BYTE)lastWeight; rankStats[lastWeight]++; } } /* check tree construction validity */ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ /* results */ *nbSymbolsPtr = (U32)(oSize + 1); return iSize + 1; }