#ifdef CONFIG_SCHEDSTATS /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) { if (rq) { rq->rq_sched_info.run_delay += delta; rq->rq_sched_info.pcount++; } } /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_cpu_time += delta; } static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_sched_info.run_delay += delta; } # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) # define schedstat_set(var, val) do { var = (val); } while (0) #else /* !CONFIG_SCHEDSTATS */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) {} static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) {} static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) {} # define schedstat_inc(rq, field) do { } while (0) # define schedstat_add(rq, field, amt) do { } while (0) # define schedstat_set(var, val) do { } while (0) #endif #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) static inline void sched_info_reset_dequeued(struct task_struct *t) { t->sched_info.last_queued = 0; } /* * We are interested in knowing how long it was from the *first* time a * task was queued to the time that it finally hit a cpu, we call this routine * from dequeue_task() to account for possible rq->clock skew across cpus. The * delta taken on each cpu would annul the skew. */ static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t) { unsigned long long now = rq_clock(rq), delta = 0; if (unlikely(sched_info_on())) if (t->sched_info.last_queued) delta = now - t->sched_info.last_queued; sched_info_reset_dequeued(t); t->sched_info.run_delay += delta; rq_sched_info_dequeued(rq, delta); } /* * Called when a task finally hits the cpu. We can now calculate how * long it was waiting to run. We also note when it began so that we * can keep stats on how long its timeslice is. */ static void sched_info_arrive(struct rq *rq, struct task_struct *t) { unsigned long long now = rq_clock(rq), delta = 0; if (t->sched_info.last_queued) delta = now - t->sched_info.last_queued; sched_info_reset_dequeued(t); t->sched_info.run_delay += delta; t->sched_info.last_arrival = now; t->sched_info.pcount++; rq_sched_info_arrive(rq, delta); } /* * This function is only called from enqueue_task(), but also only updates * the timestamp if it is already not set. It's assumed that * sched_info_dequeued() will clear that stamp when appropriate. */ static inline void sched_info_queued(struct rq *rq, struct task_struct *t) { if (unlikely(sched_info_on())) if (!t->sched_info.last_queued) t->sched_info.last_queued = rq_clock(rq); } /* * Called when a process ceases being the active-running process involuntarily * due, typically, to expiring its time slice (this may also be called when * switching to the idle task). Now we can calculate how long we ran. * Also, if the process is still in the TASK_RUNNING state, call * sched_info_queued() to mark that it has now again started waiting on * the runqueue. */ static inline void sched_info_depart(struct rq *rq, struct task_struct *t) { unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; rq_sched_info_depart(rq, delta); if (t->state == TASK_RUNNING) sched_info_queued(rq, t); } /* * Called when tasks are switched involuntarily due, typically, to expiring * their time slice. (This may also be called when switching to or from * the idle task.) We are only called when prev != next. */ static inline void __sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { /* * prev now departs the cpu. It's not interesting to record * stats about how efficient we were at scheduling the idle * process, however. */ if (prev != rq->idle) sched_info_depart(rq, prev); if (next != rq->idle) sched_info_arrive(rq, next); } static inline void sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { if (unlikely(sched_info_on())) __sched_info_switch(rq, prev, next); } #else #define sched_info_queued(rq, t) do { } while (0) #define sched_info_reset_dequeued(t) do { } while (0) #define sched_info_dequeued(rq, t) do { } while (0) #define sched_info_depart(rq, t) do { } while (0) #define sched_info_arrive(rq, next) do { } while (0) #define sched_info_switch(rq, t, next) do { } while (0) #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * cputimer_running - return true if cputimer is running * * @tsk: Pointer to target task. */ static inline bool cputimer_running(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; if (!cputimer->running) return false; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return false; return true; } /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, cputime_t cputime) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; if (!cputimer_running(tsk)) return; raw_spin_lock(&cputimer->lock); cputimer->cputime.utime += cputime; raw_spin_unlock(&cputimer->lock); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, cputime_t cputime) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; if (!cputimer_running(tsk)) return; raw_spin_lock(&cputimer->lock); cputimer->cputime.stime += cputime; raw_spin_unlock(&cputimer->lock); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; if (!cputimer_running(tsk)) return; raw_spin_lock(&cputimer->lock); cputimer->cputime.sum_exec_runtime += ns; raw_spin_unlock(&cputimer->lock); }