/* * Pid namespaces * * Authors: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/pid.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/syscalls.h> #include <linux/err.h> #include <linux/acct.h> #include <linux/slab.h> #include <linux/proc_fs.h> #include <linux/reboot.h> #include <linux/export.h> #define BITS_PER_PAGE (PAGE_SIZE*8) struct pid_cache { int nr_ids; char name[16]; struct kmem_cache *cachep; struct list_head list; }; static LIST_HEAD(pid_caches_lh); static DEFINE_MUTEX(pid_caches_mutex); static struct kmem_cache *pid_ns_cachep; /* * creates the kmem cache to allocate pids from. * @nr_ids: the number of numerical ids this pid will have to carry */ static struct kmem_cache *create_pid_cachep(int nr_ids) { struct pid_cache *pcache; struct kmem_cache *cachep; mutex_lock(&pid_caches_mutex); list_for_each_entry(pcache, &pid_caches_lh, list) if (pcache->nr_ids == nr_ids) goto out; pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); if (pcache == NULL) goto err_alloc; snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); cachep = kmem_cache_create(pcache->name, sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 0, SLAB_HWCACHE_ALIGN, NULL); if (cachep == NULL) goto err_cachep; pcache->nr_ids = nr_ids; pcache->cachep = cachep; list_add(&pcache->list, &pid_caches_lh); out: mutex_unlock(&pid_caches_mutex); return pcache->cachep; err_cachep: kfree(pcache); err_alloc: mutex_unlock(&pid_caches_mutex); return NULL; } static void proc_cleanup_work(struct work_struct *work) { struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); pid_ns_release_proc(ns); } /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ #define MAX_PID_NS_LEVEL 32 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, struct pid_namespace *parent_pid_ns) { struct pid_namespace *ns; unsigned int level = parent_pid_ns->level + 1; int i; int err; if (level > MAX_PID_NS_LEVEL) { err = -EINVAL; goto out; } err = -ENOMEM; ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); if (ns == NULL) goto out; ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!ns->pidmap[0].page) goto out_free; ns->pid_cachep = create_pid_cachep(level + 1); if (ns->pid_cachep == NULL) goto out_free_map; err = proc_alloc_inum(&ns->proc_inum); if (err) goto out_free_map; kref_init(&ns->kref); ns->level = level; ns->parent = get_pid_ns(parent_pid_ns); ns->user_ns = get_user_ns(user_ns); ns->nr_hashed = PIDNS_HASH_ADDING; INIT_WORK(&ns->proc_work, proc_cleanup_work); set_bit(0, ns->pidmap[0].page); atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); for (i = 1; i < PIDMAP_ENTRIES; i++) atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); return ns; out_free_map: kfree(ns->pidmap[0].page); out_free: kmem_cache_free(pid_ns_cachep, ns); out: return ERR_PTR(err); } static void destroy_pid_namespace(struct pid_namespace *ns) { int i; proc_free_inum(ns->proc_inum); for (i = 0; i < PIDMAP_ENTRIES; i++) kfree(ns->pidmap[i].page); put_user_ns(ns->user_ns); kmem_cache_free(pid_ns_cachep, ns); } struct pid_namespace *copy_pid_ns(unsigned long flags, struct user_namespace *user_ns, struct pid_namespace *old_ns) { if (!(flags & CLONE_NEWPID)) return get_pid_ns(old_ns); if (task_active_pid_ns(current) != old_ns) return ERR_PTR(-EINVAL); return create_pid_namespace(user_ns, old_ns); } static void free_pid_ns(struct kref *kref) { struct pid_namespace *ns; ns = container_of(kref, struct pid_namespace, kref); destroy_pid_namespace(ns); } void put_pid_ns(struct pid_namespace *ns) { struct pid_namespace *parent; while (ns != &init_pid_ns) { parent = ns->parent; if (!kref_put(&ns->kref, free_pid_ns)) break; ns = parent; } } EXPORT_SYMBOL_GPL(put_pid_ns); void zap_pid_ns_processes(struct pid_namespace *pid_ns) { int nr; int rc; struct task_struct *task, *me = current; /* Don't allow any more processes into the pid namespace */ disable_pid_allocation(pid_ns); /* Ignore SIGCHLD causing any terminated children to autoreap */ spin_lock_irq(&me->sighand->siglock); me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; spin_unlock_irq(&me->sighand->siglock); /* * The last thread in the cgroup-init thread group is terminating. * Find remaining pid_ts in the namespace, signal and wait for them * to exit. * * Note: This signals each threads in the namespace - even those that * belong to the same thread group, To avoid this, we would have * to walk the entire tasklist looking a processes in this * namespace, but that could be unnecessarily expensive if the * pid namespace has just a few processes. Or we need to * maintain a tasklist for each pid namespace. * */ read_lock(&tasklist_lock); nr = next_pidmap(pid_ns, 1); while (nr > 0) { rcu_read_lock(); task = pid_task(find_vpid(nr), PIDTYPE_PID); if (task && !__fatal_signal_pending(task)) send_sig_info(SIGKILL, SEND_SIG_FORCED, task); rcu_read_unlock(); nr = next_pidmap(pid_ns, nr); } read_unlock(&tasklist_lock); /* Firstly reap the EXIT_ZOMBIE children we may have. */ do { clear_thread_flag(TIF_SIGPENDING); rc = sys_wait4(-1, NULL, __WALL, NULL); } while (rc != -ECHILD); /* * sys_wait4() above can't reap the TASK_DEAD children. * Make sure they all go away, see free_pid(). */ for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (pid_ns->nr_hashed == 1) break; schedule(); } __set_current_state(TASK_RUNNING); if (pid_ns->reboot) current->signal->group_exit_code = pid_ns->reboot; acct_exit_ns(pid_ns); return; } #ifdef CONFIG_CHECKPOINT_RESTORE static int pid_ns_ctl_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { struct pid_namespace *pid_ns = task_active_pid_ns(current); struct ctl_table tmp = *table; if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; /* * Writing directly to ns' last_pid field is OK, since this field * is volatile in a living namespace anyway and a code writing to * it should synchronize its usage with external means. */ tmp.data = &pid_ns->last_pid; return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); } extern int pid_max; static int zero = 0; static struct ctl_table pid_ns_ctl_table[] = { { .procname = "ns_last_pid", .maxlen = sizeof(int), .mode = 0666, /* permissions are checked in the handler */ .proc_handler = pid_ns_ctl_handler, .extra1 = &zero, .extra2 = &pid_max, }, { } }; static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; #endif /* CONFIG_CHECKPOINT_RESTORE */ int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) { if (pid_ns == &init_pid_ns) return 0; switch (cmd) { case LINUX_REBOOT_CMD_RESTART2: case LINUX_REBOOT_CMD_RESTART: pid_ns->reboot = SIGHUP; break; case LINUX_REBOOT_CMD_POWER_OFF: case LINUX_REBOOT_CMD_HALT: pid_ns->reboot = SIGINT; break; default: return -EINVAL; } read_lock(&tasklist_lock); force_sig(SIGKILL, pid_ns->child_reaper); read_unlock(&tasklist_lock); do_exit(0); /* Not reached */ return 0; } static void *pidns_get(struct task_struct *task) { struct pid_namespace *ns; rcu_read_lock(); ns = get_pid_ns(task_active_pid_ns(task)); rcu_read_unlock(); return ns; } static void pidns_put(void *ns) { put_pid_ns(ns); } static int pidns_install(struct nsproxy *nsproxy, void *ns) { struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *ancestor, *new = ns; if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || !nsown_capable(CAP_SYS_ADMIN)) return -EPERM; /* * Only allow entering the current active pid namespace * or a child of the current active pid namespace. * * This is required for fork to return a usable pid value and * this maintains the property that processes and their * children can not escape their current pid namespace. */ if (new->level < active->level) return -EINVAL; ancestor = new; while (ancestor->level > active->level) ancestor = ancestor->parent; if (ancestor != active) return -EINVAL; put_pid_ns(nsproxy->pid_ns); nsproxy->pid_ns = get_pid_ns(new); return 0; } static unsigned int pidns_inum(void *ns) { struct pid_namespace *pid_ns = ns; return pid_ns->proc_inum; } const struct proc_ns_operations pidns_operations = { .name = "pid", .type = CLONE_NEWPID, .get = pidns_get, .put = pidns_put, .install = pidns_install, .inum = pidns_inum, }; static __init int pid_namespaces_init(void) { pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); #ifdef CONFIG_CHECKPOINT_RESTORE register_sysctl_paths(kern_path, pid_ns_ctl_table); #endif return 0; } __initcall(pid_namespaces_init);