/* * kernel/mutex.c * * Mutexes: blocking mutual exclusion locks * * Started by Ingo Molnar: * * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar * * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and * David Howells for suggestions and improvements. * * Also see Documentation/mutex-design.txt. */ #include #include #include #include #include /* * In the DEBUG case we are using the "NULL fastpath" for mutexes, * which forces all calls into the slowpath: */ #ifdef CONFIG_DEBUG_MUTEXES # include "mutex-debug.h" # include #else # include "mutex.h" # include #endif /*** * mutex_init - initialize the mutex * @lock: the mutex to be initialized * * Initialize the mutex to unlocked state. * * It is not allowed to initialize an already locked mutex. */ void fastcall __mutex_init(struct mutex *lock, const char *name) { atomic_set(&lock->count, 1); spin_lock_init(&lock->wait_lock); INIT_LIST_HEAD(&lock->wait_list); debug_mutex_init(lock, name); } EXPORT_SYMBOL(__mutex_init); /* * We split the mutex lock/unlock logic into separate fastpath and * slowpath functions, to reduce the register pressure on the fastpath. * We also put the fastpath first in the kernel image, to make sure the * branch is predicted by the CPU as default-untaken. */ static void fastcall noinline __sched __mutex_lock_slowpath(atomic_t *lock_count __IP_DECL__); /*** * mutex_lock - acquire the mutex * @lock: the mutex to be acquired * * Lock the mutex exclusively for this task. If the mutex is not * available right now, it will sleep until it can get it. * * The mutex must later on be released by the same task that * acquired it. Recursive locking is not allowed. The task * may not exit without first unlocking the mutex. Also, kernel * memory where the mutex resides mutex must not be freed with * the mutex still locked. The mutex must first be initialized * (or statically defined) before it can be locked. memset()-ing * the mutex to 0 is not allowed. * * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging * checks that will enforce the restrictions and will also do * deadlock debugging. ) * * This function is similar to (but not equivalent to) down(). */ void fastcall __sched mutex_lock(struct mutex *lock) { might_sleep(); /* * The locking fastpath is the 1->0 transition from * 'unlocked' into 'locked' state. */ __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); } EXPORT_SYMBOL(mutex_lock); static void fastcall noinline __sched __mutex_unlock_slowpath(atomic_t *lock_count __IP_DECL__); /*** * mutex_unlock - release the mutex * @lock: the mutex to be released * * Unlock a mutex that has been locked by this task previously. * * This function must not be used in interrupt context. Unlocking * of a not locked mutex is not allowed. * * This function is similar to (but not equivalent to) up(). */ void fastcall __sched mutex_unlock(struct mutex *lock) { /* * The unlocking fastpath is the 0->1 transition from 'locked' * into 'unlocked' state: */ __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); } EXPORT_SYMBOL(mutex_unlock); /* * Lock a mutex (possibly interruptible), slowpath: */ static inline int __sched __mutex_lock_common(struct mutex *lock, long state __IP_DECL__) { struct task_struct *task = current; struct mutex_waiter waiter; unsigned int old_val; debug_mutex_init_waiter(&waiter); spin_lock_mutex(&lock->wait_lock); debug_mutex_add_waiter(lock, &waiter, task->thread_info, ip); /* add waiting tasks to the end of the waitqueue (FIFO): */ list_add_tail(&waiter.list, &lock->wait_list); waiter.task = task; for (;;) { /* * Lets try to take the lock again - this is needed even if * we get here for the first time (shortly after failing to * acquire the lock), to make sure that we get a wakeup once * it's unlocked. Later on, if we sleep, this is the * operation that gives us the lock. We xchg it to -1, so * that when we release the lock, we properly wake up the * other waiters: */ old_val = atomic_xchg(&lock->count, -1); if (old_val == 1) break; /* * got a signal? (This code gets eliminated in the * TASK_UNINTERRUPTIBLE case.) */ if (unlikely(state == TASK_INTERRUPTIBLE && signal_pending(task))) { mutex_remove_waiter(lock, &waiter, task->thread_info); spin_unlock_mutex(&lock->wait_lock); debug_mutex_free_waiter(&waiter); return -EINTR; } __set_task_state(task, state); /* didnt get the lock, go to sleep: */ spin_unlock_mutex(&lock->wait_lock); schedule(); spin_lock_mutex(&lock->wait_lock); } /* got the lock - rejoice! */ mutex_remove_waiter(lock, &waiter, task->thread_info); debug_mutex_set_owner(lock, task->thread_info __IP__); /* set it to 0 if there are no waiters left: */ if (likely(list_empty(&lock->wait_list))) atomic_set(&lock->count, 0); spin_unlock_mutex(&lock->wait_lock); debug_mutex_free_waiter(&waiter); DEBUG_WARN_ON(list_empty(&lock->held_list)); DEBUG_WARN_ON(lock->owner != task->thread_info); return 0; } static void fastcall noinline __sched __mutex_lock_slowpath(atomic_t *lock_count __IP_DECL__) { struct mutex *lock = container_of(lock_count, struct mutex, count); __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE __IP__); } /* * Release the lock, slowpath: */ static fastcall noinline void __mutex_unlock_slowpath(atomic_t *lock_count __IP_DECL__) { struct mutex *lock = container_of(lock_count, struct mutex, count); DEBUG_WARN_ON(lock->owner != current_thread_info()); spin_lock_mutex(&lock->wait_lock); /* * some architectures leave the lock unlocked in the fastpath failure * case, others need to leave it locked. In the later case we have to * unlock it here */ if (__mutex_slowpath_needs_to_unlock()) atomic_set(&lock->count, 1); debug_mutex_unlock(lock); if (!list_empty(&lock->wait_list)) { /* get the first entry from the wait-list: */ struct mutex_waiter *waiter = list_entry(lock->wait_list.next, struct mutex_waiter, list); debug_mutex_wake_waiter(lock, waiter); wake_up_process(waiter->task); } debug_mutex_clear_owner(lock); spin_unlock_mutex(&lock->wait_lock); } /* * Here come the less common (and hence less performance-critical) APIs: * mutex_lock_interruptible() and mutex_trylock(). */ static int fastcall noinline __sched __mutex_lock_interruptible_slowpath(atomic_t *lock_count __IP_DECL__); /*** * mutex_lock_interruptible - acquire the mutex, interruptable * @lock: the mutex to be acquired * * Lock the mutex like mutex_lock(), and return 0 if the mutex has * been acquired or sleep until the mutex becomes available. If a * signal arrives while waiting for the lock then this function * returns -EINTR. * * This function is similar to (but not equivalent to) down_interruptible(). */ int fastcall __sched mutex_lock_interruptible(struct mutex *lock) { might_sleep(); return __mutex_fastpath_lock_retval (&lock->count, __mutex_lock_interruptible_slowpath); } EXPORT_SYMBOL(mutex_lock_interruptible); static int fastcall noinline __sched __mutex_lock_interruptible_slowpath(atomic_t *lock_count __IP_DECL__) { struct mutex *lock = container_of(lock_count, struct mutex, count); return __mutex_lock_common(lock, TASK_INTERRUPTIBLE __IP__); } /* * Spinlock based trylock, we take the spinlock and check whether we * can get the lock: */ static inline int __mutex_trylock_slowpath(atomic_t *lock_count) { struct mutex *lock = container_of(lock_count, struct mutex, count); int prev; spin_lock_mutex(&lock->wait_lock); prev = atomic_xchg(&lock->count, -1); if (likely(prev == 1)) debug_mutex_set_owner(lock, current_thread_info() __RET_IP__); /* Set it back to 0 if there are no waiters: */ if (likely(list_empty(&lock->wait_list))) atomic_set(&lock->count, 0); spin_unlock_mutex(&lock->wait_lock); return prev == 1; } /*** * mutex_trylock - try acquire the mutex, without waiting * @lock: the mutex to be acquired * * Try to acquire the mutex atomically. Returns 1 if the mutex * has been acquired successfully, and 0 on contention. * * NOTE: this function follows the spin_trylock() convention, so * it is negated to the down_trylock() return values! Be careful * about this when converting semaphore users to mutexes. * * This function must not be used in interrupt context. The * mutex must be released by the same task that acquired it. */ int fastcall mutex_trylock(struct mutex *lock) { return __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); } EXPORT_SYMBOL(mutex_trylock);