/* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also entry.S and others). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ #include <linux/slab.h> #include <linux/init.h> #include <linux/unistd.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/completion.h> #include <linux/personality.h> #include <linux/mempolicy.h> #include <linux/sem.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/iocontext.h> #include <linux/key.h> #include <linux/binfmts.h> #include <linux/mman.h> #include <linux/mmu_notifier.h> #include <linux/fs.h> #include <linux/nsproxy.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/cgroup.h> #include <linux/security.h> #include <linux/hugetlb.h> #include <linux/swap.h> #include <linux/syscalls.h> #include <linux/jiffies.h> #include <linux/tracehook.h> #include <linux/futex.h> #include <linux/compat.h> #include <linux/task_io_accounting_ops.h> #include <linux/rcupdate.h> #include <linux/ptrace.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/memcontrol.h> #include <linux/ftrace.h> #include <linux/profile.h> #include <linux/rmap.h> #include <linux/ksm.h> #include <linux/acct.h> #include <linux/tsacct_kern.h> #include <linux/cn_proc.h> #include <linux/freezer.h> #include <linux/delayacct.h> #include <linux/taskstats_kern.h> #include <linux/random.h> #include <linux/tty.h> #include <linux/proc_fs.h> #include <linux/blkdev.h> #include <linux/fs_struct.h> #include <linux/magic.h> #include <linux/perf_event.h> #include <linux/posix-timers.h> #include <linux/user-return-notifier.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <trace/events/sched.h> /* * Protected counters by write_lock_irq(&tasklist_lock) */ unsigned long total_forks; /* Handle normal Linux uptimes. */ int nr_threads; /* The idle threads do not count.. */ int max_threads; /* tunable limit on nr_threads */ DEFINE_PER_CPU(unsigned long, process_counts) = 0; __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ #ifdef CONFIG_PROVE_RCU int lockdep_tasklist_lock_is_held(void) { return lockdep_is_held(&tasklist_lock); } EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); #endif /* #ifdef CONFIG_PROVE_RCU */ int nr_processes(void) { int cpu; int total = 0; for_each_possible_cpu(cpu) total += per_cpu(process_counts, cpu); return total; } #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) static struct kmem_cache *task_struct_cachep; #endif #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR static inline struct thread_info *alloc_thread_info(struct task_struct *tsk) { #ifdef CONFIG_DEBUG_STACK_USAGE gfp_t mask = GFP_KERNEL | __GFP_ZERO; #else gfp_t mask = GFP_KERNEL; #endif return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER); } static inline void free_thread_info(struct thread_info *ti) { free_pages((unsigned long)ti, THREAD_SIZE_ORDER); } #endif /* SLAB cache for signal_struct structures (tsk->signal) */ static struct kmem_cache *signal_cachep; /* SLAB cache for sighand_struct structures (tsk->sighand) */ struct kmem_cache *sighand_cachep; /* SLAB cache for files_struct structures (tsk->files) */ struct kmem_cache *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ struct kmem_cache *fs_cachep; /* SLAB cache for vm_area_struct structures */ struct kmem_cache *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ static struct kmem_cache *mm_cachep; static void account_kernel_stack(struct thread_info *ti, int account) { struct zone *zone = page_zone(virt_to_page(ti)); mod_zone_page_state(zone, NR_KERNEL_STACK, account); } void free_task(struct task_struct *tsk) { prop_local_destroy_single(&tsk->dirties); account_kernel_stack(tsk->stack, -1); free_thread_info(tsk->stack); rt_mutex_debug_task_free(tsk); ftrace_graph_exit_task(tsk); free_task_struct(tsk); } EXPORT_SYMBOL(free_task); void __put_task_struct(struct task_struct *tsk) { WARN_ON(!tsk->exit_state); WARN_ON(atomic_read(&tsk->usage)); WARN_ON(tsk == current); exit_creds(tsk); delayacct_tsk_free(tsk); if (!profile_handoff_task(tsk)) free_task(tsk); } /* * macro override instead of weak attribute alias, to workaround * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. */ #ifndef arch_task_cache_init #define arch_task_cache_init() #endif void __init fork_init(unsigned long mempages) { #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR #ifndef ARCH_MIN_TASKALIGN #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES #endif /* create a slab on which task_structs can be allocated */ task_struct_cachep = kmem_cache_create("task_struct", sizeof(struct task_struct), ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); #endif /* do the arch specific task caches init */ arch_task_cache_init(); /* * The default maximum number of threads is set to a safe * value: the thread structures can take up at most half * of memory. */ max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); /* * we need to allow at least 20 threads to boot a system */ if(max_threads < 20) max_threads = 20; init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; init_task.signal->rlim[RLIMIT_SIGPENDING] = init_task.signal->rlim[RLIMIT_NPROC]; } int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { *dst = *src; return 0; } static struct task_struct *dup_task_struct(struct task_struct *orig) { struct task_struct *tsk; struct thread_info *ti; unsigned long *stackend; int err; prepare_to_copy(orig); tsk = alloc_task_struct(); if (!tsk) return NULL; ti = alloc_thread_info(tsk); if (!ti) { free_task_struct(tsk); return NULL; } err = arch_dup_task_struct(tsk, orig); if (err) goto out; tsk->stack = ti; err = prop_local_init_single(&tsk->dirties); if (err) goto out; setup_thread_stack(tsk, orig); clear_user_return_notifier(tsk); stackend = end_of_stack(tsk); *stackend = STACK_END_MAGIC; /* for overflow detection */ #ifdef CONFIG_CC_STACKPROTECTOR tsk->stack_canary = get_random_int(); #endif /* One for us, one for whoever does the "release_task()" (usually parent) */ atomic_set(&tsk->usage,2); atomic_set(&tsk->fs_excl, 0); #ifdef CONFIG_BLK_DEV_IO_TRACE tsk->btrace_seq = 0; #endif tsk->splice_pipe = NULL; account_kernel_stack(ti, 1); return tsk; out: free_thread_info(ti); free_task_struct(tsk); return NULL; } #ifdef CONFIG_MMU static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) { struct vm_area_struct *mpnt, *tmp, **pprev; struct rb_node **rb_link, *rb_parent; int retval; unsigned long charge; struct mempolicy *pol; down_write(&oldmm->mmap_sem); flush_cache_dup_mm(oldmm); /* * Not linked in yet - no deadlock potential: */ down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); mm->locked_vm = 0; mm->mmap = NULL; mm->mmap_cache = NULL; mm->free_area_cache = oldmm->mmap_base; mm->cached_hole_size = ~0UL; mm->map_count = 0; cpumask_clear(mm_cpumask(mm)); mm->mm_rb = RB_ROOT; rb_link = &mm->mm_rb.rb_node; rb_parent = NULL; pprev = &mm->mmap; retval = ksm_fork(mm, oldmm); if (retval) goto out; for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { struct file *file; if (mpnt->vm_flags & VM_DONTCOPY) { long pages = vma_pages(mpnt); mm->total_vm -= pages; vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, -pages); continue; } charge = 0; if (mpnt->vm_flags & VM_ACCOUNT) { unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; if (security_vm_enough_memory(len)) goto fail_nomem; charge = len; } tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (!tmp) goto fail_nomem; *tmp = *mpnt; INIT_LIST_HEAD(&tmp->anon_vma_chain); pol = mpol_dup(vma_policy(mpnt)); retval = PTR_ERR(pol); if (IS_ERR(pol)) goto fail_nomem_policy; vma_set_policy(tmp, pol); if (anon_vma_fork(tmp, mpnt)) goto fail_nomem_anon_vma_fork; tmp->vm_flags &= ~VM_LOCKED; tmp->vm_mm = mm; tmp->vm_next = NULL; file = tmp->vm_file; if (file) { struct inode *inode = file->f_path.dentry->d_inode; struct address_space *mapping = file->f_mapping; get_file(file); if (tmp->vm_flags & VM_DENYWRITE) atomic_dec(&inode->i_writecount); spin_lock(&mapping->i_mmap_lock); if (tmp->vm_flags & VM_SHARED) mapping->i_mmap_writable++; tmp->vm_truncate_count = mpnt->vm_truncate_count; flush_dcache_mmap_lock(mapping); /* insert tmp into the share list, just after mpnt */ vma_prio_tree_add(tmp, mpnt); flush_dcache_mmap_unlock(mapping); spin_unlock(&mapping->i_mmap_lock); } /* * Clear hugetlb-related page reserves for children. This only * affects MAP_PRIVATE mappings. Faults generated by the child * are not guaranteed to succeed, even if read-only */ if (is_vm_hugetlb_page(tmp)) reset_vma_resv_huge_pages(tmp); /* * Link in the new vma and copy the page table entries. */ *pprev = tmp; pprev = &tmp->vm_next; __vma_link_rb(mm, tmp, rb_link, rb_parent); rb_link = &tmp->vm_rb.rb_right; rb_parent = &tmp->vm_rb; mm->map_count++; retval = copy_page_range(mm, oldmm, mpnt); if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); if (retval) goto out; } /* a new mm has just been created */ arch_dup_mmap(oldmm, mm); retval = 0; out: up_write(&mm->mmap_sem); flush_tlb_mm(oldmm); up_write(&oldmm->mmap_sem); return retval; fail_nomem_anon_vma_fork: mpol_put(pol); fail_nomem_policy: kmem_cache_free(vm_area_cachep, tmp); fail_nomem: retval = -ENOMEM; vm_unacct_memory(charge); goto out; } static inline int mm_alloc_pgd(struct mm_struct * mm) { mm->pgd = pgd_alloc(mm); if (unlikely(!mm->pgd)) return -ENOMEM; return 0; } static inline void mm_free_pgd(struct mm_struct * mm) { pgd_free(mm, mm->pgd); } #else #define dup_mmap(mm, oldmm) (0) #define mm_alloc_pgd(mm) (0) #define mm_free_pgd(mm) #endif /* CONFIG_MMU */ __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; static int __init coredump_filter_setup(char *s) { default_dump_filter = (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & MMF_DUMP_FILTER_MASK; return 1; } __setup("coredump_filter=", coredump_filter_setup); #include <linux/init_task.h> static void mm_init_aio(struct mm_struct *mm) { #ifdef CONFIG_AIO spin_lock_init(&mm->ioctx_lock); INIT_HLIST_HEAD(&mm->ioctx_list); #endif } static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) { atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); init_rwsem(&mm->mmap_sem); INIT_LIST_HEAD(&mm->mmlist); mm->flags = (current->mm) ? (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; mm->core_state = NULL; mm->nr_ptes = 0; memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); spin_lock_init(&mm->page_table_lock); mm->free_area_cache = TASK_UNMAPPED_BASE; mm->cached_hole_size = ~0UL; mm_init_aio(mm); mm_init_owner(mm, p); if (likely(!mm_alloc_pgd(mm))) { mm->def_flags = 0; mmu_notifier_mm_init(mm); return mm; } free_mm(mm); return NULL; } /* * Allocate and initialize an mm_struct. */ struct mm_struct * mm_alloc(void) { struct mm_struct * mm; mm = allocate_mm(); if (mm) { memset(mm, 0, sizeof(*mm)); mm = mm_init(mm, current); } return mm; } /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ void __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); mm_free_pgd(mm); destroy_context(mm); mmu_notifier_mm_destroy(mm); free_mm(mm); } EXPORT_SYMBOL_GPL(__mmdrop); /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { might_sleep(); if (atomic_dec_and_test(&mm->mm_users)) { exit_aio(mm); ksm_exit(mm); exit_mmap(mm); set_mm_exe_file(mm, NULL); if (!list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); list_del(&mm->mmlist); spin_unlock(&mmlist_lock); } put_swap_token(mm); if (mm->binfmt) module_put(mm->binfmt->module); mmdrop(mm); } } EXPORT_SYMBOL_GPL(mmput); /** * get_task_mm - acquire a reference to the task's mm * * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning * this kernel workthread has transiently adopted a user mm with use_mm, * to do its AIO) is not set and if so returns a reference to it, after * bumping up the use count. User must release the mm via mmput() * after use. Typically used by /proc and ptrace. */ struct mm_struct *get_task_mm(struct task_struct *task) { struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) { if (task->flags & PF_KTHREAD) mm = NULL; else atomic_inc(&mm->mm_users); } task_unlock(task); return mm; } EXPORT_SYMBOL_GPL(get_task_mm); /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ void mm_release(struct task_struct *tsk, struct mm_struct *mm) { struct completion *vfork_done = tsk->vfork_done; /* Get rid of any futexes when releasing the mm */ #ifdef CONFIG_FUTEX if (unlikely(tsk->robust_list)) { exit_robust_list(tsk); tsk->robust_list = NULL; } #ifdef CONFIG_COMPAT if (unlikely(tsk->compat_robust_list)) { compat_exit_robust_list(tsk); tsk->compat_robust_list = NULL; } #endif if (unlikely(!list_empty(&tsk->pi_state_list))) exit_pi_state_list(tsk); #endif /* Get rid of any cached register state */ deactivate_mm(tsk, mm); /* notify parent sleeping on vfork() */ if (vfork_done) { tsk->vfork_done = NULL; complete(vfork_done); } /* * If we're exiting normally, clear a user-space tid field if * requested. We leave this alone when dying by signal, to leave * the value intact in a core dump, and to save the unnecessary * trouble otherwise. Userland only wants this done for a sys_exit. */ if (tsk->clear_child_tid) { if (!(tsk->flags & PF_SIGNALED) && atomic_read(&mm->mm_users) > 1) { /* * We don't check the error code - if userspace has * not set up a proper pointer then tough luck. */ put_user(0, tsk->clear_child_tid); sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 1, NULL, NULL, 0); } tsk->clear_child_tid = NULL; } } /* * Allocate a new mm structure and copy contents from the * mm structure of the passed in task structure. */ struct mm_struct *dup_mm(struct task_struct *tsk) { struct mm_struct *mm, *oldmm = current->mm; int err; if (!oldmm) return NULL; mm = allocate_mm(); if (!mm) goto fail_nomem; memcpy(mm, oldmm, sizeof(*mm)); /* Initializing for Swap token stuff */ mm->token_priority = 0; mm->last_interval = 0; if (!mm_init(mm, tsk)) goto fail_nomem; if (init_new_context(tsk, mm)) goto fail_nocontext; dup_mm_exe_file(oldmm, mm); err = dup_mmap(mm, oldmm); if (err) goto free_pt; mm->hiwater_rss = get_mm_rss(mm); mm->hiwater_vm = mm->total_vm; if (mm->binfmt && !try_module_get(mm->binfmt->module)) goto free_pt; return mm; free_pt: /* don't put binfmt in mmput, we haven't got module yet */ mm->binfmt = NULL; mmput(mm); fail_nomem: return NULL; fail_nocontext: /* * If init_new_context() failed, we cannot use mmput() to free the mm * because it calls destroy_context() */ mm_free_pgd(mm); free_mm(mm); return NULL; } static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) { struct mm_struct * mm, *oldmm; int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->nvcsw = tsk->nivcsw = 0; #ifdef CONFIG_DETECT_HUNG_TASK tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; #endif tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ oldmm = current->mm; if (!oldmm) return 0; if (clone_flags & CLONE_VM) { atomic_inc(&oldmm->mm_users); mm = oldmm; goto good_mm; } retval = -ENOMEM; mm = dup_mm(tsk); if (!mm) goto fail_nomem; good_mm: /* Initializing for Swap token stuff */ mm->token_priority = 0; mm->last_interval = 0; tsk->mm = mm; tsk->active_mm = mm; return 0; fail_nomem: return retval; } static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) { struct fs_struct *fs = current->fs; if (clone_flags & CLONE_FS) { /* tsk->fs is already what we want */ write_lock(&fs->lock); if (fs->in_exec) { write_unlock(&fs->lock); return -EAGAIN; } fs->users++; write_unlock(&fs->lock); return 0; } tsk->fs = copy_fs_struct(fs); if (!tsk->fs) return -ENOMEM; return 0; } static int copy_files(unsigned long clone_flags, struct task_struct * tsk) { struct files_struct *oldf, *newf; int error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) goto out; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); goto out; } newf = dup_fd(oldf, &error); if (!newf) goto out; tsk->files = newf; error = 0; out: return error; } static int copy_io(unsigned long clone_flags, struct task_struct *tsk) { #ifdef CONFIG_BLOCK struct io_context *ioc = current->io_context; if (!ioc) return 0; /* * Share io context with parent, if CLONE_IO is set */ if (clone_flags & CLONE_IO) { tsk->io_context = ioc_task_link(ioc); if (unlikely(!tsk->io_context)) return -ENOMEM; } else if (ioprio_valid(ioc->ioprio)) { tsk->io_context = alloc_io_context(GFP_KERNEL, -1); if (unlikely(!tsk->io_context)) return -ENOMEM; tsk->io_context->ioprio = ioc->ioprio; } #endif return 0; } static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) { struct sighand_struct *sig; if (clone_flags & CLONE_SIGHAND) { atomic_inc(¤t->sighand->count); return 0; } sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); rcu_assign_pointer(tsk->sighand, sig); if (!sig) return -ENOMEM; atomic_set(&sig->count, 1); memcpy(sig->action, current->sighand->action, sizeof(sig->action)); return 0; } void __cleanup_sighand(struct sighand_struct *sighand) { if (atomic_dec_and_test(&sighand->count)) kmem_cache_free(sighand_cachep, sighand); } /* * Initialize POSIX timer handling for a thread group. */ static void posix_cpu_timers_init_group(struct signal_struct *sig) { unsigned long cpu_limit; /* Thread group counters. */ thread_group_cputime_init(sig); cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); if (cpu_limit != RLIM_INFINITY) { sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); sig->cputimer.running = 1; } /* The timer lists. */ INIT_LIST_HEAD(&sig->cpu_timers[0]); INIT_LIST_HEAD(&sig->cpu_timers[1]); INIT_LIST_HEAD(&sig->cpu_timers[2]); } static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) { struct signal_struct *sig; if (clone_flags & CLONE_THREAD) return 0; sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); tsk->signal = sig; if (!sig) return -ENOMEM; atomic_set(&sig->count, 1); atomic_set(&sig->live, 1); init_waitqueue_head(&sig->wait_chldexit); if (clone_flags & CLONE_NEWPID) sig->flags |= SIGNAL_UNKILLABLE; sig->curr_target = tsk; init_sigpending(&sig->shared_pending); INIT_LIST_HEAD(&sig->posix_timers); hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); sig->real_timer.function = it_real_fn; task_lock(current->group_leader); memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); task_unlock(current->group_leader); posix_cpu_timers_init_group(sig); tty_audit_fork(sig); sig->oom_adj = current->signal->oom_adj; return 0; } void __cleanup_signal(struct signal_struct *sig) { thread_group_cputime_free(sig); tty_kref_put(sig->tty); kmem_cache_free(signal_cachep, sig); } static void copy_flags(unsigned long clone_flags, struct task_struct *p) { unsigned long new_flags = p->flags; new_flags &= ~PF_SUPERPRIV; new_flags |= PF_FORKNOEXEC; new_flags |= PF_STARTING; p->flags = new_flags; clear_freeze_flag(p); } SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) { current->clear_child_tid = tidptr; return task_pid_vnr(current); } static void rt_mutex_init_task(struct task_struct *p) { raw_spin_lock_init(&p->pi_lock); #ifdef CONFIG_RT_MUTEXES plist_head_init_raw(&p->pi_waiters, &p->pi_lock); p->pi_blocked_on = NULL; #endif } #ifdef CONFIG_MM_OWNER void mm_init_owner(struct mm_struct *mm, struct task_struct *p) { mm->owner = p; } #endif /* CONFIG_MM_OWNER */ /* * Initialize POSIX timer handling for a single task. */ static void posix_cpu_timers_init(struct task_struct *tsk) { tsk->cputime_expires.prof_exp = cputime_zero; tsk->cputime_expires.virt_exp = cputime_zero; tsk->cputime_expires.sched_exp = 0; INIT_LIST_HEAD(&tsk->cpu_timers[0]); INIT_LIST_HEAD(&tsk->cpu_timers[1]); INIT_LIST_HEAD(&tsk->cpu_timers[2]); } /* * This creates a new process as a copy of the old one, * but does not actually start it yet. * * It copies the registers, and all the appropriate * parts of the process environment (as per the clone * flags). The actual kick-off is left to the caller. */ static struct task_struct *copy_process(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int __user *child_tidptr, struct pid *pid, int trace) { int retval; struct task_struct *p; int cgroup_callbacks_done = 0; if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); /* * Thread groups must share signals as well, and detached threads * can only be started up within the thread group. */ if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) return ERR_PTR(-EINVAL); /* * Shared signal handlers imply shared VM. By way of the above, * thread groups also imply shared VM. Blocking this case allows * for various simplifications in other code. */ if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) return ERR_PTR(-EINVAL); /* * Siblings of global init remain as zombies on exit since they are * not reaped by their parent (swapper). To solve this and to avoid * multi-rooted process trees, prevent global and container-inits * from creating siblings. */ if ((clone_flags & CLONE_PARENT) && current->signal->flags & SIGNAL_UNKILLABLE) return ERR_PTR(-EINVAL); retval = security_task_create(clone_flags); if (retval) goto fork_out; retval = -ENOMEM; p = dup_task_struct(current); if (!p) goto fork_out; ftrace_graph_init_task(p); rt_mutex_init_task(p); #ifdef CONFIG_PROVE_LOCKING DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); #endif retval = -EAGAIN; if (atomic_read(&p->real_cred->user->processes) >= task_rlimit(p, RLIMIT_NPROC)) { if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && p->real_cred->user != INIT_USER) goto bad_fork_free; } retval = copy_creds(p, clone_flags); if (retval < 0) goto bad_fork_free; /* * If multiple threads are within copy_process(), then this check * triggers too late. This doesn't hurt, the check is only there * to stop root fork bombs. */ retval = -EAGAIN; if (nr_threads >= max_threads) goto bad_fork_cleanup_count; if (!try_module_get(task_thread_info(p)->exec_domain->module)) goto bad_fork_cleanup_count; p->did_exec = 0; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ copy_flags(clone_flags, p); INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); rcu_copy_process(p); p->vfork_done = NULL; spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); p->utime = cputime_zero; p->stime = cputime_zero; p->gtime = cputime_zero; p->utimescaled = cputime_zero; p->stimescaled = cputime_zero; #ifndef CONFIG_VIRT_CPU_ACCOUNTING p->prev_utime = cputime_zero; p->prev_stime = cputime_zero; #endif p->default_timer_slack_ns = current->timer_slack_ns; task_io_accounting_init(&p->ioac); acct_clear_integrals(p); posix_cpu_timers_init(p); p->lock_depth = -1; /* -1 = no lock */ do_posix_clock_monotonic_gettime(&p->start_time); p->real_start_time = p->start_time; monotonic_to_bootbased(&p->real_start_time); p->io_context = NULL; p->audit_context = NULL; cgroup_fork(p); #ifdef CONFIG_NUMA p->mempolicy = mpol_dup(p->mempolicy); if (IS_ERR(p->mempolicy)) { retval = PTR_ERR(p->mempolicy); p->mempolicy = NULL; goto bad_fork_cleanup_cgroup; } mpol_fix_fork_child_flag(p); #endif #ifdef CONFIG_TRACE_IRQFLAGS p->irq_events = 0; #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW p->hardirqs_enabled = 1; #else p->hardirqs_enabled = 0; #endif p->hardirq_enable_ip = 0; p->hardirq_enable_event = 0; p->hardirq_disable_ip = _THIS_IP_; p->hardirq_disable_event = 0; p->softirqs_enabled = 1; p->softirq_enable_ip = _THIS_IP_; p->softirq_enable_event = 0; p->softirq_disable_ip = 0; p->softirq_disable_event = 0; p->hardirq_context = 0; p->softirq_context = 0; #endif #ifdef CONFIG_LOCKDEP p->lockdep_depth = 0; /* no locks held yet */ p->curr_chain_key = 0; p->lockdep_recursion = 0; #endif #ifdef CONFIG_DEBUG_MUTEXES p->blocked_on = NULL; /* not blocked yet */ #endif #ifdef CONFIG_CGROUP_MEM_RES_CTLR p->memcg_batch.do_batch = 0; p->memcg_batch.memcg = NULL; #endif p->bts = NULL; p->stack_start = stack_start; /* Perform scheduler related setup. Assign this task to a CPU. */ sched_fork(p, clone_flags); retval = perf_event_init_task(p); if (retval) goto bad_fork_cleanup_policy; if ((retval = audit_alloc(p))) goto bad_fork_cleanup_policy; /* copy all the process information */ if ((retval = copy_semundo(clone_flags, p))) goto bad_fork_cleanup_audit; if ((retval = copy_files(clone_flags, p))) goto bad_fork_cleanup_semundo; if ((retval = copy_fs(clone_flags, p))) goto bad_fork_cleanup_files; if ((retval = copy_sighand(clone_flags, p))) goto bad_fork_cleanup_fs; if ((retval = copy_signal(clone_flags, p))) goto bad_fork_cleanup_sighand; if ((retval = copy_mm(clone_flags, p))) goto bad_fork_cleanup_signal; if ((retval = copy_namespaces(clone_flags, p))) goto bad_fork_cleanup_mm; if ((retval = copy_io(clone_flags, p))) goto bad_fork_cleanup_namespaces; retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); if (retval) goto bad_fork_cleanup_io; if (pid != &init_struct_pid) { retval = -ENOMEM; pid = alloc_pid(p->nsproxy->pid_ns); if (!pid) goto bad_fork_cleanup_io; if (clone_flags & CLONE_NEWPID) { retval = pid_ns_prepare_proc(p->nsproxy->pid_ns); if (retval < 0) goto bad_fork_free_pid; } } p->pid = pid_nr(pid); p->tgid = p->pid; if (clone_flags & CLONE_THREAD) p->tgid = current->tgid; if (current->nsproxy != p->nsproxy) { retval = ns_cgroup_clone(p, pid); if (retval) goto bad_fork_free_pid; } p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; /* * Clear TID on mm_release()? */ p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; #ifdef CONFIG_FUTEX p->robust_list = NULL; #ifdef CONFIG_COMPAT p->compat_robust_list = NULL; #endif INIT_LIST_HEAD(&p->pi_state_list); p->pi_state_cache = NULL; #endif /* * sigaltstack should be cleared when sharing the same VM */ if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) p->sas_ss_sp = p->sas_ss_size = 0; /* * Syscall tracing and stepping should be turned off in the * child regardless of CLONE_PTRACE. */ user_disable_single_step(p); clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); #ifdef TIF_SYSCALL_EMU clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); #endif clear_all_latency_tracing(p); /* ok, now we should be set up.. */ p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); p->pdeath_signal = 0; p->exit_state = 0; /* * Ok, make it visible to the rest of the system. * We dont wake it up yet. */ p->group_leader = p; INIT_LIST_HEAD(&p->thread_group); /* Now that the task is set up, run cgroup callbacks if * necessary. We need to run them before the task is visible * on the tasklist. */ cgroup_fork_callbacks(p); cgroup_callbacks_done = 1; /* Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; } spin_lock(¤t->sighand->siglock); /* * Process group and session signals need to be delivered to just the * parent before the fork or both the parent and the child after the * fork. Restart if a signal comes in before we add the new process to * it's process group. * A fatal signal pending means that current will exit, so the new * thread can't slip out of an OOM kill (or normal SIGKILL). */ recalc_sigpending(); if (signal_pending(current)) { spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); retval = -ERESTARTNOINTR; goto bad_fork_free_pid; } if (clone_flags & CLONE_THREAD) { atomic_inc(¤t->signal->count); atomic_inc(¤t->signal->live); p->group_leader = current->group_leader; list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); } if (likely(p->pid)) { tracehook_finish_clone(p, clone_flags, trace); if (thread_group_leader(p)) { if (clone_flags & CLONE_NEWPID) p->nsproxy->pid_ns->child_reaper = p; p->signal->leader_pid = pid; tty_kref_put(p->signal->tty); p->signal->tty = tty_kref_get(current->signal->tty); attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); attach_pid(p, PIDTYPE_SID, task_session(current)); list_add_tail(&p->sibling, &p->real_parent->children); list_add_tail_rcu(&p->tasks, &init_task.tasks); __get_cpu_var(process_counts)++; } attach_pid(p, PIDTYPE_PID, pid); nr_threads++; } total_forks++; spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); proc_fork_connector(p); cgroup_post_fork(p); perf_event_fork(p); return p; bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: exit_task_namespaces(p); bad_fork_cleanup_mm: if (p->mm) mmput(p->mm); bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) __cleanup_signal(p->signal); bad_fork_cleanup_sighand: __cleanup_sighand(p->sighand); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); bad_fork_cleanup_audit: audit_free(p); bad_fork_cleanup_policy: perf_event_free_task(p); #ifdef CONFIG_NUMA mpol_put(p->mempolicy); bad_fork_cleanup_cgroup: #endif cgroup_exit(p, cgroup_callbacks_done); delayacct_tsk_free(p); module_put(task_thread_info(p)->exec_domain->module); bad_fork_cleanup_count: atomic_dec(&p->cred->user->processes); exit_creds(p); bad_fork_free: free_task(p); fork_out: return ERR_PTR(retval); } noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) { memset(regs, 0, sizeof(struct pt_regs)); return regs; } struct task_struct * __cpuinit fork_idle(int cpu) { struct task_struct *task; struct pt_regs regs; task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, &init_struct_pid, 0); if (!IS_ERR(task)) init_idle(task, cpu); return task; } /* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. */ long do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size, int __user *parent_tidptr, int __user *child_tidptr) { struct task_struct *p; int trace = 0; long nr; /* * Do some preliminary argument and permissions checking before we * actually start allocating stuff */ if (clone_flags & CLONE_NEWUSER) { if (clone_flags & CLONE_THREAD) return -EINVAL; /* hopefully this check will go away when userns support is * complete */ if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) || !capable(CAP_SETGID)) return -EPERM; } /* * We hope to recycle these flags after 2.6.26 */ if (unlikely(clone_flags & CLONE_STOPPED)) { static int __read_mostly count = 100; if (count > 0 && printk_ratelimit()) { char comm[TASK_COMM_LEN]; count--; printk(KERN_INFO "fork(): process `%s' used deprecated " "clone flags 0x%lx\n", get_task_comm(comm, current), clone_flags & CLONE_STOPPED); } } /* * When called from kernel_thread, don't do user tracing stuff. */ if (likely(user_mode(regs))) trace = tracehook_prepare_clone(clone_flags); p = copy_process(clone_flags, stack_start, regs, stack_size, child_tidptr, NULL, trace); /* * Do this prior waking up the new thread - the thread pointer * might get invalid after that point, if the thread exits quickly. */ if (!IS_ERR(p)) { struct completion vfork; trace_sched_process_fork(current, p); nr = task_pid_vnr(p); if (clone_flags & CLONE_PARENT_SETTID) put_user(nr, parent_tidptr); if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); } audit_finish_fork(p); tracehook_report_clone(regs, clone_flags, nr, p); /* * We set PF_STARTING at creation in case tracing wants to * use this to distinguish a fully live task from one that * hasn't gotten to tracehook_report_clone() yet. Now we * clear it and set the child going. */ p->flags &= ~PF_STARTING; if (unlikely(clone_flags & CLONE_STOPPED)) { /* * We'll start up with an immediate SIGSTOP. */ sigaddset(&p->pending.signal, SIGSTOP); set_tsk_thread_flag(p, TIF_SIGPENDING); __set_task_state(p, TASK_STOPPED); } else { wake_up_new_task(p, clone_flags); } tracehook_report_clone_complete(trace, regs, clone_flags, nr, p); if (clone_flags & CLONE_VFORK) { freezer_do_not_count(); wait_for_completion(&vfork); freezer_count(); tracehook_report_vfork_done(p, nr); } } else { nr = PTR_ERR(p); } return nr; } #ifndef ARCH_MIN_MMSTRUCT_ALIGN #define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif static void sighand_ctor(void *data) { struct sighand_struct *sighand = data; spin_lock_init(&sighand->siglock); init_waitqueue_head(&sighand->signalfd_wqh); } void __init proc_caches_init(void) { sighand_cachep = kmem_cache_create("sighand_cache", sizeof(struct sighand_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| SLAB_NOTRACK, sighand_ctor); signal_cachep = kmem_cache_create("signal_cache", sizeof(struct signal_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); mm_cachep = kmem_cache_create("mm_struct", sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); mmap_init(); } /* * Check constraints on flags passed to the unshare system call and * force unsharing of additional process context as appropriate. */ static void check_unshare_flags(unsigned long *flags_ptr) { /* * If unsharing a thread from a thread group, must also * unshare vm. */ if (*flags_ptr & CLONE_THREAD) *flags_ptr |= CLONE_VM; /* * If unsharing vm, must also unshare signal handlers. */ if (*flags_ptr & CLONE_VM) *flags_ptr |= CLONE_SIGHAND; /* * If unsharing signal handlers and the task was created * using CLONE_THREAD, then must unshare the thread */ if ((*flags_ptr & CLONE_SIGHAND) && (atomic_read(¤t->signal->count) > 1)) *flags_ptr |= CLONE_THREAD; /* * If unsharing namespace, must also unshare filesystem information. */ if (*flags_ptr & CLONE_NEWNS) *flags_ptr |= CLONE_FS; } /* * Unsharing of tasks created with CLONE_THREAD is not supported yet */ static int unshare_thread(unsigned long unshare_flags) { if (unshare_flags & CLONE_THREAD) return -EINVAL; return 0; } /* * Unshare the filesystem structure if it is being shared */ static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) { struct fs_struct *fs = current->fs; if (!(unshare_flags & CLONE_FS) || !fs) return 0; /* don't need lock here; in the worst case we'll do useless copy */ if (fs->users == 1) return 0; *new_fsp = copy_fs_struct(fs); if (!*new_fsp) return -ENOMEM; return 0; } /* * Unsharing of sighand is not supported yet */ static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) { struct sighand_struct *sigh = current->sighand; if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) return -EINVAL; else return 0; } /* * Unshare vm if it is being shared */ static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) { struct mm_struct *mm = current->mm; if ((unshare_flags & CLONE_VM) && (mm && atomic_read(&mm->mm_users) > 1)) { return -EINVAL; } return 0; } /* * Unshare file descriptor table if it is being shared */ static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) { struct files_struct *fd = current->files; int error = 0; if ((unshare_flags & CLONE_FILES) && (fd && atomic_read(&fd->count) > 1)) { *new_fdp = dup_fd(fd, &error); if (!*new_fdp) return error; } return 0; } /* * unshare allows a process to 'unshare' part of the process * context which was originally shared using clone. copy_* * functions used by do_fork() cannot be used here directly * because they modify an inactive task_struct that is being * constructed. Here we are modifying the current, active, * task_struct. */ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) { int err = 0; struct fs_struct *fs, *new_fs = NULL; struct sighand_struct *new_sigh = NULL; struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; struct files_struct *fd, *new_fd = NULL; struct nsproxy *new_nsproxy = NULL; int do_sysvsem = 0; check_unshare_flags(&unshare_flags); /* Return -EINVAL for all unsupported flags */ err = -EINVAL; if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET)) goto bad_unshare_out; /* * CLONE_NEWIPC must also detach from the undolist: after switching * to a new ipc namespace, the semaphore arrays from the old * namespace are unreachable. */ if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) do_sysvsem = 1; if ((err = unshare_thread(unshare_flags))) goto bad_unshare_out; if ((err = unshare_fs(unshare_flags, &new_fs))) goto bad_unshare_cleanup_thread; if ((err = unshare_sighand(unshare_flags, &new_sigh))) goto bad_unshare_cleanup_fs; if ((err = unshare_vm(unshare_flags, &new_mm))) goto bad_unshare_cleanup_sigh; if ((err = unshare_fd(unshare_flags, &new_fd))) goto bad_unshare_cleanup_vm; if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs))) goto bad_unshare_cleanup_fd; if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { if (do_sysvsem) { /* * CLONE_SYSVSEM is equivalent to sys_exit(). */ exit_sem(current); } if (new_nsproxy) { switch_task_namespaces(current, new_nsproxy); new_nsproxy = NULL; } task_lock(current); if (new_fs) { fs = current->fs; write_lock(&fs->lock); current->fs = new_fs; if (--fs->users) new_fs = NULL; else new_fs = fs; write_unlock(&fs->lock); } if (new_mm) { mm = current->mm; active_mm = current->active_mm; current->mm = new_mm; current->active_mm = new_mm; activate_mm(active_mm, new_mm); new_mm = mm; } if (new_fd) { fd = current->files; current->files = new_fd; new_fd = fd; } task_unlock(current); } if (new_nsproxy) put_nsproxy(new_nsproxy); bad_unshare_cleanup_fd: if (new_fd) put_files_struct(new_fd); bad_unshare_cleanup_vm: if (new_mm) mmput(new_mm); bad_unshare_cleanup_sigh: if (new_sigh) if (atomic_dec_and_test(&new_sigh->count)) kmem_cache_free(sighand_cachep, new_sigh); bad_unshare_cleanup_fs: if (new_fs) free_fs_struct(new_fs); bad_unshare_cleanup_thread: bad_unshare_out: return err; } /* * Helper to unshare the files of the current task. * We don't want to expose copy_files internals to * the exec layer of the kernel. */ int unshare_files(struct files_struct **displaced) { struct task_struct *task = current; struct files_struct *copy = NULL; int error; error = unshare_fd(CLONE_FILES, ©); if (error || !copy) { *displaced = NULL; return error; } *displaced = task->files; task_lock(task); task->files = copy; task_unlock(task); return 0; }