/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $ * bitops.h: Bit string operations on the V9. * * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu) */ #ifndef _SPARC64_BITOPS_H #define _SPARC64_BITOPS_H #include <linux/config.h> #include <linux/compiler.h> #include <asm/byteorder.h> extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr); extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr); extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr); extern void set_bit(unsigned long nr, volatile unsigned long *addr); extern void clear_bit(unsigned long nr, volatile unsigned long *addr); extern void change_bit(unsigned long nr, volatile unsigned long *addr); /* "non-atomic" versions... */ static inline void __set_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); *m |= (1UL << (nr & 63)); } static inline void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); *m &= ~(1UL << (nr & 63)); } static inline void __change_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); *m ^= (1UL << (nr & 63)); } static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *m; unsigned long mask = (1UL << (nr & 63)); *m = (old | mask); return ((old & mask) != 0); } static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *m; unsigned long mask = (1UL << (nr & 63)); *m = (old & ~mask); return ((old & mask) != 0); } static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned long *m = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *m; unsigned long mask = (1UL << (nr & 63)); *m = (old ^ mask); return ((old & mask) != 0); } #ifdef CONFIG_SMP #define smp_mb__before_clear_bit() membar_storeload_loadload() #define smp_mb__after_clear_bit() membar_storeload_storestore() #else #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() #endif static inline int test_bit(int nr, __const__ volatile unsigned long *addr) { return (1UL & (addr[nr >> 6] >> (nr & 63))) != 0UL; } /* The easy/cheese version for now. */ static inline unsigned long ffz(unsigned long word) { unsigned long result; result = 0; while(word & 1) { result++; word >>= 1; } return result; } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static inline unsigned long __ffs(unsigned long word) { unsigned long result = 0; while (!(word & 1UL)) { result++; word >>= 1; } return result; } /* * fls: find last bit set. */ #define fls(x) generic_fls(x) #define fls64(x) generic_fls64(x) #ifdef __KERNEL__ /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(((unsigned int)b[1]))) return __ffs(b[1]) + 64; if (b[1] >> 32) return __ffs(b[1] >> 32) + 96; return __ffs(b[2]) + 128; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static inline int ffs(int x) { if (!x) return 0; return __ffs((unsigned long)x) + 1; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #ifdef ULTRA_HAS_POPULATION_COUNT static inline unsigned int hweight64(unsigned long w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w)); return res; } static inline unsigned int hweight32(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff)); return res; } static inline unsigned int hweight16(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff)); return res; } static inline unsigned int hweight8(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff)); return res; } #else #define hweight64(x) generic_hweight64(x) #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif #endif /* __KERNEL__ */ /** * find_next_bit - find the next set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ extern unsigned long find_next_bit(const unsigned long *, unsigned long, unsigned long); /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) /* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */ extern unsigned long find_next_zero_bit(const unsigned long *, unsigned long, unsigned long); #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #define test_and_set_le_bit(nr,addr) \ test_and_set_bit((nr) ^ 0x38, (addr)) #define test_and_clear_le_bit(nr,addr) \ test_and_clear_bit((nr) ^ 0x38, (addr)) static inline int test_le_bit(int nr, __const__ unsigned long * addr) { int mask; __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long); #ifdef __KERNEL__ #define __set_le_bit(nr, addr) \ __set_bit((nr) ^ 0x38, (addr)) #define __clear_le_bit(nr, addr) \ __clear_bit((nr) ^ 0x38, (addr)) #define __test_and_clear_le_bit(nr, addr) \ __test_and_clear_bit((nr) ^ 0x38, (addr)) #define __test_and_set_le_bit(nr, addr) \ __test_and_set_bit((nr) ^ 0x38, (addr)) #define ext2_set_bit(nr,addr) \ __test_and_set_le_bit((nr),(unsigned long *)(addr)) #define ext2_set_bit_atomic(lock,nr,addr) \ test_and_set_le_bit((nr),(unsigned long *)(addr)) #define ext2_clear_bit(nr,addr) \ __test_and_clear_le_bit((nr),(unsigned long *)(addr)) #define ext2_clear_bit_atomic(lock,nr,addr) \ test_and_clear_le_bit((nr),(unsigned long *)(addr)) #define ext2_test_bit(nr,addr) \ test_le_bit((nr),(unsigned long *)(addr)) #define ext2_find_first_zero_bit(addr, size) \ find_first_zero_le_bit((unsigned long *)(addr), (size)) #define ext2_find_next_zero_bit(addr, size, off) \ find_next_zero_le_bit((unsigned long *)(addr), (size), (off)) /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) \ test_and_set_bit((nr),(unsigned long *)(addr)) #define minix_set_bit(nr,addr) \ set_bit((nr),(unsigned long *)(addr)) #define minix_test_and_clear_bit(nr,addr) \ test_and_clear_bit((nr),(unsigned long *)(addr)) #define minix_test_bit(nr,addr) \ test_bit((nr),(unsigned long *)(addr)) #define minix_find_first_zero_bit(addr,size) \ find_first_zero_bit((unsigned long *)(addr),(size)) #endif /* __KERNEL__ */ #endif /* defined(_SPARC64_BITOPS_H) */