/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. */ /* * Cross Partition Communication (XPC) structures and macros. */ #ifndef _IA64_SN_KERNEL_XPC_H #define _IA64_SN_KERNEL_XPC_H #include #include #include #include #include #include #include #include #include #include #include #include /* * XPC Version numbers consist of a major and minor number. XPC can always * talk to versions with same major #, and never talk to versions with a * different major #. */ #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) /* * The next macros define word or bit representations for given * C-brick nasid in either the SAL provided bit array representing * nasids in the partition/machine or the AMO_t array used for * inter-partition initiation communications. * * For SN2 machines, C-Bricks are alway even numbered NASIDs. As * such, some space will be saved by insisting that nasid information * passed from SAL always be packed for C-Bricks and the * cross-partition interrupts use the same packing scheme. */ #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ (1UL << XPC_NASID_B_INDEX(_n))) #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ /* define the process name of HB checker and the CPU it is pinned to */ #define XPC_HB_CHECK_THREAD_NAME "xpc_hb" #define XPC_HB_CHECK_CPU 0 /* define the process name of the discovery thread */ #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" /* * the reserved page * * SAL reserves one page of memory per partition for XPC. Though a full page * in length (16384 bytes), its starting address is not page aligned, but it * is cacheline aligned. The reserved page consists of the following: * * reserved page header * * The first cacheline of the reserved page contains the header * (struct xpc_rsvd_page). Before SAL initialization has completed, * SAL has set up the following fields of the reserved page header: * SAL_signature, SAL_version, partid, and nasids_size. The other * fields are set up by XPC. (xpc_rsvd_page points to the local * partition's reserved page.) * * part_nasids mask * mach_nasids mask * * SAL also sets up two bitmaps (or masks), one that reflects the actual * nasids in this partition (part_nasids), and the other that reflects * the actual nasids in the entire machine (mach_nasids). We're only * interested in the even numbered nasids (which contain the processors * and/or memory), so we only need half as many bits to represent the * nasids. The part_nasids mask is located starting at the first cacheline * following the reserved page header. The mach_nasids mask follows right * after the part_nasids mask. The size in bytes of each mask is reflected * by the reserved page header field 'nasids_size'. (Local partition's * mask pointers are xpc_part_nasids and xpc_mach_nasids.) * * vars * vars part * * Immediately following the mach_nasids mask are the XPC variables * required by other partitions. First are those that are generic to all * partitions (vars), followed on the next available cacheline by those * which are partition specific (vars part). These are setup by XPC. * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) * * Note: Until vars_pa is set, the partition XPC code has not been initialized. */ struct xpc_rsvd_page { u64 SAL_signature; /* SAL: unique signature */ u64 SAL_version; /* SAL: version */ u8 partid; /* SAL: partition ID */ u8 version; u8 pad1[6]; /* align to next u64 in cacheline */ volatile u64 vars_pa; struct timespec stamp; /* time when reserved page was setup by XPC */ u64 pad2[9]; /* align to last u64 in cacheline */ u64 nasids_size; /* SAL: size of each nasid mask in bytes */ }; #define XPC_RP_VERSION _XPC_VERSION(1,1) /* version 1.1 of the reserved page */ #define XPC_SUPPORTS_RP_STAMP(_version) \ (_version >= _XPC_VERSION(1,1)) /* * compare stamps - the return value is: * * < 0, if stamp1 < stamp2 * = 0, if stamp1 == stamp2 * > 0, if stamp1 > stamp2 */ static inline int xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) { int ret; if ((ret = stamp1->tv_sec - stamp2->tv_sec) == 0) { ret = stamp1->tv_nsec - stamp2->tv_nsec; } return ret; } /* * Define the structures by which XPC variables can be exported to other * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) */ /* * The following structure describes the partition generic variables * needed by other partitions in order to properly initialize. * * struct xpc_vars version number also applies to struct xpc_vars_part. * Changes to either structure and/or related functionality should be * reflected by incrementing either the major or minor version numbers * of struct xpc_vars. */ struct xpc_vars { u8 version; u64 heartbeat; u64 heartbeating_to_mask; u64 heartbeat_offline; /* if 0, heartbeat should be changing */ int act_nasid; int act_phys_cpuid; u64 vars_part_pa; u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ }; #define XPC_V_VERSION _XPC_VERSION(3,1) /* version 3.1 of the cross vars */ #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \ (_version >= _XPC_VERSION(3,1)) static inline int xpc_hb_allowed(partid_t partid, struct xpc_vars *vars) { return ((vars->heartbeating_to_mask & (1UL << partid)) != 0); } static inline void xpc_allow_hb(partid_t partid, struct xpc_vars *vars) { u64 old_mask, new_mask; do { old_mask = vars->heartbeating_to_mask; new_mask = (old_mask | (1UL << partid)); } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != old_mask); } static inline void xpc_disallow_hb(partid_t partid, struct xpc_vars *vars) { u64 old_mask, new_mask; do { old_mask = vars->heartbeating_to_mask; new_mask = (old_mask & ~(1UL << partid)); } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != old_mask); } /* * The AMOs page consists of a number of AMO variables which are divided into * four groups, The first two groups are used to identify an IRQ's sender. * These two groups consist of 64 and 128 AMO variables respectively. The last * two groups, consisting of just one AMO variable each, are used to identify * the remote partitions that are currently engaged (from the viewpoint of * the XPC running on the remote partition). */ #define XPC_NOTIFY_IRQ_AMOS 0 #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS) #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS) #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1) /* * The following structure describes the per partition specific variables. * * An array of these structures, one per partition, will be defined. As a * partition becomes active XPC will copy the array entry corresponding to * itself from that partition. It is desirable that the size of this * structure evenly divide into a cacheline, such that none of the entries * in this array crosses a cacheline boundary. As it is now, each entry * occupies half a cacheline. */ struct xpc_vars_part { volatile u64 magic; u64 openclose_args_pa; /* physical address of open and close args */ u64 GPs_pa; /* physical address of Get/Put values */ u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ int IPI_nasid; /* nasid of where to send IPIs */ int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ u8 nchannels; /* #of defined channels supported */ u8 reserved[23]; /* pad to a full 64 bytes */ }; /* * The vars_part MAGIC numbers play a part in the first contact protocol. * * MAGIC1 indicates that the per partition specific variables for a remote * partition have been initialized by this partition. * * MAGIC2 indicates that this partition has pulled the remote partititions * per partition variables that pertain to this partition. */ #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ /* the reserved page sizes and offsets */ #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars)) #define XPC_RP_PART_NASIDS(_rp) (u64 *) ((u8 *) _rp + XPC_RP_HEADER_SIZE) #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words) #define XPC_RP_VARS(_rp) ((struct xpc_vars *) XPC_RP_MACH_NASIDS(_rp) + xp_nasid_mask_words) #define XPC_RP_VARS_PART(_rp) (struct xpc_vars_part *) ((u8 *) XPC_RP_VARS(rp) + XPC_RP_VARS_SIZE) /* * Functions registered by add_timer() or called by kernel_thread() only * allow for a single 64-bit argument. The following macros can be used to * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from * the passed argument. */ #define XPC_PACK_ARGS(_arg1, _arg2) \ ((((u64) _arg1) & 0xffffffff) | \ ((((u64) _arg2) & 0xffffffff) << 32)) #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) /* * Define a Get/Put value pair (pointers) used with a message queue. */ struct xpc_gp { volatile s64 get; /* Get value */ volatile s64 put; /* Put value */ }; #define XPC_GP_SIZE \ L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) /* * Define a structure that contains arguments associated with opening and * closing a channel. */ struct xpc_openclose_args { u16 reason; /* reason why channel is closing */ u16 msg_size; /* sizeof each message entry */ u16 remote_nentries; /* #of message entries in remote msg queue */ u16 local_nentries; /* #of message entries in local msg queue */ u64 local_msgqueue_pa; /* physical address of local message queue */ }; #define XPC_OPENCLOSE_ARGS_SIZE \ L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) /* struct xpc_msg flags */ #define XPC_M_DONE 0x01 /* msg has been received/consumed */ #define XPC_M_READY 0x02 /* msg is ready to be sent */ #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ #define XPC_MSG_ADDRESS(_payload) \ ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) /* * Defines notify entry. * * This is used to notify a message's sender that their message was received * and consumed by the intended recipient. */ struct xpc_notify { struct semaphore sema; /* notify semaphore */ volatile u8 type; /* type of notification */ /* the following two fields are only used if type == XPC_N_CALL */ xpc_notify_func func; /* user's notify function */ void *key; /* pointer to user's key */ }; /* struct xpc_notify type of notification */ #define XPC_N_CALL 0x01 /* notify function provided by user */ /* * Define the structure that manages all the stuff required by a channel. In * particular, they are used to manage the messages sent across the channel. * * This structure is private to a partition, and is NOT shared across the * partition boundary. * * There is an array of these structures for each remote partition. It is * allocated at the time a partition becomes active. The array contains one * of these structures for each potential channel connection to that partition. * * Each of these structures manages two message queues (circular buffers). * They are allocated at the time a channel connection is made. One of * these message queues (local_msgqueue) holds the locally created messages * that are destined for the remote partition. The other of these message * queues (remote_msgqueue) is a locally cached copy of the remote partition's * own local_msgqueue. * * The following is a description of the Get/Put pointers used to manage these * two message queues. Consider the local_msgqueue to be on one partition * and the remote_msgqueue to be its cached copy on another partition. A * description of what each of the lettered areas contains is included. * * * local_msgqueue remote_msgqueue * * |/////////| |/////////| * w_remote_GP.get --> +---------+ |/////////| * | F | |/////////| * remote_GP.get --> +---------+ +---------+ <-- local_GP->get * | | | | * | | | E | * | | | | * | | +---------+ <-- w_local_GP.get * | B | |/////////| * | | |////D////| * | | |/////////| * | | +---------+ <-- w_remote_GP.put * | | |////C////| * local_GP->put --> +---------+ +---------+ <-- remote_GP.put * | | |/////////| * | A | |/////////| * | | |/////////| * w_local_GP.put --> +---------+ |/////////| * |/////////| |/////////| * * * ( remote_GP.[get|put] are cached copies of the remote * partition's local_GP->[get|put], and thus their values can * lag behind their counterparts on the remote partition. ) * * * A - Messages that have been allocated, but have not yet been sent to the * remote partition. * * B - Messages that have been sent, but have not yet been acknowledged by the * remote partition as having been received. * * C - Area that needs to be prepared for the copying of sent messages, by * the clearing of the message flags of any previously received messages. * * D - Area into which sent messages are to be copied from the remote * partition's local_msgqueue and then delivered to their intended * recipients. [ To allow for a multi-message copy, another pointer * (next_msg_to_pull) has been added to keep track of the next message * number needing to be copied (pulled). It chases after w_remote_GP.put. * Any messages lying between w_local_GP.get and next_msg_to_pull have * been copied and are ready to be delivered. ] * * E - Messages that have been copied and delivered, but have not yet been * acknowledged by the recipient as having been received. * * F - Messages that have been acknowledged, but XPC has not yet notified the * sender that the message was received by its intended recipient. * This is also an area that needs to be prepared for the allocating of * new messages, by the clearing of the message flags of the acknowledged * messages. */ struct xpc_channel { partid_t partid; /* ID of remote partition connected */ spinlock_t lock; /* lock for updating this structure */ u32 flags; /* general flags */ enum xpc_retval reason; /* reason why channel is disconnect'g */ int reason_line; /* line# disconnect initiated from */ u16 number; /* channel # */ u16 msg_size; /* sizeof each msg entry */ u16 local_nentries; /* #of msg entries in local msg queue */ u16 remote_nentries; /* #of msg entries in remote msg queue*/ void *local_msgqueue_base; /* base address of kmalloc'd space */ struct xpc_msg *local_msgqueue; /* local message queue */ void *remote_msgqueue_base; /* base address of kmalloc'd space */ struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */ /* local message queue */ u64 remote_msgqueue_pa; /* phys addr of remote partition's */ /* local message queue */ atomic_t references; /* #of external references to queues */ atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ u8 delayed_IPI_flags; /* IPI flags received, but delayed */ /* action until channel disconnected */ /* queue of msg senders who want to be notified when msg received */ atomic_t n_to_notify; /* #of msg senders to notify */ struct xpc_notify *notify_queue;/* notify queue for messages sent */ xpc_channel_func func; /* user's channel function */ void *key; /* pointer to user's key */ struct semaphore msg_to_pull_sema; /* next msg to pull serialization */ struct semaphore wdisconnect_sema; /* wait for channel disconnect */ struct xpc_openclose_args *local_openclose_args; /* args passed on */ /* opening or closing of channel */ /* various flavors of local and remote Get/Put values */ struct xpc_gp *local_GP; /* local Get/Put values */ struct xpc_gp remote_GP; /* remote Get/Put values */ struct xpc_gp w_local_GP; /* working local Get/Put values */ struct xpc_gp w_remote_GP; /* working remote Get/Put values */ s64 next_msg_to_pull; /* Put value of next msg to pull */ /* kthread management related fields */ // >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps // >>> allow the assigned limit be unbounded and let the idle limit be dynamic // >>> dependent on activity over the last interval of time atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ u32 kthreads_idle_limit; /* limit on #of kthreads idle */ atomic_t kthreads_active; /* #of kthreads actively working */ // >>> following field is temporary u32 kthreads_created; /* total #of kthreads created */ wait_queue_head_t idle_wq; /* idle kthread wait queue */ } ____cacheline_aligned; /* struct xpc_channel flags */ #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ #define XPC_C_CONNECTCALLOUT 0x00000040 /* channel connected callout made */ #define XPC_C_CONNECTED 0x00000080 /* local channel is connected */ #define XPC_C_CONNECTING 0x00000100 /* channel is being connected */ #define XPC_C_RCLOSEREPLY 0x00000200 /* remote close channel reply */ #define XPC_C_CLOSEREPLY 0x00000400 /* local close channel reply */ #define XPC_C_RCLOSEREQUEST 0x00000800 /* remote close channel request */ #define XPC_C_CLOSEREQUEST 0x00001000 /* local close channel request */ #define XPC_C_DISCONNECTED 0x00002000 /* channel is disconnected */ #define XPC_C_DISCONNECTING 0x00004000 /* channel is being disconnected */ #define XPC_C_DISCONNECTCALLOUT 0x00008000 /* chan disconnected callout made */ #define XPC_C_WDISCONNECT 0x00010000 /* waiting for channel disconnect */ /* * Manages channels on a partition basis. There is one of these structures * for each partition (a partition will never utilize the structure that * represents itself). */ struct xpc_partition { /* XPC HB infrastructure */ u8 remote_rp_version; /* version# of partition's rsvd pg */ struct timespec remote_rp_stamp;/* time when rsvd pg was initialized */ u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ u64 remote_vars_pa; /* phys addr of partition's vars */ u64 remote_vars_part_pa; /* phys addr of partition's vars part */ u64 last_heartbeat; /* HB at last read */ u64 remote_amos_page_pa; /* phys addr of partition's amos page */ int remote_act_nasid; /* active part's act/deact nasid */ int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ u32 act_IRQ_rcvd; /* IRQs since activation */ spinlock_t act_lock; /* protect updating of act_state */ u8 act_state; /* from XPC HB viewpoint */ u8 remote_vars_version; /* version# of partition's vars */ enum xpc_retval reason; /* reason partition is deactivating */ int reason_line; /* line# deactivation initiated from */ int reactivate_nasid; /* nasid in partition to reactivate */ unsigned long disengage_request_timeout; /* timeout in jiffies */ struct timer_list disengage_request_timer; /* XPC infrastructure referencing and teardown control */ volatile u8 setup_state; /* infrastructure setup state */ wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ atomic_t references; /* #of references to infrastructure */ /* * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) */ u8 nchannels; /* #of defined channels supported */ atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ atomic_t nchannels_engaged;/* #of channels engaged with remote part */ struct xpc_channel *channels;/* array of channel structures */ void *local_GPs_base; /* base address of kmalloc'd space */ struct xpc_gp *local_GPs; /* local Get/Put values */ void *remote_GPs_base; /* base address of kmalloc'd space */ struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */ /* values */ u64 remote_GPs_pa; /* phys address of remote partition's local */ /* Get/Put values */ /* fields used to pass args when opening or closing a channel */ void *local_openclose_args_base; /* base address of kmalloc'd space */ struct xpc_openclose_args *local_openclose_args; /* local's args */ void *remote_openclose_args_base; /* base address of kmalloc'd space */ struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ /* args */ u64 remote_openclose_args_pa; /* phys addr of remote's args */ /* IPI sending, receiving and handling related fields */ int remote_IPI_nasid; /* nasid of where to send IPIs */ int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ u64 local_IPI_amo; /* IPI amo flags yet to be handled */ char IPI_owner[8]; /* IPI owner's name */ struct timer_list dropped_IPI_timer; /* dropped IPI timer */ spinlock_t IPI_lock; /* IPI handler lock */ /* channel manager related fields */ atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ } ____cacheline_aligned; /* struct xpc_partition act_state values (for XPC HB) */ #define XPC_P_INACTIVE 0x00 /* partition is not active */ #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ #define XPC_P_ACTIVATING 0x02 /* activation thread started */ #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ xpc_deactivate_partition(__LINE__, (_p), (_reason)) /* struct xpc_partition setup_state values */ #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ #define XPC_P_SETUP 0x01 /* infrastructure is setup */ #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ /* * struct xpc_partition IPI_timer #of seconds to wait before checking for * dropped IPIs. These occur whenever an IPI amo write doesn't complete until * after the IPI was received. */ #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) /* number of seconds to wait for other partitions to disengage */ #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90 /* interval in seconds to print 'waiting disengagement' messages */ #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10 #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) /* found in xp_main.c */ extern struct xpc_registration xpc_registrations[]; /* found in xpc_main.c */ extern struct device *xpc_part; extern struct device *xpc_chan; extern int xpc_disengage_request_timelimit; extern int xpc_disengage_request_timedout; extern irqreturn_t xpc_notify_IRQ_handler(int, void *, struct pt_regs *); extern void xpc_dropped_IPI_check(struct xpc_partition *); extern void xpc_activate_partition(struct xpc_partition *); extern void xpc_activate_kthreads(struct xpc_channel *, int); extern void xpc_create_kthreads(struct xpc_channel *, int); extern void xpc_disconnect_wait(int); /* found in xpc_partition.c */ extern int xpc_exiting; extern struct xpc_vars *xpc_vars; extern struct xpc_rsvd_page *xpc_rsvd_page; extern struct xpc_vars_part *xpc_vars_part; extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; extern char xpc_remote_copy_buffer[]; extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); extern void xpc_allow_IPI_ops(void); extern void xpc_restrict_IPI_ops(void); extern int xpc_identify_act_IRQ_sender(void); extern int xpc_partition_disengaged(struct xpc_partition *); extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); extern void xpc_mark_partition_inactive(struct xpc_partition *); extern void xpc_discovery(void); extern void xpc_check_remote_hb(void); extern void xpc_deactivate_partition(const int, struct xpc_partition *, enum xpc_retval); extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); /* found in xpc_channel.c */ extern void xpc_initiate_connect(int); extern void xpc_initiate_disconnect(int); extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, xpc_notify_func, void *); extern void xpc_initiate_received(partid_t, int, void *); extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); extern void xpc_process_channel_activity(struct xpc_partition *); extern void xpc_connected_callout(struct xpc_channel *); extern void xpc_deliver_msg(struct xpc_channel *); extern void xpc_disconnect_channel(const int, struct xpc_channel *, enum xpc_retval, unsigned long *); extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval); extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval); extern void xpc_teardown_infrastructure(struct xpc_partition *); static inline void xpc_wakeup_channel_mgr(struct xpc_partition *part) { if (atomic_inc_return(&part->channel_mgr_requests) == 1) { wake_up(&part->channel_mgr_wq); } } /* * These next two inlines are used to keep us from tearing down a channel's * msg queues while a thread may be referencing them. */ static inline void xpc_msgqueue_ref(struct xpc_channel *ch) { atomic_inc(&ch->references); } static inline void xpc_msgqueue_deref(struct xpc_channel *ch) { s32 refs = atomic_dec_return(&ch->references); DBUG_ON(refs < 0); if (refs == 0) { xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); } } #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) /* * These two inlines are used to keep us from tearing down a partition's * setup infrastructure while a thread may be referencing it. */ static inline void xpc_part_deref(struct xpc_partition *part) { s32 refs = atomic_dec_return(&part->references); DBUG_ON(refs < 0); if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) { wake_up(&part->teardown_wq); } } static inline int xpc_part_ref(struct xpc_partition *part) { int setup; atomic_inc(&part->references); setup = (part->setup_state == XPC_P_SETUP); if (!setup) { xpc_part_deref(part); } return setup; } /* * The following macro is to be used for the setting of the reason and * reason_line fields in both the struct xpc_channel and struct xpc_partition * structures. */ #define XPC_SET_REASON(_p, _reason, _line) \ { \ (_p)->reason = _reason; \ (_p)->reason_line = _line; \ } /* * This next set of inlines are used to keep track of when a partition is * potentially engaged in accessing memory belonging to another partition. */ static inline void xpc_mark_partition_engaged(struct xpc_partition *part) { unsigned long irq_flags; AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t))); local_irq_save(irq_flags); /* set bit corresponding to our partid in remote partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, (1UL << sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IPIs and AMOs to it until the heartbeat times out. */ (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static inline void xpc_mark_partition_disengaged(struct xpc_partition *part) { unsigned long irq_flags; AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t))); local_irq_save(irq_flags); /* clear bit corresponding to our partid in remote partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, ~(1UL << sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IPIs and AMOs to it until the heartbeat times out. */ (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static inline void xpc_request_partition_disengage(struct xpc_partition *part) { unsigned long irq_flags; AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); local_irq_save(irq_flags); /* set bit corresponding to our partid in remote partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, (1UL << sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IPIs and AMOs to it until the heartbeat times out. */ (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static inline void xpc_cancel_partition_disengage_request(struct xpc_partition *part) { unsigned long irq_flags; AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); local_irq_save(irq_flags); /* clear bit corresponding to our partid in remote partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, ~(1UL << sn_partition_id)); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IPIs and AMOs to it until the heartbeat times out. */ (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); } static inline u64 xpc_partition_engaged(u64 partid_mask) { AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; /* return our partition's AMO variable ANDed with partid_mask */ return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) & partid_mask); } static inline u64 xpc_partition_disengage_requested(u64 partid_mask) { AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; /* return our partition's AMO variable ANDed with partid_mask */ return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) & partid_mask); } static inline void xpc_clear_partition_engaged(u64 partid_mask) { AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; /* clear bit(s) based on partid_mask in our partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, ~partid_mask); } static inline void xpc_clear_partition_disengage_request(u64 partid_mask) { AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; /* clear bit(s) based on partid_mask in our partition's AMO */ FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, ~partid_mask); } /* * The following set of macros and inlines are used for the sending and * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, * one that is associated with partition activity (SGI_XPC_ACTIVATE) and * the other that is associated with channel activity (SGI_XPC_NOTIFY). */ static inline u64 xpc_IPI_receive(AMO_t *amo) { return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR); } static inline enum xpc_retval xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) { int ret = 0; unsigned long irq_flags; local_irq_save(irq_flags); FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag); sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); /* * We must always use the nofault function regardless of whether we * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we * didn't, we'd never know that the other partition is down and would * keep sending IPIs and AMOs to it until the heartbeat times out. */ ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), xp_nofault_PIOR_target)); local_irq_restore(irq_flags); return ((ret == 0) ? xpcSuccess : xpcPioReadError); } /* * IPIs associated with SGI_XPC_ACTIVATE IRQ. */ /* * Flag the appropriate AMO variable and send an IPI to the specified node. */ static inline void xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid, int to_phys_cpuid) { int w_index = XPC_NASID_W_INDEX(from_nasid); int b_index = XPC_NASID_B_INDEX(from_nasid); AMO_t *amos = (AMO_t *) __va(amos_page_pa + (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t))); (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, to_phys_cpuid, SGI_XPC_ACTIVATE); } static inline void xpc_IPI_send_activate(struct xpc_vars *vars) { xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), vars->act_nasid, vars->act_phys_cpuid); } static inline void xpc_IPI_send_activated(struct xpc_partition *part) { xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), part->remote_act_nasid, part->remote_act_phys_cpuid); } static inline void xpc_IPI_send_reactivate(struct xpc_partition *part) { xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); } static inline void xpc_IPI_send_disengage(struct xpc_partition *part) { xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), part->remote_act_nasid, part->remote_act_phys_cpuid); } /* * IPIs associated with SGI_XPC_NOTIFY IRQ. */ /* * Send an IPI to the remote partition that is associated with the * specified channel. */ #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) static inline void xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, unsigned long *irq_flags) { struct xpc_partition *part = &xpc_partitions[ch->partid]; enum xpc_retval ret; if (likely(part->act_state != XPC_P_DEACTIVATING)) { ret = xpc_IPI_send(part->remote_IPI_amo_va, (u64) ipi_flag << (ch->number * 8), part->remote_IPI_nasid, part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY); dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", ipi_flag_string, ch->partid, ch->number, ret); if (unlikely(ret != xpcSuccess)) { if (irq_flags != NULL) { spin_unlock_irqrestore(&ch->lock, *irq_flags); } XPC_DEACTIVATE_PARTITION(part, ret); if (irq_flags != NULL) { spin_lock_irqsave(&ch->lock, *irq_flags); } } } } /* * Make it look like the remote partition, which is associated with the * specified channel, sent us an IPI. This faked IPI will be handled * by xpc_dropped_IPI_check(). */ #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) static inline void xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string) { struct xpc_partition *part = &xpc_partitions[ch->partid]; FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable), FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8))); dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", ipi_flag_string, ch->partid, ch->number); } /* * The sending and receiving of IPIs includes the setting of an AMO variable * to indicate the reason the IPI was sent. The 64-bit variable is divided * up into eight bytes, ordered from right to left. Byte zero pertains to * channel 0, byte one to channel 1, and so on. Each byte is described by * the following IPI flags. */ #define XPC_IPI_CLOSEREQUEST 0x01 #define XPC_IPI_CLOSEREPLY 0x02 #define XPC_IPI_OPENREQUEST 0x04 #define XPC_IPI_OPENREPLY 0x08 #define XPC_IPI_MSGREQUEST 0x10 /* given an AMO variable and a channel#, get its associated IPI flags */ #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8)) #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0f) #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010) static inline void xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->reason = ch->reason; XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); } static inline void xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) { XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); } static inline void xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->msg_size = ch->msg_size; args->local_nentries = ch->local_nentries; XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); } static inline void xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) { struct xpc_openclose_args *args = ch->local_openclose_args; args->remote_nentries = ch->remote_nentries; args->local_nentries = ch->local_nentries; args->local_msgqueue_pa = __pa(ch->local_msgqueue); XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); } static inline void xpc_IPI_send_msgrequest(struct xpc_channel *ch) { XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); } static inline void xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) { XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); } /* * Memory for XPC's AMO variables is allocated by the MSPEC driver. These * pages are located in the lowest granule. The lowest granule uses 4k pages * for cached references and an alternate TLB handler to never provide a * cacheable mapping for the entire region. This will prevent speculative * reading of cached copies of our lines from being issued which will cause * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition * activation and 2 AMO variables for partition deactivation. */ static inline AMO_t * xpc_IPI_init(int index) { AMO_t *amo = xpc_vars->amos_page + index; (void) xpc_IPI_receive(amo); /* clear AMO variable */ return amo; } static inline enum xpc_retval xpc_map_bte_errors(bte_result_t error) { switch (error) { case BTE_SUCCESS: return xpcSuccess; case BTEFAIL_DIR: return xpcBteDirectoryError; case BTEFAIL_POISON: return xpcBtePoisonError; case BTEFAIL_WERR: return xpcBteWriteError; case BTEFAIL_ACCESS: return xpcBteAccessError; case BTEFAIL_PWERR: return xpcBtePWriteError; case BTEFAIL_PRERR: return xpcBtePReadError; case BTEFAIL_TOUT: return xpcBteTimeOutError; case BTEFAIL_XTERR: return xpcBteXtalkError; case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable; default: return xpcBteUnmappedError; } } static inline void * xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) { /* see if kmalloc will give us cachline aligned memory by default */ *base = kmalloc(size, flags); if (*base == NULL) { return NULL; } if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) { return *base; } kfree(*base); /* nope, we'll have to do it ourselves */ *base = kmalloc(size + L1_CACHE_BYTES, flags); if (*base == NULL) { return NULL; } return (void *) L1_CACHE_ALIGN((u64) *base); } /* * Check to see if there is any channel activity to/from the specified * partition. */ static inline void xpc_check_for_channel_activity(struct xpc_partition *part) { u64 IPI_amo; unsigned long irq_flags; IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); if (IPI_amo == 0) { return; } spin_lock_irqsave(&part->IPI_lock, irq_flags); part->local_IPI_amo |= IPI_amo; spin_unlock_irqrestore(&part->IPI_lock, irq_flags); dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", XPC_PARTID(part), IPI_amo); xpc_wakeup_channel_mgr(part); } #endif /* _IA64_SN_KERNEL_XPC_H */