/* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * Copyright (C) 2010 Red Hat, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_error.h" #include "xfs_da_btree.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_quota.h" #include "xfs_trans_priv.h" #include "xfs_trans_space.h" #include "xfs_inode_item.h" #include "xfs_trace.h" kmem_zone_t *xfs_trans_zone; kmem_zone_t *xfs_log_item_desc_zone; /* * Various log reservation values. * * These are based on the size of the file system block because that is what * most transactions manipulate. Each adds in an additional 128 bytes per * item logged to try to account for the overhead of the transaction mechanism. * * Note: Most of the reservations underestimate the number of allocation * groups into which they could free extents in the xfs_bmap_finish() call. * This is because the number in the worst case is quite high and quite * unusual. In order to fix this we need to change xfs_bmap_finish() to free * extents in only a single AG at a time. This will require changes to the * EFI code as well, however, so that the EFI for the extents not freed is * logged again in each transaction. See SGI PV #261917. * * Reservation functions here avoid a huge stack in xfs_trans_init due to * register overflow from temporaries in the calculations. */ /* * In a write transaction we can allocate a maximum of 2 * extents. This gives: * the inode getting the new extents: inode size * the inode's bmap btree: max depth * block size * the agfs of the ags from which the extents are allocated: 2 * sector * the superblock free block counter: sector size * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size * And the bmap_finish transaction can free bmap blocks in a join: * the agfs of the ags containing the blocks: 2 * sector size * the agfls of the ags containing the blocks: 2 * sector size * the super block free block counter: sector size * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_write_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + 2 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 2) + 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + XFS_ALLOCFREE_LOG_COUNT(mp, 2))), (2 * mp->m_sb.sb_sectsize + 2 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 2) + 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); } /* * In truncating a file we free up to two extents at once. We can modify: * the inode being truncated: inode size * the inode's bmap btree: (max depth + 1) * block size * And the bmap_finish transaction can free the blocks and bmap blocks: * the agf for each of the ags: 4 * sector size * the agfl for each of the ags: 4 * sector size * the super block to reflect the freed blocks: sector size * worst case split in allocation btrees per extent assuming 4 extents: * 4 exts * 2 trees * (2 * max depth - 1) * block size * the inode btree: max depth * blocksize * the allocation btrees: 2 trees * (max depth - 1) * block size */ STATIC uint xfs_calc_itruncate_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) + 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), (4 * mp->m_sb.sb_sectsize + 4 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 4) + 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) + 128 * 5 + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); } /* * In renaming a files we can modify: * the four inodes involved: 4 * inode size * the two directory btrees: 2 * (max depth + v2) * dir block size * the two directory bmap btrees: 2 * max depth * block size * And the bmap_finish transaction can free dir and bmap blocks (two sets * of bmap blocks) giving: * the agf for the ags in which the blocks live: 3 * sector size * the agfl for the ags in which the blocks live: 3 * sector size * the superblock for the free block count: sector size * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_rename_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((4 * mp->m_sb.sb_inodesize + 2 * XFS_DIROP_LOG_RES(mp) + 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))), (3 * mp->m_sb.sb_sectsize + 3 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 3) + 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3)))); } /* * For creating a link to an inode: * the parent directory inode: inode size * the linked inode: inode size * the directory btree could split: (max depth + v2) * dir block size * the directory bmap btree could join or split: (max depth + v2) * blocksize * And the bmap_finish transaction can free some bmap blocks giving: * the agf for the ag in which the blocks live: sector size * the agfl for the ag in which the blocks live: sector size * the superblock for the free block count: sector size * the allocation btrees: 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_link_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + mp->m_sb.sb_inodesize + XFS_DIROP_LOG_RES(mp) + 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), (mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); } /* * For removing a directory entry we can modify: * the parent directory inode: inode size * the removed inode: inode size * the directory btree could join: (max depth + v2) * dir block size * the directory bmap btree could join or split: (max depth + v2) * blocksize * And the bmap_finish transaction can free the dir and bmap blocks giving: * the agf for the ag in which the blocks live: 2 * sector size * the agfl for the ag in which the blocks live: 2 * sector size * the superblock for the free block count: sector size * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_remove_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + mp->m_sb.sb_inodesize + XFS_DIROP_LOG_RES(mp) + 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), (2 * mp->m_sb.sb_sectsize + 2 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 2) + 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); } /* * For symlink we can modify: * the parent directory inode: inode size * the new inode: inode size * the inode btree entry: 1 block * the directory btree: (max depth + v2) * dir block size * the directory inode's bmap btree: (max depth + v2) * block size * the blocks for the symlink: 1 kB * Or in the first xact we allocate some inodes giving: * the agi and agf of the ag getting the new inodes: 2 * sectorsize * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize * the inode btree: max depth * blocksize * the allocation btrees: 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_symlink_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + mp->m_sb.sb_inodesize + XFS_FSB_TO_B(mp, 1) + XFS_DIROP_LOG_RES(mp) + 1024 + 128 * (4 + XFS_DIROP_LOG_COUNT(mp))), (2 * mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); } /* * For create we can modify: * the parent directory inode: inode size * the new inode: inode size * the inode btree entry: block size * the superblock for the nlink flag: sector size * the directory btree: (max depth + v2) * dir block size * the directory inode's bmap btree: (max depth + v2) * block size * Or in the first xact we allocate some inodes giving: * the agi and agf of the ag getting the new inodes: 2 * sectorsize * the superblock for the nlink flag: sector size * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize * the inode btree: max depth * blocksize * the allocation btrees: 2 trees * (max depth - 1) * block size */ STATIC uint xfs_calc_create_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + mp->m_sb.sb_inodesize + mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, 1) + XFS_DIROP_LOG_RES(mp) + 128 * (3 + XFS_DIROP_LOG_COUNT(mp))), (3 * mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); } /* * Making a new directory is the same as creating a new file. */ STATIC uint xfs_calc_mkdir_reservation( struct xfs_mount *mp) { return xfs_calc_create_reservation(mp); } /* * In freeing an inode we can modify: * the inode being freed: inode size * the super block free inode counter: sector size * the agi hash list and counters: sector size * the inode btree entry: block size * the on disk inode before ours in the agi hash list: inode cluster size * the inode btree: max depth * blocksize * the allocation btrees: 2 trees * (max depth - 1) * block size */ STATIC uint xfs_calc_ifree_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + mp->m_sb.sb_inodesize + mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, 1) + MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), XFS_INODE_CLUSTER_SIZE(mp)) + 128 * 5 + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); } /* * When only changing the inode we log the inode and possibly the superblock * We also add a bit of slop for the transaction stuff. */ STATIC uint xfs_calc_ichange_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + mp->m_sb.sb_inodesize + mp->m_sb.sb_sectsize + 512; } /* * Growing the data section of the filesystem. * superblock * agi and agf * allocation btrees */ STATIC uint xfs_calc_growdata_reservation( struct xfs_mount *mp) { return mp->m_sb.sb_sectsize * 3 + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); } /* * Growing the rt section of the filesystem. * In the first set of transactions (ALLOC) we allocate space to the * bitmap or summary files. * superblock: sector size * agf of the ag from which the extent is allocated: sector size * bmap btree for bitmap/summary inode: max depth * blocksize * bitmap/summary inode: inode size * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize */ STATIC uint xfs_calc_growrtalloc_reservation( struct xfs_mount *mp) { return 2 * mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + mp->m_sb.sb_inodesize + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); } /* * Growing the rt section of the filesystem. * In the second set of transactions (ZERO) we zero the new metadata blocks. * one bitmap/summary block: blocksize */ STATIC uint xfs_calc_growrtzero_reservation( struct xfs_mount *mp) { return mp->m_sb.sb_blocksize + 128; } /* * Growing the rt section of the filesystem. * In the third set of transactions (FREE) we update metadata without * allocating any new blocks. * superblock: sector size * bitmap inode: inode size * summary inode: inode size * one bitmap block: blocksize * summary blocks: new summary size */ STATIC uint xfs_calc_growrtfree_reservation( struct xfs_mount *mp) { return mp->m_sb.sb_sectsize + 2 * mp->m_sb.sb_inodesize + mp->m_sb.sb_blocksize + mp->m_rsumsize + 128 * 5; } /* * Logging the inode modification timestamp on a synchronous write. * inode */ STATIC uint xfs_calc_swrite_reservation( struct xfs_mount *mp) { return mp->m_sb.sb_inodesize + 128; } /* * Logging the inode mode bits when writing a setuid/setgid file * inode */ STATIC uint xfs_calc_writeid_reservation(xfs_mount_t *mp) { return mp->m_sb.sb_inodesize + 128; } /* * Converting the inode from non-attributed to attributed. * the inode being converted: inode size * agf block and superblock (for block allocation) * the new block (directory sized) * bmap blocks for the new directory block * allocation btrees */ STATIC uint xfs_calc_addafork_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + mp->m_sb.sb_inodesize + mp->m_sb.sb_sectsize * 2 + mp->m_dirblksize + XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) + XFS_ALLOCFREE_LOG_RES(mp, 1) + 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); } /* * Removing the attribute fork of a file * the inode being truncated: inode size * the inode's bmap btree: max depth * block size * And the bmap_finish transaction can free the blocks and bmap blocks: * the agf for each of the ags: 4 * sector size * the agfl for each of the ags: 4 * sector size * the super block to reflect the freed blocks: sector size * worst case split in allocation btrees per extent assuming 4 extents: * 4 exts * 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_attrinval_reservation( struct xfs_mount *mp) { return MAX((mp->m_sb.sb_inodesize + XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))), (4 * mp->m_sb.sb_sectsize + 4 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 4) + 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)))); } /* * Setting an attribute. * the inode getting the attribute * the superblock for allocations * the agfs extents are allocated from * the attribute btree * max depth * the inode allocation btree * Since attribute transaction space is dependent on the size of the attribute, * the calculation is done partially at mount time and partially at runtime. */ STATIC uint xfs_calc_attrset_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + mp->m_sb.sb_inodesize + mp->m_sb.sb_sectsize + XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + 128 * (2 + XFS_DA_NODE_MAXDEPTH); } /* * Removing an attribute. * the inode: inode size * the attribute btree could join: max depth * block size * the inode bmap btree could join or split: max depth * block size * And the bmap_finish transaction can free the attr blocks freed giving: * the agf for the ag in which the blocks live: 2 * sector size * the agfl for the ag in which the blocks live: 2 * sector size * the superblock for the free block count: sector size * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size */ STATIC uint xfs_calc_attrrm_reservation( struct xfs_mount *mp) { return XFS_DQUOT_LOGRES(mp) + MAX((mp->m_sb.sb_inodesize + XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + 128 * (1 + XFS_DA_NODE_MAXDEPTH + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), (2 * mp->m_sb.sb_sectsize + 2 * mp->m_sb.sb_sectsize + mp->m_sb.sb_sectsize + XFS_ALLOCFREE_LOG_RES(mp, 2) + 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); } /* * Clearing a bad agino number in an agi hash bucket. */ STATIC uint xfs_calc_clear_agi_bucket_reservation( struct xfs_mount *mp) { return mp->m_sb.sb_sectsize + 128; } /* * Initialize the precomputed transaction reservation values * in the mount structure. */ void xfs_trans_init( struct xfs_mount *mp) { struct xfs_trans_reservations *resp = &mp->m_reservations; resp->tr_write = xfs_calc_write_reservation(mp); resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); resp->tr_rename = xfs_calc_rename_reservation(mp); resp->tr_link = xfs_calc_link_reservation(mp); resp->tr_remove = xfs_calc_remove_reservation(mp); resp->tr_symlink = xfs_calc_symlink_reservation(mp); resp->tr_create = xfs_calc_create_reservation(mp); resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); resp->tr_ifree = xfs_calc_ifree_reservation(mp); resp->tr_ichange = xfs_calc_ichange_reservation(mp); resp->tr_growdata = xfs_calc_growdata_reservation(mp); resp->tr_swrite = xfs_calc_swrite_reservation(mp); resp->tr_writeid = xfs_calc_writeid_reservation(mp); resp->tr_addafork = xfs_calc_addafork_reservation(mp); resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); resp->tr_attrset = xfs_calc_attrset_reservation(mp); resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); } /* * This routine is called to allocate a transaction structure. * The type parameter indicates the type of the transaction. These * are enumerated in xfs_trans.h. * * Dynamically allocate the transaction structure from the transaction * zone, initialize it, and return it to the caller. */ xfs_trans_t * xfs_trans_alloc( xfs_mount_t *mp, uint type) { xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); return _xfs_trans_alloc(mp, type, KM_SLEEP); } xfs_trans_t * _xfs_trans_alloc( xfs_mount_t *mp, uint type, uint memflags) { xfs_trans_t *tp; atomic_inc(&mp->m_active_trans); tp = kmem_zone_zalloc(xfs_trans_zone, memflags); tp->t_magic = XFS_TRANS_MAGIC; tp->t_type = type; tp->t_mountp = mp; INIT_LIST_HEAD(&tp->t_items); INIT_LIST_HEAD(&tp->t_busy); return tp; } /* * Free the transaction structure. If there is more clean up * to do when the structure is freed, add it here. */ STATIC void xfs_trans_free( struct xfs_trans *tp) { xfs_alloc_busy_sort(&tp->t_busy); xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false); atomic_dec(&tp->t_mountp->m_active_trans); xfs_trans_free_dqinfo(tp); kmem_zone_free(xfs_trans_zone, tp); } /* * This is called to create a new transaction which will share the * permanent log reservation of the given transaction. The remaining * unused block and rt extent reservations are also inherited. This * implies that the original transaction is no longer allowed to allocate * blocks. Locks and log items, however, are no inherited. They must * be added to the new transaction explicitly. */ xfs_trans_t * xfs_trans_dup( xfs_trans_t *tp) { xfs_trans_t *ntp; ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); /* * Initialize the new transaction structure. */ ntp->t_magic = XFS_TRANS_MAGIC; ntp->t_type = tp->t_type; ntp->t_mountp = tp->t_mountp; INIT_LIST_HEAD(&ntp->t_items); INIT_LIST_HEAD(&ntp->t_busy); ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(tp->t_ticket != NULL); ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; tp->t_blk_res = tp->t_blk_res_used; ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; tp->t_rtx_res = tp->t_rtx_res_used; ntp->t_pflags = tp->t_pflags; xfs_trans_dup_dqinfo(tp, ntp); atomic_inc(&tp->t_mountp->m_active_trans); return ntp; } /* * This is called to reserve free disk blocks and log space for the * given transaction. This must be done before allocating any resources * within the transaction. * * This will return ENOSPC if there are not enough blocks available. * It will sleep waiting for available log space. * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which * is used by long running transactions. If any one of the reservations * fails then they will all be backed out. * * This does not do quota reservations. That typically is done by the * caller afterwards. */ int xfs_trans_reserve( xfs_trans_t *tp, uint blocks, uint logspace, uint rtextents, uint flags, uint logcount) { int log_flags; int error = 0; int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; /* Mark this thread as being in a transaction */ current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); /* * Attempt to reserve the needed disk blocks by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (blocks > 0) { error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, -((int64_t)blocks), rsvd); if (error != 0) { current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); return (XFS_ERROR(ENOSPC)); } tp->t_blk_res += blocks; } /* * Reserve the log space needed for this transaction. */ if (logspace > 0) { ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); ASSERT((tp->t_log_count == 0) || (tp->t_log_count == logcount)); if (flags & XFS_TRANS_PERM_LOG_RES) { log_flags = XFS_LOG_PERM_RESERV; tp->t_flags |= XFS_TRANS_PERM_LOG_RES; } else { ASSERT(tp->t_ticket == NULL); ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); log_flags = 0; } error = xfs_log_reserve(tp->t_mountp, logspace, logcount, &tp->t_ticket, XFS_TRANSACTION, log_flags, tp->t_type); if (error) { goto undo_blocks; } tp->t_log_res = logspace; tp->t_log_count = logcount; } /* * Attempt to reserve the needed realtime extents by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (rtextents > 0) { error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, -((int64_t)rtextents), rsvd); if (error) { error = XFS_ERROR(ENOSPC); goto undo_log; } tp->t_rtx_res += rtextents; } return 0; /* * Error cases jump to one of these labels to undo any * reservations which have already been performed. */ undo_log: if (logspace > 0) { if (flags & XFS_TRANS_PERM_LOG_RES) { log_flags = XFS_LOG_REL_PERM_RESERV; } else { log_flags = 0; } xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); tp->t_ticket = NULL; tp->t_log_res = 0; tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; } undo_blocks: if (blocks > 0) { xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, (int64_t)blocks, rsvd); tp->t_blk_res = 0; } current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); return error; } /* * Record the indicated change to the given field for application * to the file system's superblock when the transaction commits. * For now, just store the change in the transaction structure. * * Mark the transaction structure to indicate that the superblock * needs to be updated before committing. * * Because we may not be keeping track of allocated/free inodes and * used filesystem blocks in the superblock, we do not mark the * superblock dirty in this transaction if we modify these fields. * We still need to update the transaction deltas so that they get * applied to the incore superblock, but we don't want them to * cause the superblock to get locked and logged if these are the * only fields in the superblock that the transaction modifies. */ void xfs_trans_mod_sb( xfs_trans_t *tp, uint field, int64_t delta) { uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); xfs_mount_t *mp = tp->t_mountp; switch (field) { case XFS_TRANS_SB_ICOUNT: tp->t_icount_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_IFREE: tp->t_ifree_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FDBLOCKS: /* * Track the number of blocks allocated in the * transaction. Make sure it does not exceed the * number reserved. */ if (delta < 0) { tp->t_blk_res_used += (uint)-delta; ASSERT(tp->t_blk_res_used <= tp->t_blk_res); } tp->t_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_RES_FDBLOCKS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ ASSERT(delta < 0); tp->t_res_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FREXTENTS: /* * Track the number of blocks allocated in the * transaction. Make sure it does not exceed the * number reserved. */ if (delta < 0) { tp->t_rtx_res_used += (uint)-delta; ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); } tp->t_frextents_delta += delta; break; case XFS_TRANS_SB_RES_FREXTENTS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ ASSERT(delta < 0); tp->t_res_frextents_delta += delta; break; case XFS_TRANS_SB_DBLOCKS: ASSERT(delta > 0); tp->t_dblocks_delta += delta; break; case XFS_TRANS_SB_AGCOUNT: ASSERT(delta > 0); tp->t_agcount_delta += delta; break; case XFS_TRANS_SB_IMAXPCT: tp->t_imaxpct_delta += delta; break; case XFS_TRANS_SB_REXTSIZE: tp->t_rextsize_delta += delta; break; case XFS_TRANS_SB_RBMBLOCKS: tp->t_rbmblocks_delta += delta; break; case XFS_TRANS_SB_RBLOCKS: tp->t_rblocks_delta += delta; break; case XFS_TRANS_SB_REXTENTS: tp->t_rextents_delta += delta; break; case XFS_TRANS_SB_REXTSLOG: tp->t_rextslog_delta += delta; break; default: ASSERT(0); return; } tp->t_flags |= flags; } /* * xfs_trans_apply_sb_deltas() is called from the commit code * to bring the superblock buffer into the current transaction * and modify it as requested by earlier calls to xfs_trans_mod_sb(). * * For now we just look at each field allowed to change and change * it if necessary. */ STATIC void xfs_trans_apply_sb_deltas( xfs_trans_t *tp) { xfs_dsb_t *sbp; xfs_buf_t *bp; int whole = 0; bp = xfs_trans_getsb(tp, tp->t_mountp, 0); sbp = XFS_BUF_TO_SBP(bp); /* * Check that superblock mods match the mods made to AGF counters. */ ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + tp->t_ag_btree_delta)); /* * Only update the superblock counters if we are logging them */ if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { if (tp->t_icount_delta) be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); if (tp->t_ifree_delta) be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); if (tp->t_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); if (tp->t_res_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); } if (tp->t_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); if (tp->t_res_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); if (tp->t_dblocks_delta) { be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); whole = 1; } if (tp->t_agcount_delta) { be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); whole = 1; } if (tp->t_imaxpct_delta) { sbp->sb_imax_pct += tp->t_imaxpct_delta; whole = 1; } if (tp->t_rextsize_delta) { be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); whole = 1; } if (tp->t_rbmblocks_delta) { be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); whole = 1; } if (tp->t_rblocks_delta) { be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); whole = 1; } if (tp->t_rextents_delta) { be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); whole = 1; } if (tp->t_rextslog_delta) { sbp->sb_rextslog += tp->t_rextslog_delta; whole = 1; } if (whole) /* * Log the whole thing, the fields are noncontiguous. */ xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); else /* * Since all the modifiable fields are contiguous, we * can get away with this. */ xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), offsetof(xfs_dsb_t, sb_frextents) + sizeof(sbp->sb_frextents) - 1); } /* * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations * and apply superblock counter changes to the in-core superblock. The * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT * applied to the in-core superblock. The idea is that that has already been * done. * * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). * However, we have to ensure that we only modify each superblock field only * once because the application of the delta values may not be atomic. That can * lead to ENOSPC races occurring if we have two separate modifcations of the * free space counter to put back the entire reservation and then take away * what we used. * * If we are not logging superblock counters, then the inode allocated/free and * used block counts are not updated in the on disk superblock. In this case, * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we * still need to update the incore superblock with the changes. */ void xfs_trans_unreserve_and_mod_sb( xfs_trans_t *tp) { xfs_mod_sb_t msb[9]; /* If you add cases, add entries */ xfs_mod_sb_t *msbp; xfs_mount_t *mp = tp->t_mountp; /* REFERENCED */ int error; int rsvd; int64_t blkdelta = 0; int64_t rtxdelta = 0; int64_t idelta = 0; int64_t ifreedelta = 0; msbp = msb; rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; /* calculate deltas */ if (tp->t_blk_res > 0) blkdelta = tp->t_blk_res; if ((tp->t_fdblocks_delta != 0) && (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY))) blkdelta += tp->t_fdblocks_delta; if (tp->t_rtx_res > 0) rtxdelta = tp->t_rtx_res; if ((tp->t_frextents_delta != 0) && (tp->t_flags & XFS_TRANS_SB_DIRTY)) rtxdelta += tp->t_frextents_delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { idelta = tp->t_icount_delta; ifreedelta = tp->t_ifree_delta; } /* apply the per-cpu counters */ if (blkdelta) { error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, blkdelta, rsvd); if (error) goto out; } if (idelta) { error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, idelta, rsvd); if (error) goto out_undo_fdblocks; } if (ifreedelta) { error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, ifreedelta, rsvd); if (error) goto out_undo_icount; } /* apply remaining deltas */ if (rtxdelta != 0) { msbp->msb_field = XFS_SBS_FREXTENTS; msbp->msb_delta = rtxdelta; msbp++; } if (tp->t_flags & XFS_TRANS_SB_DIRTY) { if (tp->t_dblocks_delta != 0) { msbp->msb_field = XFS_SBS_DBLOCKS; msbp->msb_delta = tp->t_dblocks_delta; msbp++; } if (tp->t_agcount_delta != 0) { msbp->msb_field = XFS_SBS_AGCOUNT; msbp->msb_delta = tp->t_agcount_delta; msbp++; } if (tp->t_imaxpct_delta != 0) { msbp->msb_field = XFS_SBS_IMAX_PCT; msbp->msb_delta = tp->t_imaxpct_delta; msbp++; } if (tp->t_rextsize_delta != 0) { msbp->msb_field = XFS_SBS_REXTSIZE; msbp->msb_delta = tp->t_rextsize_delta; msbp++; } if (tp->t_rbmblocks_delta != 0) { msbp->msb_field = XFS_SBS_RBMBLOCKS; msbp->msb_delta = tp->t_rbmblocks_delta; msbp++; } if (tp->t_rblocks_delta != 0) { msbp->msb_field = XFS_SBS_RBLOCKS; msbp->msb_delta = tp->t_rblocks_delta; msbp++; } if (tp->t_rextents_delta != 0) { msbp->msb_field = XFS_SBS_REXTENTS; msbp->msb_delta = tp->t_rextents_delta; msbp++; } if (tp->t_rextslog_delta != 0) { msbp->msb_field = XFS_SBS_REXTSLOG; msbp->msb_delta = tp->t_rextslog_delta; msbp++; } } /* * If we need to change anything, do it. */ if (msbp > msb) { error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, (uint)(msbp - msb), rsvd); if (error) goto out_undo_ifreecount; } return; out_undo_ifreecount: if (ifreedelta) xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd); out_undo_icount: if (idelta) xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd); out_undo_fdblocks: if (blkdelta) xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd); out: ASSERT(error == 0); return; } /* * Add the given log item to the transaction's list of log items. * * The log item will now point to its new descriptor with its li_desc field. */ void xfs_trans_add_item( struct xfs_trans *tp, struct xfs_log_item *lip) { struct xfs_log_item_desc *lidp; ASSERT(lip->li_mountp = tp->t_mountp); ASSERT(lip->li_ailp = tp->t_mountp->m_ail); lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS); lidp->lid_item = lip; lidp->lid_flags = 0; lidp->lid_size = 0; list_add_tail(&lidp->lid_trans, &tp->t_items); lip->li_desc = lidp; } STATIC void xfs_trans_free_item_desc( struct xfs_log_item_desc *lidp) { list_del_init(&lidp->lid_trans); kmem_zone_free(xfs_log_item_desc_zone, lidp); } /* * Unlink and free the given descriptor. */ void xfs_trans_del_item( struct xfs_log_item *lip) { xfs_trans_free_item_desc(lip->li_desc); lip->li_desc = NULL; } /* * Unlock all of the items of a transaction and free all the descriptors * of that transaction. */ void xfs_trans_free_items( struct xfs_trans *tp, xfs_lsn_t commit_lsn, int flags) { struct xfs_log_item_desc *lidp, *next; list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { struct xfs_log_item *lip = lidp->lid_item; lip->li_desc = NULL; if (commit_lsn != NULLCOMMITLSN) IOP_COMMITTING(lip, commit_lsn); if (flags & XFS_TRANS_ABORT) lip->li_flags |= XFS_LI_ABORTED; IOP_UNLOCK(lip); xfs_trans_free_item_desc(lidp); } } /* * Unlock the items associated with a transaction. * * Items which were not logged should be freed. Those which were logged must * still be tracked so they can be unpinned when the transaction commits. */ STATIC void xfs_trans_unlock_items( struct xfs_trans *tp, xfs_lsn_t commit_lsn) { struct xfs_log_item_desc *lidp, *next; list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { struct xfs_log_item *lip = lidp->lid_item; lip->li_desc = NULL; if (commit_lsn != NULLCOMMITLSN) IOP_COMMITTING(lip, commit_lsn); IOP_UNLOCK(lip); /* * Free the descriptor if the item is not dirty * within this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) xfs_trans_free_item_desc(lidp); } } /* * Total up the number of log iovecs needed to commit this * transaction. The transaction itself needs one for the * transaction header. Ask each dirty item in turn how many * it needs to get the total. */ static uint xfs_trans_count_vecs( struct xfs_trans *tp) { int nvecs; struct xfs_log_item_desc *lidp; nvecs = 1; /* In the non-debug case we need to start bailing out if we * didn't find a log_item here, return zero and let trans_commit * deal with it. */ if (list_empty(&tp->t_items)) { ASSERT(0); return 0; } list_for_each_entry(lidp, &tp->t_items, lid_trans) { /* * Skip items which aren't dirty in this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) continue; lidp->lid_size = IOP_SIZE(lidp->lid_item); nvecs += lidp->lid_size; } return nvecs; } /* * Fill in the vector with pointers to data to be logged * by this transaction. The transaction header takes * the first vector, and then each dirty item takes the * number of vectors it indicated it needed in xfs_trans_count_vecs(). * * As each item fills in the entries it needs, also pin the item * so that it cannot be flushed out until the log write completes. */ static void xfs_trans_fill_vecs( struct xfs_trans *tp, struct xfs_log_iovec *log_vector) { struct xfs_log_item_desc *lidp; struct xfs_log_iovec *vecp; uint nitems; /* * Skip over the entry for the transaction header, we'll * fill that in at the end. */ vecp = log_vector + 1; nitems = 0; ASSERT(!list_empty(&tp->t_items)); list_for_each_entry(lidp, &tp->t_items, lid_trans) { /* Skip items which aren't dirty in this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) continue; /* * The item may be marked dirty but not log anything. This can * be used to get called when a transaction is committed. */ if (lidp->lid_size) nitems++; IOP_FORMAT(lidp->lid_item, vecp); vecp += lidp->lid_size; IOP_PIN(lidp->lid_item); } /* * Now that we've counted the number of items in this transaction, fill * in the transaction header. Note that the transaction header does not * have a log item. */ tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; tp->t_header.th_type = tp->t_type; tp->t_header.th_num_items = nitems; log_vector->i_addr = (xfs_caddr_t)&tp->t_header; log_vector->i_len = sizeof(xfs_trans_header_t); log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; } /* * The committed item processing consists of calling the committed routine of * each logged item, updating the item's position in the AIL if necessary, and * unpinning each item. If the committed routine returns -1, then do nothing * further with the item because it may have been freed. * * Since items are unlocked when they are copied to the incore log, it is * possible for two transactions to be completing and manipulating the same * item simultaneously. The AIL lock will protect the lsn field of each item. * The value of this field can never go backwards. * * We unpin the items after repositioning them in the AIL, because otherwise * they could be immediately flushed and we'd have to race with the flusher * trying to pull the item from the AIL as we add it. */ static void xfs_trans_item_committed( struct xfs_log_item *lip, xfs_lsn_t commit_lsn, int aborted) { xfs_lsn_t item_lsn; struct xfs_ail *ailp; if (aborted) lip->li_flags |= XFS_LI_ABORTED; item_lsn = IOP_COMMITTED(lip, commit_lsn); /* item_lsn of -1 means the item needs no further processing */ if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) return; /* * If the returned lsn is greater than what it contained before, update * the location of the item in the AIL. If it is not, then do nothing. * Items can never move backwards in the AIL. * * While the new lsn should usually be greater, it is possible that a * later transaction completing simultaneously with an earlier one * using the same item could complete first with a higher lsn. This * would cause the earlier transaction to fail the test below. */ ailp = lip->li_ailp; spin_lock(&ailp->xa_lock); if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { /* * This will set the item's lsn to item_lsn and update the * position of the item in the AIL. * * xfs_trans_ail_update() drops the AIL lock. */ xfs_trans_ail_update(ailp, lip, item_lsn); } else { spin_unlock(&ailp->xa_lock); } /* * Now that we've repositioned the item in the AIL, unpin it so it can * be flushed. Pass information about buffer stale state down from the * log item flags, if anyone else stales the buffer we do not want to * pay any attention to it. */ IOP_UNPIN(lip, 0); } /* * This is typically called by the LM when a transaction has been fully * committed to disk. It needs to unpin the items which have * been logged by the transaction and update their positions * in the AIL if necessary. * * This also gets called when the transactions didn't get written out * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. */ STATIC void xfs_trans_committed( void *arg, int abortflag) { struct xfs_trans *tp = arg; struct xfs_log_item_desc *lidp, *next; list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag); xfs_trans_free_item_desc(lidp); } xfs_trans_free(tp); } static inline void xfs_log_item_batch_insert( struct xfs_ail *ailp, struct xfs_ail_cursor *cur, struct xfs_log_item **log_items, int nr_items, xfs_lsn_t commit_lsn) { int i; spin_lock(&ailp->xa_lock); /* xfs_trans_ail_update_bulk drops ailp->xa_lock */ xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); for (i = 0; i < nr_items; i++) IOP_UNPIN(log_items[i], 0); } /* * Bulk operation version of xfs_trans_committed that takes a log vector of * items to insert into the AIL. This uses bulk AIL insertion techniques to * minimise lock traffic. * * If we are called with the aborted flag set, it is because a log write during * a CIL checkpoint commit has failed. In this case, all the items in the * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which * means that checkpoint commit abort handling is treated exactly the same * as an iclog write error even though we haven't started any IO yet. Hence in * this case all we need to do is IOP_COMMITTED processing, followed by an * IOP_UNPIN(aborted) call. * * The AIL cursor is used to optimise the insert process. If commit_lsn is not * at the end of the AIL, the insert cursor avoids the need to walk * the AIL to find the insertion point on every xfs_log_item_batch_insert() * call. This saves a lot of needless list walking and is a net win, even * though it slightly increases that amount of AIL lock traffic to set it up * and tear it down. */ void xfs_trans_committed_bulk( struct xfs_ail *ailp, struct xfs_log_vec *log_vector, xfs_lsn_t commit_lsn, int aborted) { #define LOG_ITEM_BATCH_SIZE 32 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; struct xfs_log_vec *lv; struct xfs_ail_cursor cur; int i = 0; spin_lock(&ailp->xa_lock); xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); spin_unlock(&ailp->xa_lock); /* unpin all the log items */ for (lv = log_vector; lv; lv = lv->lv_next ) { struct xfs_log_item *lip = lv->lv_item; xfs_lsn_t item_lsn; if (aborted) lip->li_flags |= XFS_LI_ABORTED; item_lsn = IOP_COMMITTED(lip, commit_lsn); /* item_lsn of -1 means the item needs no further processing */ if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) continue; /* * if we are aborting the operation, no point in inserting the * object into the AIL as we are in a shutdown situation. */ if (aborted) { ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount)); IOP_UNPIN(lip, 1); continue; } if (item_lsn != commit_lsn) { /* * Not a bulk update option due to unusual item_lsn. * Push into AIL immediately, rechecking the lsn once * we have the ail lock. Then unpin the item. This does * not affect the AIL cursor the bulk insert path is * using. */ spin_lock(&ailp->xa_lock); if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) xfs_trans_ail_update(ailp, lip, item_lsn); else spin_unlock(&ailp->xa_lock); IOP_UNPIN(lip, 0); continue; } /* Item is a candidate for bulk AIL insert. */ log_items[i++] = lv->lv_item; if (i >= LOG_ITEM_BATCH_SIZE) { xfs_log_item_batch_insert(ailp, &cur, log_items, LOG_ITEM_BATCH_SIZE, commit_lsn); i = 0; } } /* make sure we insert the remainder! */ if (i) xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); spin_lock(&ailp->xa_lock); xfs_trans_ail_cursor_done(ailp, &cur); spin_unlock(&ailp->xa_lock); } /* * Called from the trans_commit code when we notice that the filesystem is in * the middle of a forced shutdown. * * When we are called here, we have already pinned all the items in the * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called * so we can simply walk the items in the transaction, unpin them with an abort * flag and then free the items. Note that unpinning the items can result in * them being freed immediately, so we need to use a safe list traversal method * here. */ STATIC void xfs_trans_uncommit( struct xfs_trans *tp, uint flags) { struct xfs_log_item_desc *lidp, *n; list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) { if (lidp->lid_flags & XFS_LID_DIRTY) IOP_UNPIN(lidp->lid_item, 1); } xfs_trans_unreserve_and_mod_sb(tp); xfs_trans_unreserve_and_mod_dquots(tp); xfs_trans_free_items(tp, NULLCOMMITLSN, flags); xfs_trans_free(tp); } /* * Format the transaction direct to the iclog. This isolates the physical * transaction commit operation from the logical operation and hence allows * other methods to be introduced without affecting the existing commit path. */ static int xfs_trans_commit_iclog( struct xfs_mount *mp, struct xfs_trans *tp, xfs_lsn_t *commit_lsn, int flags) { int shutdown; int error; int log_flags = 0; struct xlog_in_core *commit_iclog; #define XFS_TRANS_LOGVEC_COUNT 16 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; struct xfs_log_iovec *log_vector; uint nvec; /* * Ask each log item how many log_vector entries it will * need so we can figure out how many to allocate. * Try to avoid the kmem_alloc() call in the common case * by using a vector from the stack when it fits. */ nvec = xfs_trans_count_vecs(tp); if (nvec == 0) { return ENOMEM; /* triggers a shutdown! */ } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { log_vector = log_vector_fast; } else { log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * sizeof(xfs_log_iovec_t), KM_SLEEP); } /* * Fill in the log_vector and pin the logged items, and * then write the transaction to the log. */ xfs_trans_fill_vecs(tp, log_vector); if (flags & XFS_TRANS_RELEASE_LOG_RES) log_flags = XFS_LOG_REL_PERM_RESERV; error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); /* * The transaction is committed incore here, and can go out to disk * at any time after this call. However, all the items associated * with the transaction are still locked and pinned in memory. */ *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); tp->t_commit_lsn = *commit_lsn; trace_xfs_trans_commit_lsn(tp); if (nvec > XFS_TRANS_LOGVEC_COUNT) kmem_free(log_vector); /* * If we got a log write error. Unpin the logitems that we * had pinned, clean up, free trans structure, and return error. */ if (error || *commit_lsn == -1) { current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); return XFS_ERROR(EIO); } /* * Once the transaction has committed, unused * reservations need to be released and changes to * the superblock need to be reflected in the in-core * version. Do that now. */ xfs_trans_unreserve_and_mod_sb(tp); /* * Tell the LM to call the transaction completion routine * when the log write with LSN commit_lsn completes (e.g. * when the transaction commit really hits the on-disk log). * After this call we cannot reference tp, because the call * can happen at any time and the call will free the transaction * structure pointed to by tp. The only case where we call * the completion routine (xfs_trans_committed) directly is * if the log is turned off on a debug kernel or we're * running in simulation mode (the log is explicitly turned * off). */ tp->t_logcb.cb_func = xfs_trans_committed; tp->t_logcb.cb_arg = tp; /* * We need to pass the iclog buffer which was used for the * transaction commit record into this function, and attach * the callback to it. The callback must be attached before * the items are unlocked to avoid racing with other threads * waiting for an item to unlock. */ shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); /* * Mark this thread as no longer being in a transaction */ current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); /* * Once all the items of the transaction have been copied * to the in core log and the callback is attached, the * items can be unlocked. * * This will free descriptors pointing to items which were * not logged since there is nothing more to do with them. * For items which were logged, we will keep pointers to them * so they can be unpinned after the transaction commits to disk. * This will also stamp each modified meta-data item with * the commit lsn of this transaction for dependency tracking * purposes. */ xfs_trans_unlock_items(tp, *commit_lsn); /* * If we detected a log error earlier, finish committing * the transaction now (unpin log items, etc). * * Order is critical here, to avoid using the transaction * pointer after its been freed (by xfs_trans_committed * either here now, or as a callback). We cannot do this * step inside xfs_log_notify as was done earlier because * of this issue. */ if (shutdown) xfs_trans_committed(tp, XFS_LI_ABORTED); /* * Now that the xfs_trans_committed callback has been attached, * and the items are released we can finally allow the iclog to * go to disk. */ return xfs_log_release_iclog(mp, commit_iclog); } /* * Walk the log items and allocate log vector structures for * each item large enough to fit all the vectors they require. * Note that this format differs from the old log vector format in * that there is no transaction header in these log vectors. */ STATIC struct xfs_log_vec * xfs_trans_alloc_log_vecs( xfs_trans_t *tp) { struct xfs_log_item_desc *lidp; struct xfs_log_vec *lv = NULL; struct xfs_log_vec *ret_lv = NULL; /* Bail out if we didn't find a log item. */ if (list_empty(&tp->t_items)) { ASSERT(0); return NULL; } list_for_each_entry(lidp, &tp->t_items, lid_trans) { struct xfs_log_vec *new_lv; /* Skip items which aren't dirty in this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) continue; /* Skip items that do not have any vectors for writing */ lidp->lid_size = IOP_SIZE(lidp->lid_item); if (!lidp->lid_size) continue; new_lv = kmem_zalloc(sizeof(*new_lv) + lidp->lid_size * sizeof(struct xfs_log_iovec), KM_SLEEP); /* The allocated iovec region lies beyond the log vector. */ new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; new_lv->lv_niovecs = lidp->lid_size; new_lv->lv_item = lidp->lid_item; if (!ret_lv) ret_lv = new_lv; else lv->lv_next = new_lv; lv = new_lv; } return ret_lv; } static int xfs_trans_commit_cil( struct xfs_mount *mp, struct xfs_trans *tp, xfs_lsn_t *commit_lsn, int flags) { struct xfs_log_vec *log_vector; /* * Get each log item to allocate a vector structure for * the log item to to pass to the log write code. The * CIL commit code will format the vector and save it away. */ log_vector = xfs_trans_alloc_log_vecs(tp); if (!log_vector) return ENOMEM; xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags); current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_free(tp); return 0; } /* * Commit the given transaction to the log. * * XFS disk error handling mechanism is not based on a typical * transaction abort mechanism. Logically after the filesystem * gets marked 'SHUTDOWN', we can't let any new transactions * be durable - ie. committed to disk - because some metadata might * be inconsistent. In such cases, this returns an error, and the * caller may assume that all locked objects joined to the transaction * have already been unlocked as if the commit had succeeded. * Do not reference the transaction structure after this call. */ int xfs_trans_commit( struct xfs_trans *tp, uint flags) { struct xfs_mount *mp = tp->t_mountp; xfs_lsn_t commit_lsn = -1; int error = 0; int log_flags = 0; int sync = tp->t_flags & XFS_TRANS_SYNC; /* * Determine whether this commit is releasing a permanent * log reservation or not. */ if (flags & XFS_TRANS_RELEASE_LOG_RES) { ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); log_flags = XFS_LOG_REL_PERM_RESERV; } /* * If there is nothing to be logged by the transaction, * then unlock all of the items associated with the * transaction and free the transaction structure. * Also make sure to return any reserved blocks to * the free pool. */ if (!(tp->t_flags & XFS_TRANS_DIRTY)) goto out_unreserve; if (XFS_FORCED_SHUTDOWN(mp)) { error = XFS_ERROR(EIO); goto out_unreserve; } ASSERT(tp->t_ticket != NULL); /* * If we need to update the superblock, then do it now. */ if (tp->t_flags & XFS_TRANS_SB_DIRTY) xfs_trans_apply_sb_deltas(tp); xfs_trans_apply_dquot_deltas(tp); if (mp->m_flags & XFS_MOUNT_DELAYLOG) error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags); else error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); if (error == ENOMEM) { xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); error = XFS_ERROR(EIO); goto out_unreserve; } /* * If the transaction needs to be synchronous, then force the * log out now and wait for it. */ if (sync) { if (!error) { error = _xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, NULL); } XFS_STATS_INC(xs_trans_sync); } else { XFS_STATS_INC(xs_trans_async); } return error; out_unreserve: xfs_trans_unreserve_and_mod_sb(tp); /* * It is indeed possible for the transaction to be not dirty but * the dqinfo portion to be. All that means is that we have some * (non-persistent) quota reservations that need to be unreserved. */ xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); if (commit_lsn == -1 && !error) error = XFS_ERROR(EIO); } current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); xfs_trans_free(tp); XFS_STATS_INC(xs_trans_empty); return error; } /* * Unlock all of the transaction's items and free the transaction. * The transaction must not have modified any of its items, because * there is no way to restore them to their previous state. * * If the transaction has made a log reservation, make sure to release * it as well. */ void xfs_trans_cancel( xfs_trans_t *tp, int flags) { int log_flags; xfs_mount_t *mp = tp->t_mountp; /* * See if the caller is being too lazy to figure out if * the transaction really needs an abort. */ if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) flags &= ~XFS_TRANS_ABORT; /* * See if the caller is relying on us to shut down the * filesystem. This happens in paths where we detect * corruption and decide to give up. */ if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } #ifdef DEBUG if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) { struct xfs_log_item_desc *lidp; list_for_each_entry(lidp, &tp->t_items, lid_trans) ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD)); } #endif xfs_trans_unreserve_and_mod_sb(tp); xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { if (flags & XFS_TRANS_RELEASE_LOG_RES) { ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); log_flags = XFS_LOG_REL_PERM_RESERV; } else { log_flags = 0; } xfs_log_done(mp, tp->t_ticket, NULL, log_flags); } /* mark this thread as no longer being in a transaction */ current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_free_items(tp, NULLCOMMITLSN, flags); xfs_trans_free(tp); } /* * Roll from one trans in the sequence of PERMANENT transactions to * the next: permanent transactions are only flushed out when * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon * as possible to let chunks of it go to the log. So we commit the * chunk we've been working on and get a new transaction to continue. */ int xfs_trans_roll( struct xfs_trans **tpp, struct xfs_inode *dp) { struct xfs_trans *trans; unsigned int logres, count; int error; /* * Ensure that the inode is always logged. */ trans = *tpp; xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); /* * Copy the critical parameters from one trans to the next. */ logres = trans->t_log_res; count = trans->t_log_count; *tpp = xfs_trans_dup(trans); /* * Commit the current transaction. * If this commit failed, then it'd just unlock those items that * are not marked ihold. That also means that a filesystem shutdown * is in progress. The caller takes the responsibility to cancel * the duplicate transaction that gets returned. */ error = xfs_trans_commit(trans, 0); if (error) return (error); trans = *tpp; /* * transaction commit worked ok so we can drop the extra ticket * reference that we gained in xfs_trans_dup() */ xfs_log_ticket_put(trans->t_ticket); /* * Reserve space in the log for th next transaction. * This also pushes items in the "AIL", the list of logged items, * out to disk if they are taking up space at the tail of the log * that we want to use. This requires that either nothing be locked * across this call, or that anything that is locked be logged in * the prior and the next transactions. */ error = xfs_trans_reserve(trans, 0, logres, 0, XFS_TRANS_PERM_LOG_RES, count); /* * Ensure that the inode is in the new transaction and locked. */ if (error) return error; xfs_trans_ijoin(trans, dp); return 0; }