/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_da_format.h" #include "xfs_da_btree.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_error.h" #include "xfs_btree.h" #include "xfs_alloc_btree.h" #include "xfs_alloc.h" #include "xfs_rmap_btree.h" #include "xfs_ialloc.h" #include "xfs_fsops.h" #include "xfs_itable.h" #include "xfs_trans_space.h" #include "xfs_rtalloc.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_filestream.h" #include "xfs_rmap.h" #include "xfs_ag_resv.h" /* * File system operations */ static struct xfs_buf * xfs_growfs_get_hdr_buf( struct xfs_mount *mp, xfs_daddr_t blkno, size_t numblks, int flags, const struct xfs_buf_ops *ops) { struct xfs_buf *bp; bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags); if (!bp) return NULL; xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); bp->b_bn = blkno; bp->b_maps[0].bm_bn = blkno; bp->b_ops = ops; return bp; } struct aghdr_init_data { /* per ag data */ xfs_agnumber_t agno; /* ag to init */ xfs_extlen_t agsize; /* new AG size */ struct list_head buffer_list; /* buffer writeback list */ xfs_rfsblock_t nfree; /* cumulative new free space */ /* per header data */ xfs_daddr_t daddr; /* header location */ size_t numblks; /* size of header */ xfs_btnum_t type; /* type of btree root block */ }; /* * Generic btree root block init function */ static void xfs_btroot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno, 0); } /* * Alloc btree root block init functions */ static void xfs_bnoroot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_alloc_rec *arec; xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno, 0); arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); arec->ar_blockcount = cpu_to_be32(id->agsize - be32_to_cpu(arec->ar_startblock)); } static void xfs_cntroot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_alloc_rec *arec; xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno, 0); arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); arec->ar_blockcount = cpu_to_be32(id->agsize - be32_to_cpu(arec->ar_startblock)); } /* * Reverse map root block init */ static void xfs_rmaproot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_rmap_rec *rrec; xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno, 0); /* * mark the AG header regions as static metadata The BNO * btree block is the first block after the headers, so * it's location defines the size of region the static * metadata consumes. * * Note: unlike mkfs, we never have to account for log * space when growing the data regions */ rrec = XFS_RMAP_REC_ADDR(block, 1); rrec->rm_startblock = 0; rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); rrec->rm_offset = 0; /* account freespace btree root blocks */ rrec = XFS_RMAP_REC_ADDR(block, 2); rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(2); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); rrec->rm_offset = 0; /* account inode btree root blocks */ rrec = XFS_RMAP_REC_ADDR(block, 3); rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - XFS_IBT_BLOCK(mp)); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); rrec->rm_offset = 0; /* account for rmap btree root */ rrec = XFS_RMAP_REC_ADDR(block, 4); rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(1); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); rrec->rm_offset = 0; /* account for refc btree root */ if (xfs_sb_version_hasreflink(&mp->m_sb)) { rrec = XFS_RMAP_REC_ADDR(block, 5); rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); rrec->rm_blockcount = cpu_to_be32(1); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); rrec->rm_offset = 0; be16_add_cpu(&block->bb_numrecs, 1); } } /* * Initialise new secondary superblocks with the pre-grow geometry, but mark * them as "in progress" so we know they haven't yet been activated. This will * get cleared when the update with the new geometry information is done after * changes to the primary are committed. This isn't strictly necessary, but we * get it for free with the delayed buffer write lists and it means we can tell * if a grow operation didn't complete properly after the fact. */ static void xfs_sbblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); xfs_sb_to_disk(dsb, &mp->m_sb); dsb->sb_inprogress = 1; } static void xfs_agfblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agf *agf = XFS_BUF_TO_AGF(bp); xfs_extlen_t tmpsize; agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(id->agno); agf->agf_length = cpu_to_be32(id->agsize); agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { agf->agf_roots[XFS_BTNUM_RMAPi] = cpu_to_be32(XFS_RMAP_BLOCK(mp)); agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); agf->agf_rmap_blocks = cpu_to_be32(1); } agf->agf_flfirst = cpu_to_be32(1); agf->agf_fllast = 0; agf->agf_flcount = 0; tmpsize = id->agsize - mp->m_ag_prealloc_blocks; agf->agf_freeblks = cpu_to_be32(tmpsize); agf->agf_longest = cpu_to_be32(tmpsize); if (xfs_sb_version_hascrc(&mp->m_sb)) uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); if (xfs_sb_version_hasreflink(&mp->m_sb)) { agf->agf_refcount_root = cpu_to_be32( xfs_refc_block(mp)); agf->agf_refcount_level = cpu_to_be32(1); agf->agf_refcount_blocks = cpu_to_be32(1); } } static void xfs_agflblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); __be32 *agfl_bno; int bucket; if (xfs_sb_version_hascrc(&mp->m_sb)) { agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); agfl->agfl_seqno = cpu_to_be32(id->agno); uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); } agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp); for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); } static void xfs_agiblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); int bucket; agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); agi->agi_seqno = cpu_to_be32(id->agno); agi->agi_length = cpu_to_be32(id->agsize); agi->agi_count = 0; agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); agi->agi_level = cpu_to_be32(1); agi->agi_freecount = 0; agi->agi_newino = cpu_to_be32(NULLAGINO); agi->agi_dirino = cpu_to_be32(NULLAGINO); if (xfs_sb_version_hascrc(&mp->m_sb)) uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); if (xfs_sb_version_hasfinobt(&mp->m_sb)) { agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); agi->agi_free_level = cpu_to_be32(1); } for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); } typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id); static int xfs_growfs_init_aghdr( struct xfs_mount *mp, struct aghdr_init_data *id, aghdr_init_work_f work, const struct xfs_buf_ops *ops) { struct xfs_buf *bp; bp = xfs_growfs_get_hdr_buf(mp, id->daddr, id->numblks, 0, ops); if (!bp) return -ENOMEM; (*work)(mp, bp, id); xfs_buf_delwri_queue(bp, &id->buffer_list); xfs_buf_relse(bp); return 0; } struct xfs_aghdr_grow_data { xfs_daddr_t daddr; size_t numblks; const struct xfs_buf_ops *ops; aghdr_init_work_f work; xfs_btnum_t type; bool need_init; }; /* * Write new AG headers to disk. Non-transactional, but written * synchronously so they are completed prior to the growfs transaction * being logged. */ static int xfs_grow_ag_headers( struct xfs_mount *mp, struct aghdr_init_data *id) { struct xfs_aghdr_grow_data aghdr_data[] = { { /* SB */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_sb_buf_ops, .work = &xfs_sbblock_init, .need_init = true }, { /* AGF */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agf_buf_ops, .work = &xfs_agfblock_init, .need_init = true }, { /* AGFL */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agfl_buf_ops, .work = &xfs_agflblock_init, .need_init = true }, { /* AGI */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agi_buf_ops, .work = &xfs_agiblock_init, .need_init = true }, { /* BNO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_allocbt_buf_ops, .work = &xfs_bnoroot_init, .need_init = true }, { /* CNT root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_allocbt_buf_ops, .work = &xfs_cntroot_init, .need_init = true }, { /* INO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_inobt_buf_ops, .work = &xfs_btroot_init, .type = XFS_BTNUM_INO, .need_init = true }, { /* FINO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_inobt_buf_ops, .work = &xfs_btroot_init, .type = XFS_BTNUM_FINO, .need_init = xfs_sb_version_hasfinobt(&mp->m_sb) }, { /* RMAP root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_rmapbt_buf_ops, .work = &xfs_rmaproot_init, .need_init = xfs_sb_version_hasrmapbt(&mp->m_sb) }, { /* REFC root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_refcountbt_buf_ops, .work = &xfs_btroot_init, .type = XFS_BTNUM_REFC, .need_init = xfs_sb_version_hasreflink(&mp->m_sb) }, { /* NULL terminating block */ .daddr = XFS_BUF_DADDR_NULL, } }; struct xfs_aghdr_grow_data *dp; int error = 0; /* Account for AG free space in new AG */ id->nfree += id->agsize - mp->m_ag_prealloc_blocks; for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { if (!dp->need_init) continue; id->daddr = dp->daddr; id->numblks = dp->numblks; id->type = dp->type; error = xfs_growfs_init_aghdr(mp, id, dp->work, dp->ops); if (error) break; } return error; } static int xfs_growfs_data_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_data_t *in) /* growfs data input struct */ { xfs_agf_t *agf; xfs_agi_t *agi; xfs_buf_t *bp; int error; xfs_agnumber_t nagcount; xfs_agnumber_t nagimax = 0; xfs_rfsblock_t nb, nb_mod; xfs_rfsblock_t new; xfs_agnumber_t oagcount; xfs_trans_t *tp; LIST_HEAD (buffer_list); struct aghdr_init_data id = {}; nb = in->newblocks; if (nb < mp->m_sb.sb_dblocks) return -EINVAL; if ((error = xfs_sb_validate_fsb_count(&mp->m_sb, nb))) return error; error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1), XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); if (error) return error; xfs_buf_relse(bp); new = nb; /* use new as a temporary here */ nb_mod = do_div(new, mp->m_sb.sb_agblocks); nagcount = new + (nb_mod != 0); if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) { nagcount--; nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks; if (nb < mp->m_sb.sb_dblocks) return -EINVAL; } new = nb - mp->m_sb.sb_dblocks; oagcount = mp->m_sb.sb_agcount; /* allocate the new per-ag structures */ if (nagcount > oagcount) { error = xfs_initialize_perag(mp, nagcount, &nagimax); if (error) return error; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); if (error) return error; /* * Write new AG headers to disk. Non-transactional, but need to be * written and completed prior to the growfs transaction being logged. * To do this, we use a delayed write buffer list and wait for * submission and IO completion of the list as a whole. This allows the * IO subsystem to merge all the AG headers in a single AG into a single * IO and hide most of the latency of the IO from us. * * This also means that if we get an error whilst building the buffer * list to write, we can cancel the entire list without having written * anything. */ INIT_LIST_HEAD(&id.buffer_list); for (id.agno = nagcount - 1; id.agno >= oagcount; id.agno--, new -= id.agsize) { if (id.agno == nagcount - 1) id.agsize = nb - (id.agno * (xfs_rfsblock_t)mp->m_sb.sb_agblocks); else id.agsize = mp->m_sb.sb_agblocks; error = xfs_grow_ag_headers(mp, &id); if (error) { xfs_buf_delwri_cancel(&id.buffer_list); goto out_trans_cancel; } } error = xfs_buf_delwri_submit(&id.buffer_list); if (error) goto out_trans_cancel; xfs_trans_agblocks_delta(tp, id.nfree); /* * There are new blocks in the old last a.g. */ if (new) { struct xfs_owner_info oinfo; /* * Change the agi length. */ error = xfs_ialloc_read_agi(mp, tp, id.agno, &bp); if (error) goto out_trans_cancel; ASSERT(bp); agi = XFS_BUF_TO_AGI(bp); be32_add_cpu(&agi->agi_length, new); ASSERT(nagcount == oagcount || be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); /* * Change agf length. */ error = xfs_alloc_read_agf(mp, tp, id.agno, 0, &bp); if (error) goto out_trans_cancel; ASSERT(bp); agf = XFS_BUF_TO_AGF(bp); be32_add_cpu(&agf->agf_length, new); ASSERT(be32_to_cpu(agf->agf_length) == be32_to_cpu(agi->agi_length)); xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); /* * Free the new space. * * XFS_RMAP_OWN_NULL is used here to tell the rmap btree that * this doesn't actually exist in the rmap btree. */ xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_NULL); error = xfs_rmap_free(tp, bp, id.agno, be32_to_cpu(agf->agf_length) - new, new, &oinfo); if (error) goto out_trans_cancel; error = xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id.agno, be32_to_cpu(agf->agf_length) - new), new, &oinfo, XFS_AG_RESV_NONE); if (error) goto out_trans_cancel; } /* * Update changed superblock fields transactionally. These are not * seen by the rest of the world until the transaction commit applies * them atomically to the superblock. */ if (nagcount > oagcount) xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount); if (nb > mp->m_sb.sb_dblocks) xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, nb - mp->m_sb.sb_dblocks); if (id.nfree) xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree); xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); if (error) return error; /* New allocation groups fully initialized, so update mount struct */ if (nagimax) mp->m_maxagi = nagimax; xfs_set_low_space_thresholds(mp); mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); /* * If we expanded the last AG, free the per-AG reservation * so we can reinitialize it with the new size. */ if (new) { struct xfs_perag *pag; pag = xfs_perag_get(mp, id.agno); error = xfs_ag_resv_free(pag); xfs_perag_put(pag); if (error) return error; } /* * Reserve AG metadata blocks. ENOSPC here does not mean there was a * growfs failure, just that there still isn't space for new user data * after the grow has been run. */ error = xfs_fs_reserve_ag_blocks(mp); if (error == -ENOSPC) error = 0; return error; out_trans_cancel: xfs_trans_cancel(tp); return error; } static int xfs_growfs_log_private( xfs_mount_t *mp, /* mount point for filesystem */ xfs_growfs_log_t *in) /* growfs log input struct */ { xfs_extlen_t nb; nb = in->newblocks; if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES)) return -EINVAL; if (nb == mp->m_sb.sb_logblocks && in->isint == (mp->m_sb.sb_logstart != 0)) return -EINVAL; /* * Moving the log is hard, need new interfaces to sync * the log first, hold off all activity while moving it. * Can have shorter or longer log in the same space, * or transform internal to external log or vice versa. */ return -ENOSYS; } static int xfs_growfs_imaxpct( struct xfs_mount *mp, __u32 imaxpct) { struct xfs_trans *tp; int dpct; int error; if (imaxpct > 100) return -EINVAL; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); if (error) return error; dpct = imaxpct - mp->m_sb.sb_imax_pct; xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct); xfs_trans_set_sync(tp); return xfs_trans_commit(tp); } /* * After a grow operation, we need to update all the secondary superblocks * to match the new state of the primary. Because we are completely overwriting * all the existing fields in the secondary superblock buffers, there is no need * to read them in from disk. Just get a new buffer, stamp it and write it. * * The sb buffers need to be cached here so that we serialise against scrub * scanning secondary superblocks, but we don't want to keep it in memory once * it is written so we mark it as a one-shot buffer. */ static int xfs_growfs_update_superblocks( struct xfs_mount *mp) { xfs_agnumber_t agno; int saved_error = 0; int error = 0; LIST_HEAD (buffer_list); /* update secondary superblocks. */ for (agno = 1; agno < mp->m_sb.sb_agcount; agno++) { struct xfs_buf *bp; bp = xfs_buf_get(mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_SB_DADDR), XFS_FSS_TO_BB(mp, 1), 0); /* * If we get an error reading or writing alternate superblocks, * continue. xfs_repair chooses the "best" superblock based * on most matches; if we break early, we'll leave more * superblocks un-updated than updated, and xfs_repair may * pick them over the properly-updated primary. */ if (!bp) { xfs_warn(mp, "error allocating secondary superblock for ag %d", agno); if (!saved_error) saved_error = -ENOMEM; continue; } bp->b_ops = &xfs_sb_buf_ops; xfs_buf_oneshot(bp); xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb); xfs_buf_delwri_queue(bp, &buffer_list); xfs_buf_relse(bp); /* don't hold too many buffers at once */ if (agno % 16) continue; error = xfs_buf_delwri_submit(&buffer_list); if (error) { xfs_warn(mp, "write error %d updating a secondary superblock near ag %d", error, agno); if (!saved_error) saved_error = error; continue; } } error = xfs_buf_delwri_submit(&buffer_list); if (error) { xfs_warn(mp, "write error %d updating a secondary superblock near ag %d", error, agno); } return saved_error ? saved_error : error; } /* * protected versions of growfs function acquire and release locks on the mount * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG, * XFS_IOC_FSGROWFSRT */ int xfs_growfs_data( struct xfs_mount *mp, struct xfs_growfs_data *in) { int error = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!mutex_trylock(&mp->m_growlock)) return -EWOULDBLOCK; /* update imaxpct separately to the physical grow of the filesystem */ if (in->imaxpct != mp->m_sb.sb_imax_pct) { error = xfs_growfs_imaxpct(mp, in->imaxpct); if (error) goto out_error; } if (in->newblocks != mp->m_sb.sb_dblocks) { error = xfs_growfs_data_private(mp, in); if (error) goto out_error; } /* Post growfs calculations needed to reflect new state in operations */ if (mp->m_sb.sb_imax_pct) { uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct; do_div(icount, 100); mp->m_maxicount = icount << mp->m_sb.sb_inopblog; } else mp->m_maxicount = 0; /* Update secondary superblocks now the physical grow has completed */ error = xfs_growfs_update_superblocks(mp); out_error: /* * Increment the generation unconditionally, the error could be from * updating the secondary superblocks, in which case the new size * is live already. */ mp->m_generation++; mutex_unlock(&mp->m_growlock); return error; } int xfs_growfs_log( xfs_mount_t *mp, xfs_growfs_log_t *in) { int error; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!mutex_trylock(&mp->m_growlock)) return -EWOULDBLOCK; error = xfs_growfs_log_private(mp, in); mutex_unlock(&mp->m_growlock); return error; } /* * exported through ioctl XFS_IOC_FSCOUNTS */ int xfs_fs_counts( xfs_mount_t *mp, xfs_fsop_counts_t *cnt) { cnt->allocino = percpu_counter_read_positive(&mp->m_icount); cnt->freeino = percpu_counter_read_positive(&mp->m_ifree); cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) - mp->m_alloc_set_aside; spin_lock(&mp->m_sb_lock); cnt->freertx = mp->m_sb.sb_frextents; spin_unlock(&mp->m_sb_lock); return 0; } /* * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS * * xfs_reserve_blocks is called to set m_resblks * in the in-core mount table. The number of unused reserved blocks * is kept in m_resblks_avail. * * Reserve the requested number of blocks if available. Otherwise return * as many as possible to satisfy the request. The actual number * reserved are returned in outval * * A null inval pointer indicates that only the current reserved blocks * available should be returned no settings are changed. */ int xfs_reserve_blocks( xfs_mount_t *mp, uint64_t *inval, xfs_fsop_resblks_t *outval) { int64_t lcounter, delta; int64_t fdblks_delta = 0; uint64_t request; int64_t free; int error = 0; /* If inval is null, report current values and return */ if (inval == (uint64_t *)NULL) { if (!outval) return -EINVAL; outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; return 0; } request = *inval; /* * With per-cpu counters, this becomes an interesting problem. we need * to work out if we are freeing or allocation blocks first, then we can * do the modification as necessary. * * We do this under the m_sb_lock so that if we are near ENOSPC, we will * hold out any changes while we work out what to do. This means that * the amount of free space can change while we do this, so we need to * retry if we end up trying to reserve more space than is available. */ spin_lock(&mp->m_sb_lock); /* * If our previous reservation was larger than the current value, * then move any unused blocks back to the free pool. Modify the resblks * counters directly since we shouldn't have any problems unreserving * space. */ if (mp->m_resblks > request) { lcounter = mp->m_resblks_avail - request; if (lcounter > 0) { /* release unused blocks */ fdblks_delta = lcounter; mp->m_resblks_avail -= lcounter; } mp->m_resblks = request; if (fdblks_delta) { spin_unlock(&mp->m_sb_lock); error = xfs_mod_fdblocks(mp, fdblks_delta, 0); spin_lock(&mp->m_sb_lock); } goto out; } /* * If the request is larger than the current reservation, reserve the * blocks before we update the reserve counters. Sample m_fdblocks and * perform a partial reservation if the request exceeds free space. */ error = -ENOSPC; do { free = percpu_counter_sum(&mp->m_fdblocks) - mp->m_alloc_set_aside; if (!free) break; delta = request - mp->m_resblks; lcounter = free - delta; if (lcounter < 0) /* We can't satisfy the request, just get what we can */ fdblks_delta = free; else fdblks_delta = delta; /* * We'll either succeed in getting space from the free block * count or we'll get an ENOSPC. If we get a ENOSPC, it means * things changed while we were calculating fdblks_delta and so * we should try again to see if there is anything left to * reserve. * * Don't set the reserved flag here - we don't want to reserve * the extra reserve blocks from the reserve..... */ spin_unlock(&mp->m_sb_lock); error = xfs_mod_fdblocks(mp, -fdblks_delta, 0); spin_lock(&mp->m_sb_lock); } while (error == -ENOSPC); /* * Update the reserve counters if blocks have been successfully * allocated. */ if (!error && fdblks_delta) { mp->m_resblks += fdblks_delta; mp->m_resblks_avail += fdblks_delta; } out: if (outval) { outval->resblks = mp->m_resblks; outval->resblks_avail = mp->m_resblks_avail; } spin_unlock(&mp->m_sb_lock); return error; } int xfs_fs_goingdown( xfs_mount_t *mp, uint32_t inflags) { switch (inflags) { case XFS_FSOP_GOING_FLAGS_DEFAULT: { struct super_block *sb = freeze_bdev(mp->m_super->s_bdev); if (sb && !IS_ERR(sb)) { xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); thaw_bdev(sb->s_bdev, sb); } break; } case XFS_FSOP_GOING_FLAGS_LOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); break; case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH: xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR); break; default: return -EINVAL; } return 0; } /* * Force a shutdown of the filesystem instantly while keeping the filesystem * consistent. We don't do an unmount here; just shutdown the shop, make sure * that absolutely nothing persistent happens to this filesystem after this * point. */ void xfs_do_force_shutdown( xfs_mount_t *mp, int flags, char *fname, int lnnum) { int logerror; logerror = flags & SHUTDOWN_LOG_IO_ERROR; if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { xfs_notice(mp, "%s(0x%x) called from line %d of file %s. Return address = "PTR_FMT, __func__, flags, lnnum, fname, __return_address); } /* * No need to duplicate efforts. */ if (XFS_FORCED_SHUTDOWN(mp) && !logerror) return; /* * This flags XFS_MOUNT_FS_SHUTDOWN, makes sure that we don't * queue up anybody new on the log reservations, and wakes up * everybody who's sleeping on log reservations to tell them * the bad news. */ if (xfs_log_force_umount(mp, logerror)) return; if (flags & SHUTDOWN_CORRUPT_INCORE) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_CORRUPT, "Corruption of in-memory data detected. Shutting down filesystem"); if (XFS_ERRLEVEL_HIGH <= xfs_error_level) xfs_stack_trace(); } else if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { if (logerror) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_LOGERROR, "Log I/O Error Detected. Shutting down filesystem"); } else if (flags & SHUTDOWN_DEVICE_REQ) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR, "All device paths lost. Shutting down filesystem"); } else if (!(flags & SHUTDOWN_REMOTE_REQ)) { xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR, "I/O Error Detected. Shutting down filesystem"); } } if (!(flags & SHUTDOWN_FORCE_UMOUNT)) { xfs_alert(mp, "Please umount the filesystem and rectify the problem(s)"); } } /* * Reserve free space for per-AG metadata. */ int xfs_fs_reserve_ag_blocks( struct xfs_mount *mp) { xfs_agnumber_t agno; struct xfs_perag *pag; int error = 0; int err2; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { pag = xfs_perag_get(mp, agno); err2 = xfs_ag_resv_init(pag); xfs_perag_put(pag); if (err2 && !error) error = err2; } if (error && error != -ENOSPC) { xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", error); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } return error; } /* * Free space reserved for per-AG metadata. */ int xfs_fs_unreserve_ag_blocks( struct xfs_mount *mp) { xfs_agnumber_t agno; struct xfs_perag *pag; int error = 0; int err2; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { pag = xfs_perag_get(mp, agno); err2 = xfs_ag_resv_free(pag); xfs_perag_put(pag); if (err2 && !error) error = err2; } if (error) xfs_warn(mp, "Error %d freeing per-AG metadata reserve pool.", error); return error; }