/* * linux/fs/namei.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * Some corrections by tytso. */ /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname * lookup logic. */ /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/pagemap.h> #include <linux/fsnotify.h> #include <linux/smp_lock.h> #include <linux/personality.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/file.h> #include <asm/namei.h> #include <asm/uaccess.h> #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) /* [Feb-1997 T. Schoebel-Theuer] * Fundamental changes in the pathname lookup mechanisms (namei) * were necessary because of omirr. The reason is that omirr needs * to know the _real_ pathname, not the user-supplied one, in case * of symlinks (and also when transname replacements occur). * * The new code replaces the old recursive symlink resolution with * an iterative one (in case of non-nested symlink chains). It does * this with calls to <fs>_follow_link(). * As a side effect, dir_namei(), _namei() and follow_link() are now * replaced with a single function lookup_dentry() that can handle all * the special cases of the former code. * * With the new dcache, the pathname is stored at each inode, at least as * long as the refcount of the inode is positive. As a side effect, the * size of the dcache depends on the inode cache and thus is dynamic. * * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink * resolution to correspond with current state of the code. * * Note that the symlink resolution is not *completely* iterative. * There is still a significant amount of tail- and mid- recursion in * the algorithm. Also, note that <fs>_readlink() is not used in * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() * may return different results than <fs>_follow_link(). Many virtual * filesystems (including /proc) exhibit this behavior. */ /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL * and the name already exists in form of a symlink, try to create the new * name indicated by the symlink. The old code always complained that the * name already exists, due to not following the symlink even if its target * is nonexistent. The new semantics affects also mknod() and link() when * the name is a symlink pointing to a non-existant name. * * I don't know which semantics is the right one, since I have no access * to standards. But I found by trial that HP-UX 9.0 has the full "new" * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the * "old" one. Personally, I think the new semantics is much more logical. * Note that "ln old new" where "new" is a symlink pointing to a non-existing * file does succeed in both HP-UX and SunOs, but not in Solaris * and in the old Linux semantics. */ /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink * semantics. See the comments in "open_namei" and "do_link" below. * * [10-Sep-98 Alan Modra] Another symlink change. */ /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: * inside the path - always follow. * in the last component in creation/removal/renaming - never follow. * if LOOKUP_FOLLOW passed - follow. * if the pathname has trailing slashes - follow. * otherwise - don't follow. * (applied in that order). * * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT * restored for 2.4. This is the last surviving part of old 4.2BSD bug. * During the 2.4 we need to fix the userland stuff depending on it - * hopefully we will be able to get rid of that wart in 2.5. So far only * XEmacs seems to be relying on it... */ /* * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) * implemented. Let's see if raised priority of ->s_vfs_rename_sem gives * any extra contention... */ /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). * PATH_MAX includes the nul terminator --RR. */ static int do_getname(const char __user *filename, char *page) { int retval; unsigned long len = PATH_MAX; if (!segment_eq(get_fs(), KERNEL_DS)) { if ((unsigned long) filename >= TASK_SIZE) return -EFAULT; if (TASK_SIZE - (unsigned long) filename < PATH_MAX) len = TASK_SIZE - (unsigned long) filename; } retval = strncpy_from_user(page, filename, len); if (retval > 0) { if (retval < len) return 0; return -ENAMETOOLONG; } else if (!retval) retval = -ENOENT; return retval; } char * getname(const char __user * filename) { char *tmp, *result; result = ERR_PTR(-ENOMEM); tmp = __getname(); if (tmp) { int retval = do_getname(filename, tmp); result = tmp; if (retval < 0) { __putname(tmp); result = ERR_PTR(retval); } } audit_getname(result); return result; } #ifdef CONFIG_AUDITSYSCALL void putname(const char *name) { if (unlikely(current->audit_context)) audit_putname(name); else __putname(name); } EXPORT_SYMBOL(putname); #endif /** * generic_permission - check for access rights on a Posix-like filesystem * @inode: inode to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * @check_acl: optional callback to check for Posix ACLs * * Used to check for read/write/execute permissions on a file. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things.. */ int generic_permission(struct inode *inode, int mask, int (*check_acl)(struct inode *inode, int mask)) { umode_t mode = inode->i_mode; if (current->fsuid == inode->i_uid) mode >>= 6; else { if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { int error = check_acl(inode, mask); if (error == -EACCES) goto check_capabilities; else if (error != -EAGAIN) return error; } if (in_group_p(inode->i_gid)) mode >>= 3; } /* * If the DACs are ok we don't need any capability check. */ if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask)) return 0; check_capabilities: /* * Read/write DACs are always overridable. * Executable DACs are overridable if at least one exec bit is set. */ if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) if (capable(CAP_DAC_OVERRIDE)) return 0; /* * Searching includes executable on directories, else just read. */ if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) if (capable(CAP_DAC_READ_SEARCH)) return 0; return -EACCES; } int permission(struct inode *inode, int mask, struct nameidata *nd) { int retval, submask; if (mask & MAY_WRITE) { umode_t mode = inode->i_mode; /* * Nobody gets write access to a read-only fs. */ if (IS_RDONLY(inode) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) return -EROFS; /* * Nobody gets write access to an immutable file. */ if (IS_IMMUTABLE(inode)) return -EACCES; } /* Ordinary permission routines do not understand MAY_APPEND. */ submask = mask & ~MAY_APPEND; if (inode->i_op && inode->i_op->permission) retval = inode->i_op->permission(inode, submask, nd); else retval = generic_permission(inode, submask, NULL); if (retval) return retval; return security_inode_permission(inode, mask, nd); } /** * vfs_permission - check for access rights to a given path * @nd: lookup result that describes the path * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Used to check for read/write/execute permissions on a path. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things. */ int vfs_permission(struct nameidata *nd, int mask) { return permission(nd->dentry->d_inode, mask, nd); } /** * file_permission - check for additional access rights to a given file * @file: file to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Used to check for read/write/execute permissions on an already opened * file. * * Note: * Do not use this function in new code. All access checks should * be done using vfs_permission(). */ int file_permission(struct file *file, int mask) { return permission(file->f_dentry->d_inode, mask, NULL); } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. Exclusion between them is provided by * the inode->i_lock spinlock. */ int get_write_access(struct inode * inode) { spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) < 0) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_inc(&inode->i_writecount); spin_unlock(&inode->i_lock); return 0; } int deny_write_access(struct file * file) { struct inode *inode = file->f_dentry->d_inode; spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) > 0) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_dec(&inode->i_writecount); spin_unlock(&inode->i_lock); return 0; } void path_release(struct nameidata *nd) { dput(nd->dentry); mntput(nd->mnt); } /* * umount() mustn't call path_release()/mntput() as that would clear * mnt_expiry_mark */ void path_release_on_umount(struct nameidata *nd) { dput(nd->dentry); mntput_no_expire(nd->mnt); } /** * release_open_intent - free up open intent resources * @nd: pointer to nameidata */ void release_open_intent(struct nameidata *nd) { if (nd->intent.open.file->f_dentry == NULL) put_filp(nd->intent.open.file); else fput(nd->intent.open.file); } /* * Internal lookup() using the new generic dcache. * SMP-safe */ static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) { struct dentry * dentry = __d_lookup(parent, name); /* lockess __d_lookup may fail due to concurrent d_move() * in some unrelated directory, so try with d_lookup */ if (!dentry) dentry = d_lookup(parent, name); if (dentry && dentry->d_op && dentry->d_op->d_revalidate) { if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) { dput(dentry); dentry = NULL; } } return dentry; } /* * Short-cut version of permission(), for calling by * path_walk(), when dcache lock is held. Combines parts * of permission() and generic_permission(), and tests ONLY for * MAY_EXEC permission. * * If appropriate, check DAC only. If not appropriate, or * short-cut DAC fails, then call permission() to do more * complete permission check. */ static int exec_permission_lite(struct inode *inode, struct nameidata *nd) { umode_t mode = inode->i_mode; if (inode->i_op && inode->i_op->permission) return -EAGAIN; if (current->fsuid == inode->i_uid) mode >>= 6; else if (in_group_p(inode->i_gid)) mode >>= 3; if (mode & MAY_EXEC) goto ok; if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) goto ok; if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) goto ok; if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) goto ok; return -EACCES; ok: return security_inode_permission(inode, MAY_EXEC, nd); } /* * This is called when everything else fails, and we actually have * to go to the low-level filesystem to find out what we should do.. * * We get the directory semaphore, and after getting that we also * make sure that nobody added the entry to the dcache in the meantime.. * SMP-safe */ static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) { struct dentry * result; struct inode *dir = parent->d_inode; mutex_lock(&dir->i_mutex); /* * First re-do the cached lookup just in case it was created * while we waited for the directory semaphore.. * * FIXME! This could use version numbering or similar to * avoid unnecessary cache lookups. * * The "dcache_lock" is purely to protect the RCU list walker * from concurrent renames at this point (we mustn't get false * negatives from the RCU list walk here, unlike the optimistic * fast walk). * * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup */ result = d_lookup(parent, name); if (!result) { struct dentry * dentry = d_alloc(parent, name); result = ERR_PTR(-ENOMEM); if (dentry) { result = dir->i_op->lookup(dir, dentry, nd); if (result) dput(dentry); else result = dentry; } mutex_unlock(&dir->i_mutex); return result; } /* * Uhhuh! Nasty case: the cache was re-populated while * we waited on the semaphore. Need to revalidate. */ mutex_unlock(&dir->i_mutex); if (result->d_op && result->d_op->d_revalidate) { if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) { dput(result); result = ERR_PTR(-ENOENT); } } return result; } static int __emul_lookup_dentry(const char *, struct nameidata *); /* SMP-safe */ static inline int walk_init_root(const char *name, struct nameidata *nd) { read_lock(¤t->fs->lock); if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { nd->mnt = mntget(current->fs->altrootmnt); nd->dentry = dget(current->fs->altroot); read_unlock(¤t->fs->lock); if (__emul_lookup_dentry(name,nd)) return 0; read_lock(¤t->fs->lock); } nd->mnt = mntget(current->fs->rootmnt); nd->dentry = dget(current->fs->root); read_unlock(¤t->fs->lock); return 1; } static inline int __vfs_follow_link(struct nameidata *nd, const char *link) { int res = 0; char *name; if (IS_ERR(link)) goto fail; if (*link == '/') { path_release(nd); if (!walk_init_root(link, nd)) /* weird __emul_prefix() stuff did it */ goto out; } res = link_path_walk(link, nd); out: if (nd->depth || res || nd->last_type!=LAST_NORM) return res; /* * If it is an iterative symlinks resolution in open_namei() we * have to copy the last component. And all that crap because of * bloody create() on broken symlinks. Furrfu... */ name = __getname(); if (unlikely(!name)) { path_release(nd); return -ENOMEM; } strcpy(name, nd->last.name); nd->last.name = name; return 0; fail: path_release(nd); return PTR_ERR(link); } struct path { struct vfsmount *mnt; struct dentry *dentry; }; static inline int __do_follow_link(struct path *path, struct nameidata *nd) { int error; void *cookie; struct dentry *dentry = path->dentry; touch_atime(path->mnt, dentry); nd_set_link(nd, NULL); if (path->mnt == nd->mnt) mntget(path->mnt); cookie = dentry->d_inode->i_op->follow_link(dentry, nd); error = PTR_ERR(cookie); if (!IS_ERR(cookie)) { char *s = nd_get_link(nd); error = 0; if (s) error = __vfs_follow_link(nd, s); if (dentry->d_inode->i_op->put_link) dentry->d_inode->i_op->put_link(dentry, nd, cookie); } dput(dentry); mntput(path->mnt); return error; } static inline void dput_path(struct path *path, struct nameidata *nd) { dput(path->dentry); if (path->mnt != nd->mnt) mntput(path->mnt); } static inline void path_to_nameidata(struct path *path, struct nameidata *nd) { dput(nd->dentry); if (nd->mnt != path->mnt) mntput(nd->mnt); nd->mnt = path->mnt; nd->dentry = path->dentry; } /* * This limits recursive symlink follows to 8, while * limiting consecutive symlinks to 40. * * Without that kind of total limit, nasty chains of consecutive * symlinks can cause almost arbitrarily long lookups. */ static inline int do_follow_link(struct path *path, struct nameidata *nd) { int err = -ELOOP; if (current->link_count >= MAX_NESTED_LINKS) goto loop; if (current->total_link_count >= 40) goto loop; BUG_ON(nd->depth >= MAX_NESTED_LINKS); cond_resched(); err = security_inode_follow_link(path->dentry, nd); if (err) goto loop; current->link_count++; current->total_link_count++; nd->depth++; err = __do_follow_link(path, nd); current->link_count--; nd->depth--; return err; loop: dput_path(path, nd); path_release(nd); return err; } int follow_up(struct vfsmount **mnt, struct dentry **dentry) { struct vfsmount *parent; struct dentry *mountpoint; spin_lock(&vfsmount_lock); parent=(*mnt)->mnt_parent; if (parent == *mnt) { spin_unlock(&vfsmount_lock); return 0; } mntget(parent); mountpoint=dget((*mnt)->mnt_mountpoint); spin_unlock(&vfsmount_lock); dput(*dentry); *dentry = mountpoint; mntput(*mnt); *mnt = parent; return 1; } /* no need for dcache_lock, as serialization is taken care in * namespace.c */ static int __follow_mount(struct path *path) { int res = 0; while (d_mountpoint(path->dentry)) { struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); if (!mounted) break; dput(path->dentry); if (res) mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); res = 1; } return res; } static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) { while (d_mountpoint(*dentry)) { struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); if (!mounted) break; dput(*dentry); mntput(*mnt); *mnt = mounted; *dentry = dget(mounted->mnt_root); } } /* no need for dcache_lock, as serialization is taken care in * namespace.c */ int follow_down(struct vfsmount **mnt, struct dentry **dentry) { struct vfsmount *mounted; mounted = lookup_mnt(*mnt, *dentry); if (mounted) { dput(*dentry); mntput(*mnt); *mnt = mounted; *dentry = dget(mounted->mnt_root); return 1; } return 0; } static inline void follow_dotdot(struct nameidata *nd) { while(1) { struct vfsmount *parent; struct dentry *old = nd->dentry; read_lock(¤t->fs->lock); if (nd->dentry == current->fs->root && nd->mnt == current->fs->rootmnt) { read_unlock(¤t->fs->lock); break; } read_unlock(¤t->fs->lock); spin_lock(&dcache_lock); if (nd->dentry != nd->mnt->mnt_root) { nd->dentry = dget(nd->dentry->d_parent); spin_unlock(&dcache_lock); dput(old); break; } spin_unlock(&dcache_lock); spin_lock(&vfsmount_lock); parent = nd->mnt->mnt_parent; if (parent == nd->mnt) { spin_unlock(&vfsmount_lock); break; } mntget(parent); nd->dentry = dget(nd->mnt->mnt_mountpoint); spin_unlock(&vfsmount_lock); dput(old); mntput(nd->mnt); nd->mnt = parent; } follow_mount(&nd->mnt, &nd->dentry); } /* * It's more convoluted than I'd like it to be, but... it's still fairly * small and for now I'd prefer to have fast path as straight as possible. * It _is_ time-critical. */ static int do_lookup(struct nameidata *nd, struct qstr *name, struct path *path) { struct vfsmount *mnt = nd->mnt; struct dentry *dentry = __d_lookup(nd->dentry, name); if (!dentry) goto need_lookup; if (dentry->d_op && dentry->d_op->d_revalidate) goto need_revalidate; done: path->mnt = mnt; path->dentry = dentry; __follow_mount(path); return 0; need_lookup: dentry = real_lookup(nd->dentry, name, nd); if (IS_ERR(dentry)) goto fail; goto done; need_revalidate: if (dentry->d_op->d_revalidate(dentry, nd)) goto done; if (d_invalidate(dentry)) goto done; dput(dentry); goto need_lookup; fail: return PTR_ERR(dentry); } /* * Name resolution. * This is the basic name resolution function, turning a pathname into * the final dentry. We expect 'base' to be positive and a directory. * * Returns 0 and nd will have valid dentry and mnt on success. * Returns error and drops reference to input namei data on failure. */ static fastcall int __link_path_walk(const char * name, struct nameidata *nd) { struct path next; struct inode *inode; int err; unsigned int lookup_flags = nd->flags; while (*name=='/') name++; if (!*name) goto return_reval; inode = nd->dentry->d_inode; if (nd->depth) lookup_flags = LOOKUP_FOLLOW; /* At this point we know we have a real path component. */ for(;;) { unsigned long hash; struct qstr this; unsigned int c; nd->flags |= LOOKUP_CONTINUE; err = exec_permission_lite(inode, nd); if (err == -EAGAIN) err = vfs_permission(nd, MAY_EXEC); if (err) break; this.name = name; c = *(const unsigned char *)name; hash = init_name_hash(); do { name++; hash = partial_name_hash(c, hash); c = *(const unsigned char *)name; } while (c && (c != '/')); this.len = name - (const char *) this.name; this.hash = end_name_hash(hash); /* remove trailing slashes? */ if (!c) goto last_component; while (*++name == '/'); if (!*name) goto last_with_slashes; /* * "." and ".." are special - ".." especially so because it has * to be able to know about the current root directory and * parent relationships. */ if (this.name[0] == '.') switch (this.len) { default: break; case 2: if (this.name[1] != '.') break; follow_dotdot(nd); inode = nd->dentry->d_inode; /* fallthrough */ case 1: continue; } /* * See if the low-level filesystem might want * to use its own hash.. */ if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { err = nd->dentry->d_op->d_hash(nd->dentry, &this); if (err < 0) break; } /* This does the actual lookups.. */ err = do_lookup(nd, &this, &next); if (err) break; err = -ENOENT; inode = next.dentry->d_inode; if (!inode) goto out_dput; err = -ENOTDIR; if (!inode->i_op) goto out_dput; if (inode->i_op->follow_link) { err = do_follow_link(&next, nd); if (err) goto return_err; err = -ENOENT; inode = nd->dentry->d_inode; if (!inode) break; err = -ENOTDIR; if (!inode->i_op) break; } else path_to_nameidata(&next, nd); err = -ENOTDIR; if (!inode->i_op->lookup) break; continue; /* here ends the main loop */ last_with_slashes: lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; last_component: nd->flags &= ~LOOKUP_CONTINUE; if (lookup_flags & LOOKUP_PARENT) goto lookup_parent; if (this.name[0] == '.') switch (this.len) { default: break; case 2: if (this.name[1] != '.') break; follow_dotdot(nd); inode = nd->dentry->d_inode; /* fallthrough */ case 1: goto return_reval; } if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { err = nd->dentry->d_op->d_hash(nd->dentry, &this); if (err < 0) break; } err = do_lookup(nd, &this, &next); if (err) break; inode = next.dentry->d_inode; if ((lookup_flags & LOOKUP_FOLLOW) && inode && inode->i_op && inode->i_op->follow_link) { err = do_follow_link(&next, nd); if (err) goto return_err; inode = nd->dentry->d_inode; } else path_to_nameidata(&next, nd); err = -ENOENT; if (!inode) break; if (lookup_flags & LOOKUP_DIRECTORY) { err = -ENOTDIR; if (!inode->i_op || !inode->i_op->lookup) break; } goto return_base; lookup_parent: nd->last = this; nd->last_type = LAST_NORM; if (this.name[0] != '.') goto return_base; if (this.len == 1) nd->last_type = LAST_DOT; else if (this.len == 2 && this.name[1] == '.') nd->last_type = LAST_DOTDOT; else goto return_base; return_reval: /* * We bypassed the ordinary revalidation routines. * We may need to check the cached dentry for staleness. */ if (nd->dentry && nd->dentry->d_sb && (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { err = -ESTALE; /* Note: we do not d_invalidate() */ if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd)) break; } return_base: return 0; out_dput: dput_path(&next, nd); break; } path_release(nd); return_err: return err; } /* * Wrapper to retry pathname resolution whenever the underlying * file system returns an ESTALE. * * Retry the whole path once, forcing real lookup requests * instead of relying on the dcache. */ int fastcall link_path_walk(const char *name, struct nameidata *nd) { struct nameidata save = *nd; int result; /* make sure the stuff we saved doesn't go away */ dget(save.dentry); mntget(save.mnt); result = __link_path_walk(name, nd); if (result == -ESTALE) { *nd = save; dget(nd->dentry); mntget(nd->mnt); nd->flags |= LOOKUP_REVAL; result = __link_path_walk(name, nd); } dput(save.dentry); mntput(save.mnt); return result; } int fastcall path_walk(const char * name, struct nameidata *nd) { current->total_link_count = 0; return link_path_walk(name, nd); } /* * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if * everything is done. Returns 0 and drops input nd, if lookup failed; */ static int __emul_lookup_dentry(const char *name, struct nameidata *nd) { if (path_walk(name, nd)) return 0; /* something went wrong... */ if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) { struct dentry *old_dentry = nd->dentry; struct vfsmount *old_mnt = nd->mnt; struct qstr last = nd->last; int last_type = nd->last_type; /* * NAME was not found in alternate root or it's a directory. Try to find * it in the normal root: */ nd->last_type = LAST_ROOT; read_lock(¤t->fs->lock); nd->mnt = mntget(current->fs->rootmnt); nd->dentry = dget(current->fs->root); read_unlock(¤t->fs->lock); if (path_walk(name, nd) == 0) { if (nd->dentry->d_inode) { dput(old_dentry); mntput(old_mnt); return 1; } path_release(nd); } nd->dentry = old_dentry; nd->mnt = old_mnt; nd->last = last; nd->last_type = last_type; } return 1; } void set_fs_altroot(void) { char *emul = __emul_prefix(); struct nameidata nd; struct vfsmount *mnt = NULL, *oldmnt; struct dentry *dentry = NULL, *olddentry; int err; if (!emul) goto set_it; err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd); if (!err) { mnt = nd.mnt; dentry = nd.dentry; } set_it: write_lock(¤t->fs->lock); oldmnt = current->fs->altrootmnt; olddentry = current->fs->altroot; current->fs->altrootmnt = mnt; current->fs->altroot = dentry; write_unlock(¤t->fs->lock); if (olddentry) { dput(olddentry); mntput(oldmnt); } } /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ int fastcall path_lookup(const char *name, unsigned int flags, struct nameidata *nd) { int retval = 0; nd->last_type = LAST_ROOT; /* if there are only slashes... */ nd->flags = flags; nd->depth = 0; read_lock(¤t->fs->lock); if (*name=='/') { if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { nd->mnt = mntget(current->fs->altrootmnt); nd->dentry = dget(current->fs->altroot); read_unlock(¤t->fs->lock); if (__emul_lookup_dentry(name,nd)) goto out; /* found in altroot */ read_lock(¤t->fs->lock); } nd->mnt = mntget(current->fs->rootmnt); nd->dentry = dget(current->fs->root); } else { nd->mnt = mntget(current->fs->pwdmnt); nd->dentry = dget(current->fs->pwd); } read_unlock(¤t->fs->lock); current->total_link_count = 0; retval = link_path_walk(name, nd); out: if (unlikely(current->audit_context && nd && nd->dentry && nd->dentry->d_inode)) audit_inode(name, nd->dentry->d_inode, flags); return retval; } static int __path_lookup_intent_open(const char *name, unsigned int lookup_flags, struct nameidata *nd, int open_flags, int create_mode) { struct file *filp = get_empty_filp(); int err; if (filp == NULL) return -ENFILE; nd->intent.open.file = filp; nd->intent.open.flags = open_flags; nd->intent.open.create_mode = create_mode; err = path_lookup(name, lookup_flags|LOOKUP_OPEN, nd); if (IS_ERR(nd->intent.open.file)) { if (err == 0) { err = PTR_ERR(nd->intent.open.file); path_release(nd); } } else if (err != 0) release_open_intent(nd); return err; } /** * path_lookup_open - lookup a file path with open intent * @name: pointer to file name * @lookup_flags: lookup intent flags * @nd: pointer to nameidata * @open_flags: open intent flags */ int path_lookup_open(const char *name, unsigned int lookup_flags, struct nameidata *nd, int open_flags) { return __path_lookup_intent_open(name, lookup_flags, nd, open_flags, 0); } /** * path_lookup_create - lookup a file path with open + create intent * @name: pointer to file name * @lookup_flags: lookup intent flags * @nd: pointer to nameidata * @open_flags: open intent flags * @create_mode: create intent flags */ static int path_lookup_create(const char *name, unsigned int lookup_flags, struct nameidata *nd, int open_flags, int create_mode) { return __path_lookup_intent_open(name, lookup_flags|LOOKUP_CREATE, nd, open_flags, create_mode); } int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, struct nameidata *nd, int open_flags) { char *tmp = getname(name); int err = PTR_ERR(tmp); if (!IS_ERR(tmp)) { err = __path_lookup_intent_open(tmp, lookup_flags, nd, open_flags, 0); putname(tmp); } return err; } /* * Restricted form of lookup. Doesn't follow links, single-component only, * needs parent already locked. Doesn't follow mounts. * SMP-safe. */ static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd) { struct dentry * dentry; struct inode *inode; int err; inode = base->d_inode; err = permission(inode, MAY_EXEC, nd); dentry = ERR_PTR(err); if (err) goto out; /* * See if the low-level filesystem might want * to use its own hash.. */ if (base->d_op && base->d_op->d_hash) { err = base->d_op->d_hash(base, name); dentry = ERR_PTR(err); if (err < 0) goto out; } dentry = cached_lookup(base, name, nd); if (!dentry) { struct dentry *new = d_alloc(base, name); dentry = ERR_PTR(-ENOMEM); if (!new) goto out; dentry = inode->i_op->lookup(inode, new, nd); if (!dentry) dentry = new; else dput(new); } out: return dentry; } struct dentry * lookup_hash(struct nameidata *nd) { return __lookup_hash(&nd->last, nd->dentry, nd); } /* SMP-safe */ struct dentry * lookup_one_len(const char * name, struct dentry * base, int len) { unsigned long hash; struct qstr this; unsigned int c; this.name = name; this.len = len; if (!len) goto access; hash = init_name_hash(); while (len--) { c = *(const unsigned char *)name++; if (c == '/' || c == '\0') goto access; hash = partial_name_hash(c, hash); } this.hash = end_name_hash(hash); return __lookup_hash(&this, base, NULL); access: return ERR_PTR(-EACCES); } /* * namei() * * is used by most simple commands to get the inode of a specified name. * Open, link etc use their own routines, but this is enough for things * like 'chmod' etc. * * namei exists in two versions: namei/lnamei. The only difference is * that namei follows links, while lnamei does not. * SMP-safe */ int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) { char *tmp = getname(name); int err = PTR_ERR(tmp); if (!IS_ERR(tmp)) { err = path_lookup(tmp, flags, nd); putname(tmp); } return err; } /* * It's inline, so penalty for filesystems that don't use sticky bit is * minimal. */ static inline int check_sticky(struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; if (inode->i_uid == current->fsuid) return 0; if (dir->i_uid == current->fsuid) return 0; return !capable(CAP_FOWNER); } /* * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do antyhing with * links pointing to it. * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 9. We can't remove a root or mountpoint. * 10. We don't allow removal of NFS sillyrenamed files; it's handled by * nfs_async_unlink(). */ static int may_delete(struct inode *dir,struct dentry *victim,int isdir) { int error; if (!victim->d_inode) return -ENOENT; BUG_ON(victim->d_parent->d_inode != dir); error = permission(dir,MAY_WRITE | MAY_EXEC, NULL); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| IS_IMMUTABLE(victim->d_inode)) return -EPERM; if (isdir) { if (!S_ISDIR(victim->d_inode->i_mode)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; } else if (S_ISDIR(victim->d_inode->i_mode)) return -EISDIR; if (IS_DEADDIR(dir)) return -ENOENT; if (victim->d_flags & DCACHE_NFSFS_RENAMED) return -EBUSY; return 0; } /* Check whether we can create an object with dentry child in directory * dir. * 1. We can't do it if child already exists (open has special treatment for * this case, but since we are inlined it's OK) * 2. We can't do it if dir is read-only (done in permission()) * 3. We should have write and exec permissions on dir * 4. We can't do it if dir is immutable (done in permission()) */ static inline int may_create(struct inode *dir, struct dentry *child, struct nameidata *nd) { if (child->d_inode) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; return permission(dir,MAY_WRITE | MAY_EXEC, nd); } /* * O_DIRECTORY translates into forcing a directory lookup. */ static inline int lookup_flags(unsigned int f) { unsigned long retval = LOOKUP_FOLLOW; if (f & O_NOFOLLOW) retval &= ~LOOKUP_FOLLOW; if (f & O_DIRECTORY) retval |= LOOKUP_DIRECTORY; return retval; } /* * p1 and p2 should be directories on the same fs. */ struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) { struct dentry *p; if (p1 == p2) { mutex_lock(&p1->d_inode->i_mutex); return NULL; } down(&p1->d_inode->i_sb->s_vfs_rename_sem); for (p = p1; p->d_parent != p; p = p->d_parent) { if (p->d_parent == p2) { mutex_lock(&p2->d_inode->i_mutex); mutex_lock(&p1->d_inode->i_mutex); return p; } } for (p = p2; p->d_parent != p; p = p->d_parent) { if (p->d_parent == p1) { mutex_lock(&p1->d_inode->i_mutex); mutex_lock(&p2->d_inode->i_mutex); return p; } } mutex_lock(&p1->d_inode->i_mutex); mutex_lock(&p2->d_inode->i_mutex); return NULL; } void unlock_rename(struct dentry *p1, struct dentry *p2) { mutex_unlock(&p1->d_inode->i_mutex); if (p1 != p2) { mutex_unlock(&p2->d_inode->i_mutex); up(&p1->d_inode->i_sb->s_vfs_rename_sem); } } int vfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd) { int error = may_create(dir, dentry, nd); if (error) return error; if (!dir->i_op || !dir->i_op->create) return -EACCES; /* shouldn't it be ENOSYS? */ mode &= S_IALLUGO; mode |= S_IFREG; error = security_inode_create(dir, dentry, mode); if (error) return error; DQUOT_INIT(dir); error = dir->i_op->create(dir, dentry, mode, nd); if (!error) fsnotify_create(dir, dentry->d_name.name); return error; } int may_open(struct nameidata *nd, int acc_mode, int flag) { struct dentry *dentry = nd->dentry; struct inode *inode = dentry->d_inode; int error; if (!inode) return -ENOENT; if (S_ISLNK(inode->i_mode)) return -ELOOP; if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) return -EISDIR; error = vfs_permission(nd, acc_mode); if (error) return error; /* * FIFO's, sockets and device files are special: they don't * actually live on the filesystem itself, and as such you * can write to them even if the filesystem is read-only. */ if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { flag &= ~O_TRUNC; } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { if (nd->mnt->mnt_flags & MNT_NODEV) return -EACCES; flag &= ~O_TRUNC; } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE)) return -EROFS; /* * An append-only file must be opened in append mode for writing. */ if (IS_APPEND(inode)) { if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) return -EPERM; if (flag & O_TRUNC) return -EPERM; } /* O_NOATIME can only be set by the owner or superuser */ if (flag & O_NOATIME) if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) return -EPERM; /* * Ensure there are no outstanding leases on the file. */ error = break_lease(inode, flag); if (error) return error; if (flag & O_TRUNC) { error = get_write_access(inode); if (error) return error; /* * Refuse to truncate files with mandatory locks held on them. */ error = locks_verify_locked(inode); if (!error) { DQUOT_INIT(inode); error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL); } put_write_access(inode); if (error) return error; } else if (flag & FMODE_WRITE) DQUOT_INIT(inode); return 0; } /* * open_namei() * * namei for open - this is in fact almost the whole open-routine. * * Note that the low bits of "flag" aren't the same as in the open * system call - they are 00 - no permissions needed * 01 - read permission needed * 10 - write permission needed * 11 - read/write permissions needed * which is a lot more logical, and also allows the "no perm" needed * for symlinks (where the permissions are checked later). * SMP-safe */ int open_namei(const char * pathname, int flag, int mode, struct nameidata *nd) { int acc_mode, error; struct path path; struct dentry *dir; int count = 0; acc_mode = ACC_MODE(flag); /* O_TRUNC implies we need access checks for write permissions */ if (flag & O_TRUNC) acc_mode |= MAY_WRITE; /* Allow the LSM permission hook to distinguish append access from general write access. */ if (flag & O_APPEND) acc_mode |= MAY_APPEND; /* * The simplest case - just a plain lookup. */ if (!(flag & O_CREAT)) { error = path_lookup_open(pathname, lookup_flags(flag), nd, flag); if (error) return error; goto ok; } /* * Create - we need to know the parent. */ error = path_lookup_create(pathname, LOOKUP_PARENT, nd, flag, mode); if (error) return error; /* * We have the parent and last component. First of all, check * that we are not asked to creat(2) an obvious directory - that * will not do. */ error = -EISDIR; if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len]) goto exit; dir = nd->dentry; nd->flags &= ~LOOKUP_PARENT; mutex_lock(&dir->d_inode->i_mutex); path.dentry = lookup_hash(nd); path.mnt = nd->mnt; do_last: error = PTR_ERR(path.dentry); if (IS_ERR(path.dentry)) { mutex_unlock(&dir->d_inode->i_mutex); goto exit; } /* Negative dentry, just create the file */ if (!path.dentry->d_inode) { if (!IS_POSIXACL(dir->d_inode)) mode &= ~current->fs->umask; error = vfs_create(dir->d_inode, path.dentry, mode, nd); mutex_unlock(&dir->d_inode->i_mutex); dput(nd->dentry); nd->dentry = path.dentry; if (error) goto exit; /* Don't check for write permission, don't truncate */ acc_mode = 0; flag &= ~O_TRUNC; goto ok; } /* * It already exists. */ mutex_unlock(&dir->d_inode->i_mutex); error = -EEXIST; if (flag & O_EXCL) goto exit_dput; if (__follow_mount(&path)) { error = -ELOOP; if (flag & O_NOFOLLOW) goto exit_dput; } error = -ENOENT; if (!path.dentry->d_inode) goto exit_dput; if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) goto do_link; path_to_nameidata(&path, nd); error = -EISDIR; if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) goto exit; ok: error = may_open(nd, acc_mode, flag); if (error) goto exit; return 0; exit_dput: dput_path(&path, nd); exit: if (!IS_ERR(nd->intent.open.file)) release_open_intent(nd); path_release(nd); return error; do_link: error = -ELOOP; if (flag & O_NOFOLLOW) goto exit_dput; /* * This is subtle. Instead of calling do_follow_link() we do the * thing by hands. The reason is that this way we have zero link_count * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. * After that we have the parent and last component, i.e. * we are in the same situation as after the first path_walk(). * Well, almost - if the last component is normal we get its copy * stored in nd->last.name and we will have to putname() it when we * are done. Procfs-like symlinks just set LAST_BIND. */ nd->flags |= LOOKUP_PARENT; error = security_inode_follow_link(path.dentry, nd); if (error) goto exit_dput; error = __do_follow_link(&path, nd); if (error) return error; nd->flags &= ~LOOKUP_PARENT; if (nd->last_type == LAST_BIND) goto ok; error = -EISDIR; if (nd->last_type != LAST_NORM) goto exit; if (nd->last.name[nd->last.len]) { __putname(nd->last.name); goto exit; } error = -ELOOP; if (count++==32) { __putname(nd->last.name); goto exit; } dir = nd->dentry; mutex_lock(&dir->d_inode->i_mutex); path.dentry = lookup_hash(nd); path.mnt = nd->mnt; __putname(nd->last.name); goto do_last; } /** * lookup_create - lookup a dentry, creating it if it doesn't exist * @nd: nameidata info * @is_dir: directory flag * * Simple function to lookup and return a dentry and create it * if it doesn't exist. Is SMP-safe. * * Returns with nd->dentry->d_inode->i_mutex locked. */ struct dentry *lookup_create(struct nameidata *nd, int is_dir) { struct dentry *dentry = ERR_PTR(-EEXIST); mutex_lock(&nd->dentry->d_inode->i_mutex); /* * Yucky last component or no last component at all? * (foo/., foo/.., /////) */ if (nd->last_type != LAST_NORM) goto fail; nd->flags &= ~LOOKUP_PARENT; /* * Do the final lookup. */ dentry = lookup_hash(nd); if (IS_ERR(dentry)) goto fail; /* * Special case - lookup gave negative, but... we had foo/bar/ * From the vfs_mknod() POV we just have a negative dentry - * all is fine. Let's be bastards - you had / on the end, you've * been asking for (non-existent) directory. -ENOENT for you. */ if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode) goto enoent; return dentry; enoent: dput(dentry); dentry = ERR_PTR(-ENOENT); fail: return dentry; } EXPORT_SYMBOL_GPL(lookup_create); int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { int error = may_create(dir, dentry, NULL); if (error) return error; if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) return -EPERM; if (!dir->i_op || !dir->i_op->mknod) return -EPERM; error = security_inode_mknod(dir, dentry, mode, dev); if (error) return error; DQUOT_INIT(dir); error = dir->i_op->mknod(dir, dentry, mode, dev); if (!error) fsnotify_create(dir, dentry->d_name.name); return error; } asmlinkage long sys_mknod(const char __user * filename, int mode, unsigned dev) { int error = 0; char * tmp; struct dentry * dentry; struct nameidata nd; if (S_ISDIR(mode)) return -EPERM; tmp = getname(filename); if (IS_ERR(tmp)) return PTR_ERR(tmp); error = path_lookup(tmp, LOOKUP_PARENT, &nd); if (error) goto out; dentry = lookup_create(&nd, 0); error = PTR_ERR(dentry); if (!IS_POSIXACL(nd.dentry->d_inode)) mode &= ~current->fs->umask; if (!IS_ERR(dentry)) { switch (mode & S_IFMT) { case 0: case S_IFREG: error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd); break; case S_IFCHR: case S_IFBLK: error = vfs_mknod(nd.dentry->d_inode,dentry,mode, new_decode_dev(dev)); break; case S_IFIFO: case S_IFSOCK: error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0); break; case S_IFDIR: error = -EPERM; break; default: error = -EINVAL; } dput(dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); path_release(&nd); out: putname(tmp); return error; } int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { int error = may_create(dir, dentry, NULL); if (error) return error; if (!dir->i_op || !dir->i_op->mkdir) return -EPERM; mode &= (S_IRWXUGO|S_ISVTX); error = security_inode_mkdir(dir, dentry, mode); if (error) return error; DQUOT_INIT(dir); error = dir->i_op->mkdir(dir, dentry, mode); if (!error) fsnotify_mkdir(dir, dentry->d_name.name); return error; } asmlinkage long sys_mkdir(const char __user * pathname, int mode) { int error = 0; char * tmp; tmp = getname(pathname); error = PTR_ERR(tmp); if (!IS_ERR(tmp)) { struct dentry *dentry; struct nameidata nd; error = path_lookup(tmp, LOOKUP_PARENT, &nd); if (error) goto out; dentry = lookup_create(&nd, 1); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { if (!IS_POSIXACL(nd.dentry->d_inode)) mode &= ~current->fs->umask; error = vfs_mkdir(nd.dentry->d_inode, dentry, mode); dput(dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); path_release(&nd); out: putname(tmp); } return error; } /* * We try to drop the dentry early: we should have * a usage count of 2 if we're the only user of this * dentry, and if that is true (possibly after pruning * the dcache), then we drop the dentry now. * * A low-level filesystem can, if it choses, legally * do a * * if (!d_unhashed(dentry)) * return -EBUSY; * * if it cannot handle the case of removing a directory * that is still in use by something else.. */ void dentry_unhash(struct dentry *dentry) { dget(dentry); if (atomic_read(&dentry->d_count)) shrink_dcache_parent(dentry); spin_lock(&dcache_lock); spin_lock(&dentry->d_lock); if (atomic_read(&dentry->d_count) == 2) __d_drop(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&dcache_lock); } int vfs_rmdir(struct inode *dir, struct dentry *dentry) { int error = may_delete(dir, dentry, 1); if (error) return error; if (!dir->i_op || !dir->i_op->rmdir) return -EPERM; DQUOT_INIT(dir); mutex_lock(&dentry->d_inode->i_mutex); dentry_unhash(dentry); if (d_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_rmdir(dir, dentry); if (!error) { error = dir->i_op->rmdir(dir, dentry); if (!error) dentry->d_inode->i_flags |= S_DEAD; } } mutex_unlock(&dentry->d_inode->i_mutex); if (!error) { d_delete(dentry); } dput(dentry); return error; } asmlinkage long sys_rmdir(const char __user * pathname) { int error = 0; char * name; struct dentry *dentry; struct nameidata nd; name = getname(pathname); if(IS_ERR(name)) return PTR_ERR(name); error = path_lookup(name, LOOKUP_PARENT, &nd); if (error) goto exit; switch(nd.last_type) { case LAST_DOTDOT: error = -ENOTEMPTY; goto exit1; case LAST_DOT: error = -EINVAL; goto exit1; case LAST_ROOT: error = -EBUSY; goto exit1; } mutex_lock(&nd.dentry->d_inode->i_mutex); dentry = lookup_hash(&nd); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { error = vfs_rmdir(nd.dentry->d_inode, dentry); dput(dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); exit1: path_release(&nd); exit: putname(name); return error; } int vfs_unlink(struct inode *dir, struct dentry *dentry) { int error = may_delete(dir, dentry, 0); if (error) return error; if (!dir->i_op || !dir->i_op->unlink) return -EPERM; DQUOT_INIT(dir); mutex_lock(&dentry->d_inode->i_mutex); if (d_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_unlink(dir, dentry); if (!error) error = dir->i_op->unlink(dir, dentry); } mutex_unlock(&dentry->d_inode->i_mutex); /* We don't d_delete() NFS sillyrenamed files--they still exist. */ if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { d_delete(dentry); } return error; } /* * Make sure that the actual truncation of the file will occur outside its * directory's i_mutex. Truncate can take a long time if there is a lot of * writeout happening, and we don't want to prevent access to the directory * while waiting on the I/O. */ asmlinkage long sys_unlink(const char __user * pathname) { int error = 0; char * name; struct dentry *dentry; struct nameidata nd; struct inode *inode = NULL; name = getname(pathname); if(IS_ERR(name)) return PTR_ERR(name); error = path_lookup(name, LOOKUP_PARENT, &nd); if (error) goto exit; error = -EISDIR; if (nd.last_type != LAST_NORM) goto exit1; mutex_lock(&nd.dentry->d_inode->i_mutex); dentry = lookup_hash(&nd); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { /* Why not before? Because we want correct error value */ if (nd.last.name[nd.last.len]) goto slashes; inode = dentry->d_inode; if (inode) atomic_inc(&inode->i_count); error = vfs_unlink(nd.dentry->d_inode, dentry); exit2: dput(dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); if (inode) iput(inode); /* truncate the inode here */ exit1: path_release(&nd); exit: putname(name); return error; slashes: error = !dentry->d_inode ? -ENOENT : S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; goto exit2; } int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode) { int error = may_create(dir, dentry, NULL); if (error) return error; if (!dir->i_op || !dir->i_op->symlink) return -EPERM; error = security_inode_symlink(dir, dentry, oldname); if (error) return error; DQUOT_INIT(dir); error = dir->i_op->symlink(dir, dentry, oldname); if (!error) fsnotify_create(dir, dentry->d_name.name); return error; } asmlinkage long sys_symlink(const char __user * oldname, const char __user * newname) { int error = 0; char * from; char * to; from = getname(oldname); if(IS_ERR(from)) return PTR_ERR(from); to = getname(newname); error = PTR_ERR(to); if (!IS_ERR(to)) { struct dentry *dentry; struct nameidata nd; error = path_lookup(to, LOOKUP_PARENT, &nd); if (error) goto out; dentry = lookup_create(&nd, 0); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO); dput(dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); path_release(&nd); out: putname(to); } putname(from); return error; } int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { struct inode *inode = old_dentry->d_inode; int error; if (!inode) return -ENOENT; error = may_create(dir, new_dentry, NULL); if (error) return error; if (dir->i_sb != inode->i_sb) return -EXDEV; /* * A link to an append-only or immutable file cannot be created. */ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; if (!dir->i_op || !dir->i_op->link) return -EPERM; if (S_ISDIR(old_dentry->d_inode->i_mode)) return -EPERM; error = security_inode_link(old_dentry, dir, new_dentry); if (error) return error; mutex_lock(&old_dentry->d_inode->i_mutex); DQUOT_INIT(dir); error = dir->i_op->link(old_dentry, dir, new_dentry); mutex_unlock(&old_dentry->d_inode->i_mutex); if (!error) fsnotify_create(dir, new_dentry->d_name.name); return error; } /* * Hardlinks are often used in delicate situations. We avoid * security-related surprises by not following symlinks on the * newname. --KAB * * We don't follow them on the oldname either to be compatible * with linux 2.0, and to avoid hard-linking to directories * and other special files. --ADM */ asmlinkage long sys_link(const char __user * oldname, const char __user * newname) { struct dentry *new_dentry; struct nameidata nd, old_nd; int error; char * to; to = getname(newname); if (IS_ERR(to)) return PTR_ERR(to); error = __user_walk(oldname, 0, &old_nd); if (error) goto exit; error = path_lookup(to, LOOKUP_PARENT, &nd); if (error) goto out; error = -EXDEV; if (old_nd.mnt != nd.mnt) goto out_release; new_dentry = lookup_create(&nd, 0); error = PTR_ERR(new_dentry); if (!IS_ERR(new_dentry)) { error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry); dput(new_dentry); } mutex_unlock(&nd.dentry->d_inode->i_mutex); out_release: path_release(&nd); out: path_release(&old_nd); exit: putname(to); return error; } /* * The worst of all namespace operations - renaming directory. "Perverted" * doesn't even start to describe it. Somebody in UCB had a heck of a trip... * Problems: * a) we can get into loop creation. Check is done in is_subdir(). * b) race potential - two innocent renames can create a loop together. * That's where 4.4 screws up. Current fix: serialization on * sb->s_vfs_rename_sem. We might be more accurate, but that's another * story. * c) we have to lock _three_ objects - parents and victim (if it exists). * And that - after we got ->i_mutex on parents (until then we don't know * whether the target exists). Solution: try to be smart with locking * order for inodes. We rely on the fact that tree topology may change * only under ->s_vfs_rename_sem _and_ that parent of the object we * move will be locked. Thus we can rank directories by the tree * (ancestors first) and rank all non-directories after them. * That works since everybody except rename does "lock parent, lookup, * lock child" and rename is under ->s_vfs_rename_sem. * HOWEVER, it relies on the assumption that any object with ->lookup() * has no more than 1 dentry. If "hybrid" objects will ever appear, * we'd better make sure that there's no link(2) for them. * d) some filesystems don't support opened-but-unlinked directories, * either because of layout or because they are not ready to deal with * all cases correctly. The latter will be fixed (taking this sort of * stuff into VFS), but the former is not going away. Solution: the same * trick as in rmdir(). * e) conversion from fhandle to dentry may come in the wrong moment - when * we are removing the target. Solution: we will have to grab ->i_mutex * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on * ->i_mutex on parents, which works but leads to some truely excessive * locking]. */ static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int error = 0; struct inode *target; /* * If we are going to change the parent - check write permissions, * we'll need to flip '..'. */ if (new_dir != old_dir) { error = permission(old_dentry->d_inode, MAY_WRITE, NULL); if (error) return error; } error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); if (error) return error; target = new_dentry->d_inode; if (target) { mutex_lock(&target->i_mutex); dentry_unhash(new_dentry); } if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) error = -EBUSY; else error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); if (target) { if (!error) target->i_flags |= S_DEAD; mutex_unlock(&target->i_mutex); if (d_unhashed(new_dentry)) d_rehash(new_dentry); dput(new_dentry); } if (!error) d_move(old_dentry,new_dentry); return error; } static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode *target; int error; error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); if (error) return error; dget(new_dentry); target = new_dentry->d_inode; if (target) mutex_lock(&target->i_mutex); if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) error = -EBUSY; else error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); if (!error) { /* The following d_move() should become unconditional */ if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME)) d_move(old_dentry, new_dentry); } if (target) mutex_unlock(&target->i_mutex); dput(new_dentry); return error; } int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int error; int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); const char *old_name; if (old_dentry->d_inode == new_dentry->d_inode) return 0; error = may_delete(old_dir, old_dentry, is_dir); if (error) return error; if (!new_dentry->d_inode) error = may_create(new_dir, new_dentry, NULL); else error = may_delete(new_dir, new_dentry, is_dir); if (error) return error; if (!old_dir->i_op || !old_dir->i_op->rename) return -EPERM; DQUOT_INIT(old_dir); DQUOT_INIT(new_dir); old_name = fsnotify_oldname_init(old_dentry->d_name.name); if (is_dir) error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); else error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); if (!error) { const char *new_name = old_dentry->d_name.name; fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, new_dentry->d_inode, old_dentry->d_inode); } fsnotify_oldname_free(old_name); return error; } static int do_rename(const char * oldname, const char * newname) { int error = 0; struct dentry * old_dir, * new_dir; struct dentry * old_dentry, *new_dentry; struct dentry * trap; struct nameidata oldnd, newnd; error = path_lookup(oldname, LOOKUP_PARENT, &oldnd); if (error) goto exit; error = path_lookup(newname, LOOKUP_PARENT, &newnd); if (error) goto exit1; error = -EXDEV; if (oldnd.mnt != newnd.mnt) goto exit2; old_dir = oldnd.dentry; error = -EBUSY; if (oldnd.last_type != LAST_NORM) goto exit2; new_dir = newnd.dentry; if (newnd.last_type != LAST_NORM) goto exit2; trap = lock_rename(new_dir, old_dir); old_dentry = lookup_hash(&oldnd); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit3; /* source must exist */ error = -ENOENT; if (!old_dentry->d_inode) goto exit4; /* unless the source is a directory trailing slashes give -ENOTDIR */ if (!S_ISDIR(old_dentry->d_inode->i_mode)) { error = -ENOTDIR; if (oldnd.last.name[oldnd.last.len]) goto exit4; if (newnd.last.name[newnd.last.len]) goto exit4; } /* source should not be ancestor of target */ error = -EINVAL; if (old_dentry == trap) goto exit4; new_dentry = lookup_hash(&newnd); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit4; /* target should not be an ancestor of source */ error = -ENOTEMPTY; if (new_dentry == trap) goto exit5; error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry); exit5: dput(new_dentry); exit4: dput(old_dentry); exit3: unlock_rename(new_dir, old_dir); exit2: path_release(&newnd); exit1: path_release(&oldnd); exit: return error; } asmlinkage long sys_rename(const char __user * oldname, const char __user * newname) { int error; char * from; char * to; from = getname(oldname); if(IS_ERR(from)) return PTR_ERR(from); to = getname(newname); error = PTR_ERR(to); if (!IS_ERR(to)) { error = do_rename(from,to); putname(to); } putname(from); return error; } int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) { int len; len = PTR_ERR(link); if (IS_ERR(link)) goto out; len = strlen(link); if (len > (unsigned) buflen) len = buflen; if (copy_to_user(buffer, link, len)) len = -EFAULT; out: return len; } /* * A helper for ->readlink(). This should be used *ONLY* for symlinks that * have ->follow_link() touching nd only in nd_set_link(). Using (or not * using) it for any given inode is up to filesystem. */ int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct nameidata nd; void *cookie; nd.depth = 0; cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); if (!IS_ERR(cookie)) { int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); if (dentry->d_inode->i_op->put_link) dentry->d_inode->i_op->put_link(dentry, &nd, cookie); cookie = ERR_PTR(res); } return PTR_ERR(cookie); } int vfs_follow_link(struct nameidata *nd, const char *link) { return __vfs_follow_link(nd, link); } /* get the link contents into pagecache */ static char *page_getlink(struct dentry * dentry, struct page **ppage) { struct page * page; struct address_space *mapping = dentry->d_inode->i_mapping; page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage, NULL); if (IS_ERR(page)) goto sync_fail; wait_on_page_locked(page); if (!PageUptodate(page)) goto async_fail; *ppage = page; return kmap(page); async_fail: page_cache_release(page); return ERR_PTR(-EIO); sync_fail: return (char*)page; } int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct page *page = NULL; char *s = page_getlink(dentry, &page); int res = vfs_readlink(dentry,buffer,buflen,s); if (page) { kunmap(page); page_cache_release(page); } return res; } void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) { struct page *page = NULL; nd_set_link(nd, page_getlink(dentry, &page)); return page; } void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) { struct page *page = cookie; if (page) { kunmap(page); page_cache_release(page); } } int page_symlink(struct inode *inode, const char *symname, int len) { struct address_space *mapping = inode->i_mapping; struct page *page = grab_cache_page(mapping, 0); int err = -ENOMEM; char *kaddr; if (!page) goto fail; err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); if (err) goto fail_map; kaddr = kmap_atomic(page, KM_USER0); memcpy(kaddr, symname, len-1); kunmap_atomic(kaddr, KM_USER0); mapping->a_ops->commit_write(NULL, page, 0, len-1); /* * Notice that we are _not_ going to block here - end of page is * unmapped, so this will only try to map the rest of page, see * that it is unmapped (typically even will not look into inode - * ->i_size will be enough for everything) and zero it out. * OTOH it's obviously correct and should make the page up-to-date. */ if (!PageUptodate(page)) { err = mapping->a_ops->readpage(NULL, page); wait_on_page_locked(page); } else { unlock_page(page); } page_cache_release(page); if (err < 0) goto fail; mark_inode_dirty(inode); return 0; fail_map: unlock_page(page); page_cache_release(page); fail: return err; } struct inode_operations page_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, }; EXPORT_SYMBOL(__user_walk); EXPORT_SYMBOL(follow_down); EXPORT_SYMBOL(follow_up); EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ EXPORT_SYMBOL(getname); EXPORT_SYMBOL(lock_rename); EXPORT_SYMBOL(lookup_hash); EXPORT_SYMBOL(lookup_one_len); EXPORT_SYMBOL(page_follow_link_light); EXPORT_SYMBOL(page_put_link); EXPORT_SYMBOL(page_readlink); EXPORT_SYMBOL(page_symlink); EXPORT_SYMBOL(page_symlink_inode_operations); EXPORT_SYMBOL(path_lookup); EXPORT_SYMBOL(path_release); EXPORT_SYMBOL(path_walk); EXPORT_SYMBOL(permission); EXPORT_SYMBOL(vfs_permission); EXPORT_SYMBOL(file_permission); EXPORT_SYMBOL(unlock_rename); EXPORT_SYMBOL(vfs_create); EXPORT_SYMBOL(vfs_follow_link); EXPORT_SYMBOL(vfs_link); EXPORT_SYMBOL(vfs_mkdir); EXPORT_SYMBOL(vfs_mknod); EXPORT_SYMBOL(generic_permission); EXPORT_SYMBOL(vfs_readlink); EXPORT_SYMBOL(vfs_rename); EXPORT_SYMBOL(vfs_rmdir); EXPORT_SYMBOL(vfs_symlink); EXPORT_SYMBOL(vfs_unlink); EXPORT_SYMBOL(dentry_unhash); EXPORT_SYMBOL(generic_readlink);