/* * linux/fs/ext4/page-io.c * * This contains the new page_io functions for ext4 * * Written by Theodore Ts'o, 2010. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "ext4_extents.h" static struct kmem_cache *io_page_cachep, *io_end_cachep; int __init ext4_init_pageio(void) { io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT); if (io_page_cachep == NULL) return -ENOMEM; io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); if (io_page_cachep == NULL) { kmem_cache_destroy(io_page_cachep); return -ENOMEM; } return 0; } void ext4_exit_pageio(void) { kmem_cache_destroy(io_end_cachep); kmem_cache_destroy(io_page_cachep); } void ext4_free_io_end(ext4_io_end_t *io) { int i; BUG_ON(!io); if (io->page) put_page(io->page); for (i = 0; i < io->num_io_pages; i++) { if (--io->pages[i]->p_count == 0) { struct page *page = io->pages[i]->p_page; end_page_writeback(page); put_page(page); kmem_cache_free(io_page_cachep, io->pages[i]); } } io->num_io_pages = 0; iput(io->inode); kmem_cache_free(io_end_cachep, io); } /* * check a range of space and convert unwritten extents to written. */ int ext4_end_io_nolock(ext4_io_end_t *io) { struct inode *inode = io->inode; loff_t offset = io->offset; ssize_t size = io->size; int ret = 0; ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," "list->prev 0x%p\n", io, inode->i_ino, io->list.next, io->list.prev); if (list_empty(&io->list)) return ret; if (!(io->flag & EXT4_IO_END_UNWRITTEN)) return ret; ret = ext4_convert_unwritten_extents(inode, offset, size); if (ret < 0) { printk(KERN_EMERG "%s: failed to convert unwritten " "extents to written extents, error is %d " "io is still on inode %lu aio dio list\n", __func__, ret, inode->i_ino); return ret; } if (io->iocb) aio_complete(io->iocb, io->result, 0); /* clear the DIO AIO unwritten flag */ io->flag &= ~EXT4_IO_END_UNWRITTEN; return ret; } /* * work on completed aio dio IO, to convert unwritten extents to extents */ static void ext4_end_io_work(struct work_struct *work) { ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); struct inode *inode = io->inode; struct ext4_inode_info *ei = EXT4_I(inode); unsigned long flags; int ret; mutex_lock(&inode->i_mutex); ret = ext4_end_io_nolock(io); if (ret < 0) { mutex_unlock(&inode->i_mutex); return; } spin_lock_irqsave(&ei->i_completed_io_lock, flags); if (!list_empty(&io->list)) list_del_init(&io->list); spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); mutex_unlock(&inode->i_mutex); ext4_free_io_end(io); } ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) { ext4_io_end_t *io = NULL; io = kmem_cache_alloc(io_end_cachep, flags); if (io) { memset(io, 0, sizeof(*io)); io->inode = igrab(inode); BUG_ON(!io->inode); INIT_WORK(&io->work, ext4_end_io_work); INIT_LIST_HEAD(&io->list); } return io; } /* * Print an buffer I/O error compatible with the fs/buffer.c. This * provides compatibility with dmesg scrapers that look for a specific * buffer I/O error message. We really need a unified error reporting * structure to userspace ala Digital Unix's uerf system, but it's * probably not going to happen in my lifetime, due to LKML politics... */ static void buffer_io_error(struct buffer_head *bh) { char b[BDEVNAME_SIZE]; printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); } static void ext4_end_bio(struct bio *bio, int error) { ext4_io_end_t *io_end = bio->bi_private; struct workqueue_struct *wq; struct inode *inode; unsigned long flags; ext4_fsblk_t err_block; int i; BUG_ON(!io_end); inode = io_end->inode; bio->bi_private = NULL; bio->bi_end_io = NULL; if (test_bit(BIO_UPTODATE, &bio->bi_flags)) error = 0; err_block = bio->bi_sector >> (inode->i_blkbits - 9); bio_put(bio); if (!(inode->i_sb->s_flags & MS_ACTIVE)) { pr_err("sb umounted, discard end_io request for inode %lu\n", io_end->inode->i_ino); ext4_free_io_end(io_end); return; } if (error) { io_end->flag |= EXT4_IO_END_ERROR; ext4_warning(inode->i_sb, "I/O error writing to inode %lu " "(offset %llu size %ld starting block %llu)", inode->i_ino, (unsigned long long) io_end->offset, (long) io_end->size, (unsigned long long) err_block); } for (i = 0; i < io_end->num_io_pages; i++) { struct page *page = io_end->pages[i]->p_page; struct buffer_head *bh, *head; int partial_write = 0; head = page_buffers(page); if (error) SetPageError(page); BUG_ON(!head); if (head->b_size == PAGE_CACHE_SIZE) clear_buffer_dirty(head); else { loff_t offset; loff_t io_end_offset = io_end->offset + io_end->size; offset = (sector_t) page->index << PAGE_CACHE_SHIFT; bh = head; do { if ((offset >= io_end->offset) && (offset+bh->b_size <= io_end_offset)) { if (error) buffer_io_error(bh); clear_buffer_dirty(bh); } if (buffer_delay(bh)) partial_write = 1; else if (!buffer_mapped(bh)) clear_buffer_dirty(bh); else if (buffer_dirty(bh)) partial_write = 1; offset += bh->b_size; bh = bh->b_this_page; } while (bh != head); } if (--io_end->pages[i]->p_count == 0) { struct page *page = io_end->pages[i]->p_page; end_page_writeback(page); put_page(page); kmem_cache_free(io_page_cachep, io_end->pages[i]); } /* * If this is a partial write which happened to make * all buffers uptodate then we can optimize away a * bogus readpage() for the next read(). Here we * 'discover' whether the page went uptodate as a * result of this (potentially partial) write. */ if (!partial_write) SetPageUptodate(page); } io_end->num_io_pages = 0; /* Add the io_end to per-inode completed io list*/ spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; /* queue the work to convert unwritten extents to written */ queue_work(wq, &io_end->work); } void ext4_io_submit(struct ext4_io_submit *io) { struct bio *bio = io->io_bio; if (bio) { bio_get(io->io_bio); submit_bio(io->io_op, io->io_bio); BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); bio_put(io->io_bio); } io->io_bio = 0; io->io_op = 0; io->io_end = 0; } static int io_submit_init(struct ext4_io_submit *io, struct inode *inode, struct writeback_control *wbc, struct buffer_head *bh) { ext4_io_end_t *io_end; struct page *page = bh->b_page; int nvecs = bio_get_nr_vecs(bh->b_bdev); struct bio *bio; io_end = ext4_init_io_end(inode, GFP_NOFS); if (!io_end) return -ENOMEM; do { bio = bio_alloc(GFP_NOIO, nvecs); nvecs >>= 1; } while (bio == NULL); bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_bdev = bh->b_bdev; bio->bi_private = io->io_end = io_end; bio->bi_end_io = ext4_end_bio; io_end->inode = inode; io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh); io->io_bio = bio; io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC_PLUG : WRITE); io->io_next_block = bh->b_blocknr; return 0; } static int io_submit_add_bh(struct ext4_io_submit *io, struct ext4_io_page *io_page, struct inode *inode, struct writeback_control *wbc, struct buffer_head *bh) { ext4_io_end_t *io_end; int ret; if (buffer_new(bh)) { clear_buffer_new(bh); unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); } if (!buffer_mapped(bh) || buffer_delay(bh)) { if (!buffer_mapped(bh)) clear_buffer_dirty(bh); if (io->io_bio) ext4_io_submit(io); return 0; } if (io->io_bio && bh->b_blocknr != io->io_next_block) { submit_and_retry: ext4_io_submit(io); } if (io->io_bio == NULL) { ret = io_submit_init(io, inode, wbc, bh); if (ret) return ret; } io_end = io->io_end; if ((io_end->num_io_pages >= MAX_IO_PAGES) && (io_end->pages[io_end->num_io_pages-1] != io_page)) goto submit_and_retry; if (buffer_uninit(bh)) io->io_end->flag |= EXT4_IO_END_UNWRITTEN; io->io_end->size += bh->b_size; io->io_next_block++; ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); if (ret != bh->b_size) goto submit_and_retry; if ((io_end->num_io_pages == 0) || (io_end->pages[io_end->num_io_pages-1] != io_page)) { io_end->pages[io_end->num_io_pages++] = io_page; io_page->p_count++; } return 0; } int ext4_bio_write_page(struct ext4_io_submit *io, struct page *page, int len, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; unsigned block_start, block_end, blocksize; struct ext4_io_page *io_page; struct buffer_head *bh, *head; int ret = 0; blocksize = 1 << inode->i_blkbits; BUG_ON(PageWriteback(page)); set_page_writeback(page); ClearPageError(page); io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS); if (!io_page) { set_page_dirty(page); unlock_page(page); return -ENOMEM; } io_page->p_page = page; io_page->p_count = 0; get_page(page); for (bh = head = page_buffers(page), block_start = 0; bh != head || !block_start; block_start = block_end, bh = bh->b_this_page) { block_end = block_start + blocksize; if (block_start >= len) { clear_buffer_dirty(bh); set_buffer_uptodate(bh); continue; } ret = io_submit_add_bh(io, io_page, inode, wbc, bh); if (ret) { /* * We only get here on ENOMEM. Not much else * we can do but mark the page as dirty, and * better luck next time. */ set_page_dirty(page); break; } } unlock_page(page); /* * If the page was truncated before we could do the writeback, * or we had a memory allocation error while trying to write * the first buffer head, we won't have submitted any pages for * I/O. In that case we need to make sure we've cleared the * PageWriteback bit from the page to prevent the system from * wedging later on. */ if (io_page->p_count == 0) { put_page(page); end_page_writeback(page); kmem_cache_free(io_page_cachep, io_page); } return ret; }