/* * fs/cifs/cifsfs.c * * Copyright (C) International Business Machines Corp., 2002,2004 * Author(s): Steve French (sfrench@us.ibm.com) * * Common Internet FileSystem (CIFS) client * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Note that BB means BUGBUG (ie something to fix eventually) */ #include <linux/module.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/list.h> #include <linux/seq_file.h> #include <linux/vfs.h> #include <linux/mempool.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/freezer.h> #include "cifsfs.h" #include "cifspdu.h" #define DECLARE_GLOBALS_HERE #include "cifsglob.h" #include "cifsproto.h" #include "cifs_debug.h" #include "cifs_fs_sb.h" #include <linux/mm.h> #define CIFS_MAGIC_NUMBER 0xFF534D42 /* the first four bytes of SMB PDUs */ #ifdef CONFIG_CIFS_QUOTA static struct quotactl_ops cifs_quotactl_ops; #endif int cifsFYI = 0; int cifsERROR = 1; int traceSMB = 0; unsigned int oplockEnabled = 1; unsigned int experimEnabled = 0; unsigned int linuxExtEnabled = 1; unsigned int lookupCacheEnabled = 1; unsigned int multiuser_mount = 0; unsigned int extended_security = CIFSSEC_DEF; /* unsigned int ntlmv2_support = 0; */ unsigned int sign_CIFS_PDUs = 1; extern struct task_struct * oplockThread; /* remove sparse warning */ struct task_struct * oplockThread = NULL; extern struct task_struct * dnotifyThread; /* remove sparse warning */ struct task_struct * dnotifyThread = NULL; static struct super_operations cifs_super_ops; unsigned int CIFSMaxBufSize = CIFS_MAX_MSGSIZE; module_param(CIFSMaxBufSize, int, 0); MODULE_PARM_DESC(CIFSMaxBufSize,"Network buffer size (not including header). Default: 16384 Range: 8192 to 130048"); unsigned int cifs_min_rcv = CIFS_MIN_RCV_POOL; module_param(cifs_min_rcv, int, 0); MODULE_PARM_DESC(cifs_min_rcv,"Network buffers in pool. Default: 4 Range: 1 to 64"); unsigned int cifs_min_small = 30; module_param(cifs_min_small, int, 0); MODULE_PARM_DESC(cifs_min_small,"Small network buffers in pool. Default: 30 Range: 2 to 256"); unsigned int cifs_max_pending = CIFS_MAX_REQ; module_param(cifs_max_pending, int, 0); MODULE_PARM_DESC(cifs_max_pending,"Simultaneous requests to server. Default: 50 Range: 2 to 256"); extern mempool_t *cifs_sm_req_poolp; extern mempool_t *cifs_req_poolp; extern mempool_t *cifs_mid_poolp; extern struct kmem_cache *cifs_oplock_cachep; static int cifs_read_super(struct super_block *sb, void *data, const char *devname, int silent) { struct inode *inode; struct cifs_sb_info *cifs_sb; int rc = 0; sb->s_flags |= MS_NODIRATIME; /* and probably even noatime */ sb->s_fs_info = kzalloc(sizeof(struct cifs_sb_info),GFP_KERNEL); cifs_sb = CIFS_SB(sb); if(cifs_sb == NULL) return -ENOMEM; rc = cifs_mount(sb, cifs_sb, data, devname); if (rc) { if (!silent) cERROR(1, ("cifs_mount failed w/return code = %d", rc)); goto out_mount_failed; } sb->s_magic = CIFS_MAGIC_NUMBER; sb->s_op = &cifs_super_ops; /* if(cifs_sb->tcon->ses->server->maxBuf > MAX_CIFS_HDR_SIZE + 512) sb->s_blocksize = cifs_sb->tcon->ses->server->maxBuf - MAX_CIFS_HDR_SIZE; */ #ifdef CONFIG_CIFS_QUOTA sb->s_qcop = &cifs_quotactl_ops; #endif sb->s_blocksize = CIFS_MAX_MSGSIZE; sb->s_blocksize_bits = 14; /* default 2**14 = CIFS_MAX_MSGSIZE */ inode = iget(sb, ROOT_I); if (!inode) { rc = -ENOMEM; goto out_no_root; } sb->s_root = d_alloc_root(inode); if (!sb->s_root) { rc = -ENOMEM; goto out_no_root; } return 0; out_no_root: cERROR(1, ("cifs_read_super: get root inode failed")); if (inode) iput(inode); out_mount_failed: if(cifs_sb) { if(cifs_sb->local_nls) unload_nls(cifs_sb->local_nls); kfree(cifs_sb); } return rc; } static void cifs_put_super(struct super_block *sb) { int rc = 0; struct cifs_sb_info *cifs_sb; cFYI(1, ("In cifs_put_super")); cifs_sb = CIFS_SB(sb); if(cifs_sb == NULL) { cFYI(1,("Empty cifs superblock info passed to unmount")); return; } rc = cifs_umount(sb, cifs_sb); if (rc) { cERROR(1, ("cifs_umount failed with return code %d", rc)); } unload_nls(cifs_sb->local_nls); kfree(cifs_sb); return; } static int cifs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; int xid; int rc = -EOPNOTSUPP; struct cifs_sb_info *cifs_sb; struct cifsTconInfo *pTcon; xid = GetXid(); cifs_sb = CIFS_SB(sb); pTcon = cifs_sb->tcon; buf->f_type = CIFS_MAGIC_NUMBER; /* instead could get the real value via SMB_QUERY_FS_ATTRIBUTE_INFO */ buf->f_namelen = PATH_MAX; /* PATH_MAX may be too long - it would presumably be total path, but note that some servers (includinng Samba 3) have a shorter maximum path */ buf->f_files = 0; /* undefined */ buf->f_ffree = 0; /* unlimited */ /* BB we could add a second check for a QFS Unix capability bit */ /* BB FIXME check CIFS_POSIX_EXTENSIONS Unix cap first FIXME BB */ if ((pTcon->ses->capabilities & CAP_UNIX) && (CIFS_POSIX_EXTENSIONS & le64_to_cpu(pTcon->fsUnixInfo.Capability))) rc = CIFSSMBQFSPosixInfo(xid, pTcon, buf); /* Only need to call the old QFSInfo if failed on newer one */ if(rc) if(pTcon->ses->capabilities & CAP_NT_SMBS) rc = CIFSSMBQFSInfo(xid, pTcon, buf); /* not supported by OS2 */ /* Some old Windows servers also do not support level 103, retry with older level one if old server failed the previous call or we bypassed it because we detected that this was an older LANMAN sess */ if(rc) rc = SMBOldQFSInfo(xid, pTcon, buf); /* int f_type; __fsid_t f_fsid; int f_namelen; */ /* BB get from info in tcon struct at mount time call to QFSAttrInfo */ FreeXid(xid); return 0; /* always return success? what if volume is no longer available? */ } static int cifs_permission(struct inode * inode, int mask, struct nameidata *nd) { struct cifs_sb_info *cifs_sb; cifs_sb = CIFS_SB(inode->i_sb); if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_PERM) { return 0; } else /* file mode might have been restricted at mount time on the client (above and beyond ACL on servers) for servers which do not support setting and viewing mode bits, so allowing client to check permissions is useful */ return generic_permission(inode, mask, NULL); } static struct kmem_cache *cifs_inode_cachep; static struct kmem_cache *cifs_req_cachep; static struct kmem_cache *cifs_mid_cachep; struct kmem_cache *cifs_oplock_cachep; static struct kmem_cache *cifs_sm_req_cachep; mempool_t *cifs_sm_req_poolp; mempool_t *cifs_req_poolp; mempool_t *cifs_mid_poolp; static struct inode * cifs_alloc_inode(struct super_block *sb) { struct cifsInodeInfo *cifs_inode; cifs_inode = kmem_cache_alloc(cifs_inode_cachep, GFP_KERNEL); if (!cifs_inode) return NULL; cifs_inode->cifsAttrs = 0x20; /* default */ atomic_set(&cifs_inode->inUse, 0); cifs_inode->time = 0; /* Until the file is open and we have gotten oplock info back from the server, can not assume caching of file data or metadata */ cifs_inode->clientCanCacheRead = FALSE; cifs_inode->clientCanCacheAll = FALSE; cifs_inode->vfs_inode.i_blkbits = 14; /* 2**14 = CIFS_MAX_MSGSIZE */ cifs_inode->vfs_inode.i_flags = S_NOATIME | S_NOCMTIME; INIT_LIST_HEAD(&cifs_inode->openFileList); return &cifs_inode->vfs_inode; } static void cifs_destroy_inode(struct inode *inode) { kmem_cache_free(cifs_inode_cachep, CIFS_I(inode)); } /* * cifs_show_options() is for displaying mount options in /proc/mounts. * Not all settable options are displayed but most of the important * ones are. */ static int cifs_show_options(struct seq_file *s, struct vfsmount *m) { struct cifs_sb_info *cifs_sb; cifs_sb = CIFS_SB(m->mnt_sb); if (cifs_sb) { if (cifs_sb->tcon) { seq_printf(s, ",unc=%s", cifs_sb->tcon->treeName); if (cifs_sb->tcon->ses) { if (cifs_sb->tcon->ses->userName) seq_printf(s, ",username=%s", cifs_sb->tcon->ses->userName); if(cifs_sb->tcon->ses->domainName) seq_printf(s, ",domain=%s", cifs_sb->tcon->ses->domainName); } } seq_printf(s, ",rsize=%d",cifs_sb->rsize); seq_printf(s, ",wsize=%d",cifs_sb->wsize); } return 0; } #ifdef CONFIG_CIFS_QUOTA int cifs_xquota_set(struct super_block * sb, int quota_type, qid_t qid, struct fs_disk_quota * pdquota) { int xid; int rc = 0; struct cifs_sb_info *cifs_sb = CIFS_SB(sb); struct cifsTconInfo *pTcon; if(cifs_sb) pTcon = cifs_sb->tcon; else return -EIO; xid = GetXid(); if(pTcon) { cFYI(1,("set type: 0x%x id: %d",quota_type,qid)); } else { return -EIO; } FreeXid(xid); return rc; } int cifs_xquota_get(struct super_block * sb, int quota_type, qid_t qid, struct fs_disk_quota * pdquota) { int xid; int rc = 0; struct cifs_sb_info *cifs_sb = CIFS_SB(sb); struct cifsTconInfo *pTcon; if(cifs_sb) pTcon = cifs_sb->tcon; else return -EIO; xid = GetXid(); if(pTcon) { cFYI(1,("set type: 0x%x id: %d",quota_type,qid)); } else { rc = -EIO; } FreeXid(xid); return rc; } int cifs_xstate_set(struct super_block * sb, unsigned int flags, int operation) { int xid; int rc = 0; struct cifs_sb_info *cifs_sb = CIFS_SB(sb); struct cifsTconInfo *pTcon; if(cifs_sb) pTcon = cifs_sb->tcon; else return -EIO; xid = GetXid(); if(pTcon) { cFYI(1,("flags: 0x%x operation: 0x%x",flags,operation)); } else { rc = -EIO; } FreeXid(xid); return rc; } int cifs_xstate_get(struct super_block * sb, struct fs_quota_stat *qstats) { int xid; int rc = 0; struct cifs_sb_info *cifs_sb = CIFS_SB(sb); struct cifsTconInfo *pTcon; if(cifs_sb) { pTcon = cifs_sb->tcon; } else { return -EIO; } xid = GetXid(); if(pTcon) { cFYI(1,("pqstats %p",qstats)); } else { rc = -EIO; } FreeXid(xid); return rc; } static struct quotactl_ops cifs_quotactl_ops = { .set_xquota = cifs_xquota_set, .get_xquota = cifs_xquota_set, .set_xstate = cifs_xstate_set, .get_xstate = cifs_xstate_get, }; #endif static void cifs_umount_begin(struct vfsmount * vfsmnt, int flags) { struct cifs_sb_info *cifs_sb; struct cifsTconInfo * tcon; if (!(flags & MNT_FORCE)) return; cifs_sb = CIFS_SB(vfsmnt->mnt_sb); if(cifs_sb == NULL) return; tcon = cifs_sb->tcon; if(tcon == NULL) return; down(&tcon->tconSem); if (atomic_read(&tcon->useCount) == 1) tcon->tidStatus = CifsExiting; up(&tcon->tconSem); /* cancel_brl_requests(tcon); */ /* BB mark all brl mids as exiting */ /* cancel_notify_requests(tcon); */ if(tcon->ses && tcon->ses->server) { cFYI(1,("wake up tasks now - umount begin not complete")); wake_up_all(&tcon->ses->server->request_q); wake_up_all(&tcon->ses->server->response_q); msleep(1); /* yield */ /* we have to kick the requests once more */ wake_up_all(&tcon->ses->server->response_q); msleep(1); } /* BB FIXME - finish add checks for tidStatus BB */ return; } #ifdef CONFIG_CIFS_STATS2 static int cifs_show_stats(struct seq_file *s, struct vfsmount *mnt) { /* BB FIXME */ return 0; } #endif static int cifs_remount(struct super_block *sb, int *flags, char *data) { *flags |= MS_NODIRATIME; return 0; } static struct super_operations cifs_super_ops = { .read_inode = cifs_read_inode, .put_super = cifs_put_super, .statfs = cifs_statfs, .alloc_inode = cifs_alloc_inode, .destroy_inode = cifs_destroy_inode, /* .drop_inode = generic_delete_inode, .delete_inode = cifs_delete_inode, *//* Do not need the above two functions unless later we add lazy close of inodes or unless the kernel forgets to call us with the same number of releases (closes) as opens */ .show_options = cifs_show_options, .umount_begin = cifs_umount_begin, .remount_fs = cifs_remount, #ifdef CONFIG_CIFS_STATS2 .show_stats = cifs_show_stats, #endif }; static int cifs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { int rc; struct super_block *sb = sget(fs_type, NULL, set_anon_super, NULL); cFYI(1, ("Devname: %s flags: %d ", dev_name, flags)); if (IS_ERR(sb)) return PTR_ERR(sb); sb->s_flags = flags; rc = cifs_read_super(sb, data, dev_name, flags & MS_SILENT ? 1 : 0); if (rc) { up_write(&sb->s_umount); deactivate_super(sb); return rc; } sb->s_flags |= MS_ACTIVE; return simple_set_mnt(mnt, sb); } static ssize_t cifs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; ssize_t written; written = generic_file_aio_write(iocb, iov, nr_segs, pos); if (!CIFS_I(inode)->clientCanCacheAll) filemap_fdatawrite(inode->i_mapping); return written; } static loff_t cifs_llseek(struct file *file, loff_t offset, int origin) { /* origin == SEEK_END => we must revalidate the cached file length */ if (origin == SEEK_END) { int retval; /* some applications poll for the file length in this strange way so we must seek to end on non-oplocked files by setting the revalidate time to zero */ if(file->f_path.dentry->d_inode) CIFS_I(file->f_path.dentry->d_inode)->time = 0; retval = cifs_revalidate(file->f_path.dentry); if (retval < 0) return (loff_t)retval; } return remote_llseek(file, offset, origin); } static struct file_system_type cifs_fs_type = { .owner = THIS_MODULE, .name = "cifs", .get_sb = cifs_get_sb, .kill_sb = kill_anon_super, /* .fs_flags */ }; struct inode_operations cifs_dir_inode_ops = { .create = cifs_create, .lookup = cifs_lookup, .getattr = cifs_getattr, .unlink = cifs_unlink, .link = cifs_hardlink, .mkdir = cifs_mkdir, .rmdir = cifs_rmdir, .rename = cifs_rename, .permission = cifs_permission, /* revalidate:cifs_revalidate, */ .setattr = cifs_setattr, .symlink = cifs_symlink, .mknod = cifs_mknod, #ifdef CONFIG_CIFS_XATTR .setxattr = cifs_setxattr, .getxattr = cifs_getxattr, .listxattr = cifs_listxattr, .removexattr = cifs_removexattr, #endif }; struct inode_operations cifs_file_inode_ops = { /* revalidate:cifs_revalidate, */ .setattr = cifs_setattr, .getattr = cifs_getattr, /* do we need this anymore? */ .rename = cifs_rename, .permission = cifs_permission, #ifdef CONFIG_CIFS_XATTR .setxattr = cifs_setxattr, .getxattr = cifs_getxattr, .listxattr = cifs_listxattr, .removexattr = cifs_removexattr, #endif }; struct inode_operations cifs_symlink_inode_ops = { .readlink = generic_readlink, .follow_link = cifs_follow_link, .put_link = cifs_put_link, .permission = cifs_permission, /* BB add the following two eventually */ /* revalidate: cifs_revalidate, setattr: cifs_notify_change, *//* BB do we need notify change */ #ifdef CONFIG_CIFS_XATTR .setxattr = cifs_setxattr, .getxattr = cifs_getxattr, .listxattr = cifs_listxattr, .removexattr = cifs_removexattr, #endif }; const struct file_operations cifs_file_ops = { .read = do_sync_read, .write = do_sync_write, .aio_read = generic_file_aio_read, .aio_write = cifs_file_aio_write, .open = cifs_open, .release = cifs_close, .lock = cifs_lock, .fsync = cifs_fsync, .flush = cifs_flush, .mmap = cifs_file_mmap, .sendfile = generic_file_sendfile, .llseek = cifs_llseek, #ifdef CONFIG_CIFS_POSIX .ioctl = cifs_ioctl, #endif /* CONFIG_CIFS_POSIX */ #ifdef CONFIG_CIFS_EXPERIMENTAL .dir_notify = cifs_dir_notify, #endif /* CONFIG_CIFS_EXPERIMENTAL */ }; const struct file_operations cifs_file_direct_ops = { /* no mmap, no aio, no readv - BB reevaluate whether they can be done with directio, no cache */ .read = cifs_user_read, .write = cifs_user_write, .open = cifs_open, .release = cifs_close, .lock = cifs_lock, .fsync = cifs_fsync, .flush = cifs_flush, .sendfile = generic_file_sendfile, /* BB removeme BB */ #ifdef CONFIG_CIFS_POSIX .ioctl = cifs_ioctl, #endif /* CONFIG_CIFS_POSIX */ .llseek = cifs_llseek, #ifdef CONFIG_CIFS_EXPERIMENTAL .dir_notify = cifs_dir_notify, #endif /* CONFIG_CIFS_EXPERIMENTAL */ }; const struct file_operations cifs_file_nobrl_ops = { .read = do_sync_read, .write = do_sync_write, .aio_read = generic_file_aio_read, .aio_write = cifs_file_aio_write, .open = cifs_open, .release = cifs_close, .fsync = cifs_fsync, .flush = cifs_flush, .mmap = cifs_file_mmap, .sendfile = generic_file_sendfile, .llseek = cifs_llseek, #ifdef CONFIG_CIFS_POSIX .ioctl = cifs_ioctl, #endif /* CONFIG_CIFS_POSIX */ #ifdef CONFIG_CIFS_EXPERIMENTAL .dir_notify = cifs_dir_notify, #endif /* CONFIG_CIFS_EXPERIMENTAL */ }; const struct file_operations cifs_file_direct_nobrl_ops = { /* no mmap, no aio, no readv - BB reevaluate whether they can be done with directio, no cache */ .read = cifs_user_read, .write = cifs_user_write, .open = cifs_open, .release = cifs_close, .fsync = cifs_fsync, .flush = cifs_flush, .sendfile = generic_file_sendfile, /* BB removeme BB */ #ifdef CONFIG_CIFS_POSIX .ioctl = cifs_ioctl, #endif /* CONFIG_CIFS_POSIX */ .llseek = cifs_llseek, #ifdef CONFIG_CIFS_EXPERIMENTAL .dir_notify = cifs_dir_notify, #endif /* CONFIG_CIFS_EXPERIMENTAL */ }; const struct file_operations cifs_dir_ops = { .readdir = cifs_readdir, .release = cifs_closedir, .read = generic_read_dir, #ifdef CONFIG_CIFS_EXPERIMENTAL .dir_notify = cifs_dir_notify, #endif /* CONFIG_CIFS_EXPERIMENTAL */ .ioctl = cifs_ioctl, }; static void cifs_init_once(void *inode, struct kmem_cache * cachep, unsigned long flags) { struct cifsInodeInfo *cifsi = inode; if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { inode_init_once(&cifsi->vfs_inode); INIT_LIST_HEAD(&cifsi->lockList); } } static int cifs_init_inodecache(void) { cifs_inode_cachep = kmem_cache_create("cifs_inode_cache", sizeof (struct cifsInodeInfo), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), cifs_init_once, NULL); if (cifs_inode_cachep == NULL) return -ENOMEM; return 0; } static void cifs_destroy_inodecache(void) { kmem_cache_destroy(cifs_inode_cachep); } static int cifs_init_request_bufs(void) { if(CIFSMaxBufSize < 8192) { /* Buffer size can not be smaller than 2 * PATH_MAX since maximum Unicode path name has to fit in any SMB/CIFS path based frames */ CIFSMaxBufSize = 8192; } else if (CIFSMaxBufSize > 1024*127) { CIFSMaxBufSize = 1024 * 127; } else { CIFSMaxBufSize &= 0x1FE00; /* Round size to even 512 byte mult*/ } /* cERROR(1,("CIFSMaxBufSize %d 0x%x",CIFSMaxBufSize,CIFSMaxBufSize)); */ cifs_req_cachep = kmem_cache_create("cifs_request", CIFSMaxBufSize + MAX_CIFS_HDR_SIZE, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (cifs_req_cachep == NULL) return -ENOMEM; if(cifs_min_rcv < 1) cifs_min_rcv = 1; else if (cifs_min_rcv > 64) { cifs_min_rcv = 64; cERROR(1,("cifs_min_rcv set to maximum (64)")); } cifs_req_poolp = mempool_create_slab_pool(cifs_min_rcv, cifs_req_cachep); if(cifs_req_poolp == NULL) { kmem_cache_destroy(cifs_req_cachep); return -ENOMEM; } /* MAX_CIFS_SMALL_BUFFER_SIZE bytes is enough for most SMB responses and almost all handle based requests (but not write response, nor is it sufficient for path based requests). A smaller size would have been more efficient (compacting multiple slab items on one 4k page) for the case in which debug was on, but this larger size allows more SMBs to use small buffer alloc and is still much more efficient to alloc 1 per page off the slab compared to 17K (5page) alloc of large cifs buffers even when page debugging is on */ cifs_sm_req_cachep = kmem_cache_create("cifs_small_rq", MAX_CIFS_SMALL_BUFFER_SIZE, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (cifs_sm_req_cachep == NULL) { mempool_destroy(cifs_req_poolp); kmem_cache_destroy(cifs_req_cachep); return -ENOMEM; } if(cifs_min_small < 2) cifs_min_small = 2; else if (cifs_min_small > 256) { cifs_min_small = 256; cFYI(1,("cifs_min_small set to maximum (256)")); } cifs_sm_req_poolp = mempool_create_slab_pool(cifs_min_small, cifs_sm_req_cachep); if(cifs_sm_req_poolp == NULL) { mempool_destroy(cifs_req_poolp); kmem_cache_destroy(cifs_req_cachep); kmem_cache_destroy(cifs_sm_req_cachep); return -ENOMEM; } return 0; } static void cifs_destroy_request_bufs(void) { mempool_destroy(cifs_req_poolp); kmem_cache_destroy(cifs_req_cachep); mempool_destroy(cifs_sm_req_poolp); kmem_cache_destroy(cifs_sm_req_cachep); } static int cifs_init_mids(void) { cifs_mid_cachep = kmem_cache_create("cifs_mpx_ids", sizeof (struct mid_q_entry), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (cifs_mid_cachep == NULL) return -ENOMEM; /* 3 is a reasonable minimum number of simultaneous operations */ cifs_mid_poolp = mempool_create_slab_pool(3, cifs_mid_cachep); if(cifs_mid_poolp == NULL) { kmem_cache_destroy(cifs_mid_cachep); return -ENOMEM; } cifs_oplock_cachep = kmem_cache_create("cifs_oplock_structs", sizeof (struct oplock_q_entry), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (cifs_oplock_cachep == NULL) { kmem_cache_destroy(cifs_mid_cachep); mempool_destroy(cifs_mid_poolp); return -ENOMEM; } return 0; } static void cifs_destroy_mids(void) { mempool_destroy(cifs_mid_poolp); kmem_cache_destroy(cifs_mid_cachep); kmem_cache_destroy(cifs_oplock_cachep); } static int cifs_oplock_thread(void * dummyarg) { struct oplock_q_entry * oplock_item; struct cifsTconInfo *pTcon; struct inode * inode; __u16 netfid; int rc; do { if (try_to_freeze()) continue; spin_lock(&GlobalMid_Lock); if(list_empty(&GlobalOplock_Q)) { spin_unlock(&GlobalMid_Lock); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(39*HZ); } else { oplock_item = list_entry(GlobalOplock_Q.next, struct oplock_q_entry, qhead); if(oplock_item) { cFYI(1,("found oplock item to write out")); pTcon = oplock_item->tcon; inode = oplock_item->pinode; netfid = oplock_item->netfid; spin_unlock(&GlobalMid_Lock); DeleteOplockQEntry(oplock_item); /* can not grab inode sem here since it would deadlock when oplock received on delete since vfs_unlink holds the i_mutex across the call */ /* mutex_lock(&inode->i_mutex);*/ if (S_ISREG(inode->i_mode)) { rc = filemap_fdatawrite(inode->i_mapping); if(CIFS_I(inode)->clientCanCacheRead == 0) { filemap_fdatawait(inode->i_mapping); invalidate_remote_inode(inode); } } else rc = 0; /* mutex_unlock(&inode->i_mutex);*/ if (rc) CIFS_I(inode)->write_behind_rc = rc; cFYI(1,("Oplock flush inode %p rc %d",inode,rc)); /* releasing a stale oplock after recent reconnection of smb session using a now incorrect file handle is not a data integrity issue but do not bother sending an oplock release if session to server still is disconnected since oplock already released by the server in that case */ if(pTcon->tidStatus != CifsNeedReconnect) { rc = CIFSSMBLock(0, pTcon, netfid, 0 /* len */ , 0 /* offset */, 0, 0, LOCKING_ANDX_OPLOCK_RELEASE, 0 /* wait flag */); cFYI(1,("Oplock release rc = %d ",rc)); } } else spin_unlock(&GlobalMid_Lock); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); /* yield in case q were corrupt */ } } while (!kthread_should_stop()); return 0; } static int cifs_dnotify_thread(void * dummyarg) { struct list_head *tmp; struct cifsSesInfo *ses; do { if (try_to_freeze()) continue; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(15*HZ); read_lock(&GlobalSMBSeslock); /* check if any stuck requests that need to be woken up and wakeq so the thread can wake up and error out */ list_for_each(tmp, &GlobalSMBSessionList) { ses = list_entry(tmp, struct cifsSesInfo, cifsSessionList); if(ses && ses->server && atomic_read(&ses->server->inFlight)) wake_up_all(&ses->server->response_q); } read_unlock(&GlobalSMBSeslock); } while (!kthread_should_stop()); return 0; } static int __init init_cifs(void) { int rc = 0; #ifdef CONFIG_PROC_FS cifs_proc_init(); #endif /* INIT_LIST_HEAD(&GlobalServerList);*/ /* BB not implemented yet */ INIT_LIST_HEAD(&GlobalSMBSessionList); INIT_LIST_HEAD(&GlobalTreeConnectionList); INIT_LIST_HEAD(&GlobalOplock_Q); #ifdef CONFIG_CIFS_EXPERIMENTAL INIT_LIST_HEAD(&GlobalDnotifyReqList); INIT_LIST_HEAD(&GlobalDnotifyRsp_Q); #endif /* * Initialize Global counters */ atomic_set(&sesInfoAllocCount, 0); atomic_set(&tconInfoAllocCount, 0); atomic_set(&tcpSesAllocCount,0); atomic_set(&tcpSesReconnectCount, 0); atomic_set(&tconInfoReconnectCount, 0); atomic_set(&bufAllocCount, 0); atomic_set(&smBufAllocCount, 0); #ifdef CONFIG_CIFS_STATS2 atomic_set(&totBufAllocCount, 0); atomic_set(&totSmBufAllocCount, 0); #endif /* CONFIG_CIFS_STATS2 */ atomic_set(&midCount, 0); GlobalCurrentXid = 0; GlobalTotalActiveXid = 0; GlobalMaxActiveXid = 0; memset(Local_System_Name, 0, 15); rwlock_init(&GlobalSMBSeslock); spin_lock_init(&GlobalMid_Lock); if(cifs_max_pending < 2) { cifs_max_pending = 2; cFYI(1,("cifs_max_pending set to min of 2")); } else if(cifs_max_pending > 256) { cifs_max_pending = 256; cFYI(1,("cifs_max_pending set to max of 256")); } rc = cifs_init_inodecache(); if (rc) goto out_clean_proc; rc = cifs_init_mids(); if (rc) goto out_destroy_inodecache; rc = cifs_init_request_bufs(); if (rc) goto out_destroy_mids; rc = register_filesystem(&cifs_fs_type); if (rc) goto out_destroy_request_bufs; oplockThread = kthread_run(cifs_oplock_thread, NULL, "cifsoplockd"); if (IS_ERR(oplockThread)) { rc = PTR_ERR(oplockThread); cERROR(1,("error %d create oplock thread", rc)); goto out_unregister_filesystem; } dnotifyThread = kthread_run(cifs_dnotify_thread, NULL, "cifsdnotifyd"); if (IS_ERR(dnotifyThread)) { rc = PTR_ERR(dnotifyThread); cERROR(1,("error %d create dnotify thread", rc)); goto out_stop_oplock_thread; } return 0; out_stop_oplock_thread: kthread_stop(oplockThread); out_unregister_filesystem: unregister_filesystem(&cifs_fs_type); out_destroy_request_bufs: cifs_destroy_request_bufs(); out_destroy_mids: cifs_destroy_mids(); out_destroy_inodecache: cifs_destroy_inodecache(); out_clean_proc: #ifdef CONFIG_PROC_FS cifs_proc_clean(); #endif return rc; } static void __exit exit_cifs(void) { cFYI(0, ("In unregister ie exit_cifs")); #ifdef CONFIG_PROC_FS cifs_proc_clean(); #endif unregister_filesystem(&cifs_fs_type); cifs_destroy_inodecache(); cifs_destroy_mids(); cifs_destroy_request_bufs(); kthread_stop(oplockThread); kthread_stop(dnotifyThread); } MODULE_AUTHOR("Steve French <sfrench@us.ibm.com>"); MODULE_LICENSE("GPL"); /* combination of LGPL + GPL source behaves as GPL */ MODULE_DESCRIPTION ("VFS to access servers complying with the SNIA CIFS Specification e.g. Samba and Windows"); MODULE_VERSION(CIFS_VERSION); module_init(init_cifs) module_exit(exit_cifs)