#include "ceph_debug.h" #include #include "super.h" #include "decode.h" /* * Snapshots in ceph are driven in large part by cooperation from the * client. In contrast to local file systems or file servers that * implement snapshots at a single point in the system, ceph's * distributed access to storage requires clients to help decide * whether a write logically occurs before or after a recently created * snapshot. * * This provides a perfect instantanous client-wide snapshot. Between * clients, however, snapshots may appear to be applied at slightly * different points in time, depending on delays in delivering the * snapshot notification. * * Snapshots are _not_ file system-wide. Instead, each snapshot * applies to the subdirectory nested beneath some directory. This * effectively divides the hierarchy into multiple "realms," where all * of the files contained by each realm share the same set of * snapshots. An individual realm's snap set contains snapshots * explicitly created on that realm, as well as any snaps in its * parent's snap set _after_ the point at which the parent became it's * parent (due to, say, a rename). Similarly, snaps from prior parents * during the time intervals during which they were the parent are included. * * The client is spared most of this detail, fortunately... it must only * maintains a hierarchy of realms reflecting the current parent/child * realm relationship, and for each realm has an explicit list of snaps * inherited from prior parents. * * A snap_realm struct is maintained for realms containing every inode * with an open cap in the system. (The needed snap realm information is * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq' * version number is used to ensure that as realm parameters change (new * snapshot, new parent, etc.) the client's realm hierarchy is updated. * * The realm hierarchy drives the generation of a 'snap context' for each * realm, which simply lists the resulting set of snaps for the realm. This * is attached to any writes sent to OSDs. */ /* * Unfortunately error handling is a bit mixed here. If we get a snap * update, but don't have enough memory to update our realm hierarchy, * it's not clear what we can do about it (besides complaining to the * console). */ /* * increase ref count for the realm * * caller must hold snap_rwsem for write. */ void ceph_get_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm) { dout("get_realm %p %d -> %d\n", realm, atomic_read(&realm->nref), atomic_read(&realm->nref)+1); /* * since we _only_ increment realm refs or empty the empty * list with snap_rwsem held, adjusting the empty list here is * safe. we do need to protect against concurrent empty list * additions, however. */ if (atomic_read(&realm->nref) == 0) { spin_lock(&mdsc->snap_empty_lock); list_del_init(&realm->empty_item); spin_unlock(&mdsc->snap_empty_lock); } atomic_inc(&realm->nref); } static void __insert_snap_realm(struct rb_root *root, struct ceph_snap_realm *new) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct ceph_snap_realm *r = NULL; while (*p) { parent = *p; r = rb_entry(parent, struct ceph_snap_realm, node); if (new->ino < r->ino) p = &(*p)->rb_left; else if (new->ino > r->ino) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->node, parent, p); rb_insert_color(&new->node, root); } /* * create and get the realm rooted at @ino and bump its ref count. * * caller must hold snap_rwsem for write. */ static struct ceph_snap_realm *ceph_create_snap_realm( struct ceph_mds_client *mdsc, u64 ino) { struct ceph_snap_realm *realm; realm = kzalloc(sizeof(*realm), GFP_NOFS); if (!realm) return ERR_PTR(-ENOMEM); atomic_set(&realm->nref, 0); /* tree does not take a ref */ realm->ino = ino; INIT_LIST_HEAD(&realm->children); INIT_LIST_HEAD(&realm->child_item); INIT_LIST_HEAD(&realm->empty_item); INIT_LIST_HEAD(&realm->inodes_with_caps); spin_lock_init(&realm->inodes_with_caps_lock); __insert_snap_realm(&mdsc->snap_realms, realm); dout("create_snap_realm %llx %p\n", realm->ino, realm); return realm; } /* * lookup the realm rooted at @ino. * * caller must hold snap_rwsem for write. */ struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, u64 ino) { struct rb_node *n = mdsc->snap_realms.rb_node; struct ceph_snap_realm *r; while (n) { r = rb_entry(n, struct ceph_snap_realm, node); if (ino < r->ino) n = n->rb_left; else if (ino > r->ino) n = n->rb_right; else { dout("lookup_snap_realm %llx %p\n", r->ino, r); return r; } } return NULL; } static void __put_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm); /* * called with snap_rwsem (write) */ static void __destroy_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm) { dout("__destroy_snap_realm %p %llx\n", realm, realm->ino); rb_erase(&realm->node, &mdsc->snap_realms); if (realm->parent) { list_del_init(&realm->child_item); __put_snap_realm(mdsc, realm->parent); } kfree(realm->prior_parent_snaps); kfree(realm->snaps); ceph_put_snap_context(realm->cached_context); kfree(realm); } /* * caller holds snap_rwsem (write) */ static void __put_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm) { dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, atomic_read(&realm->nref), atomic_read(&realm->nref)-1); if (atomic_dec_and_test(&realm->nref)) __destroy_snap_realm(mdsc, realm); } /* * caller needn't hold any locks */ void ceph_put_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm) { dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm, atomic_read(&realm->nref), atomic_read(&realm->nref)-1); if (!atomic_dec_and_test(&realm->nref)) return; if (down_write_trylock(&mdsc->snap_rwsem)) { __destroy_snap_realm(mdsc, realm); up_write(&mdsc->snap_rwsem); } else { spin_lock(&mdsc->snap_empty_lock); list_add(&mdsc->snap_empty, &realm->empty_item); spin_unlock(&mdsc->snap_empty_lock); } } /* * Clean up any realms whose ref counts have dropped to zero. Note * that this does not include realms who were created but not yet * used. * * Called under snap_rwsem (write) */ static void __cleanup_empty_realms(struct ceph_mds_client *mdsc) { struct ceph_snap_realm *realm; spin_lock(&mdsc->snap_empty_lock); while (!list_empty(&mdsc->snap_empty)) { realm = list_first_entry(&mdsc->snap_empty, struct ceph_snap_realm, empty_item); list_del(&realm->empty_item); spin_unlock(&mdsc->snap_empty_lock); __destroy_snap_realm(mdsc, realm); spin_lock(&mdsc->snap_empty_lock); } spin_unlock(&mdsc->snap_empty_lock); } void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc) { down_write(&mdsc->snap_rwsem); __cleanup_empty_realms(mdsc); up_write(&mdsc->snap_rwsem); } /* * adjust the parent realm of a given @realm. adjust child list, and parent * pointers, and ref counts appropriately. * * return true if parent was changed, 0 if unchanged, <0 on error. * * caller must hold snap_rwsem for write. */ static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm, u64 parentino) { struct ceph_snap_realm *parent; if (realm->parent_ino == parentino) return 0; parent = ceph_lookup_snap_realm(mdsc, parentino); if (!parent) { parent = ceph_create_snap_realm(mdsc, parentino); if (IS_ERR(parent)) return PTR_ERR(parent); } dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n", realm->ino, realm, realm->parent_ino, realm->parent, parentino, parent); if (realm->parent) { list_del_init(&realm->child_item); ceph_put_snap_realm(mdsc, realm->parent); } realm->parent_ino = parentino; realm->parent = parent; ceph_get_snap_realm(mdsc, parent); list_add(&realm->child_item, &parent->children); return 1; } static int cmpu64_rev(const void *a, const void *b) { if (*(u64 *)a < *(u64 *)b) return 1; if (*(u64 *)a > *(u64 *)b) return -1; return 0; } /* * build the snap context for a given realm. */ static int build_snap_context(struct ceph_snap_realm *realm) { struct ceph_snap_realm *parent = realm->parent; struct ceph_snap_context *snapc; int err = 0; int i; int num = realm->num_prior_parent_snaps + realm->num_snaps; /* * build parent context, if it hasn't been built. * conservatively estimate that all parent snaps might be * included by us. */ if (parent) { if (!parent->cached_context) { err = build_snap_context(parent); if (err) goto fail; } num += parent->cached_context->num_snaps; } /* do i actually need to update? not if my context seq matches realm seq, and my parents' does to. (this works because we rebuild_snap_realms() works _downward_ in hierarchy after each update.) */ if (realm->cached_context && realm->cached_context->seq == realm->seq && (!parent || realm->cached_context->seq >= parent->cached_context->seq)) { dout("build_snap_context %llx %p: %p seq %lld (%d snaps)" " (unchanged)\n", realm->ino, realm, realm->cached_context, realm->cached_context->seq, realm->cached_context->num_snaps); return 0; } /* alloc new snap context */ err = -ENOMEM; if (num > ULONG_MAX / sizeof(u64) - sizeof(*snapc)) goto fail; snapc = kzalloc(sizeof(*snapc) + num*sizeof(u64), GFP_NOFS); if (!snapc) goto fail; atomic_set(&snapc->nref, 1); /* build (reverse sorted) snap vector */ num = 0; snapc->seq = realm->seq; if (parent) { /* include any of parent's snaps occuring _after_ my parent became my parent */ for (i = 0; i < parent->cached_context->num_snaps; i++) if (parent->cached_context->snaps[i] >= realm->parent_since) snapc->snaps[num++] = parent->cached_context->snaps[i]; if (parent->cached_context->seq > snapc->seq) snapc->seq = parent->cached_context->seq; } memcpy(snapc->snaps + num, realm->snaps, sizeof(u64)*realm->num_snaps); num += realm->num_snaps; memcpy(snapc->snaps + num, realm->prior_parent_snaps, sizeof(u64)*realm->num_prior_parent_snaps); num += realm->num_prior_parent_snaps; sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL); snapc->num_snaps = num; dout("build_snap_context %llx %p: %p seq %lld (%d snaps)\n", realm->ino, realm, snapc, snapc->seq, snapc->num_snaps); if (realm->cached_context) ceph_put_snap_context(realm->cached_context); realm->cached_context = snapc; return 0; fail: /* * if we fail, clear old (incorrect) cached_context... hopefully * we'll have better luck building it later */ if (realm->cached_context) { ceph_put_snap_context(realm->cached_context); realm->cached_context = NULL; } pr_err("build_snap_context %llx %p fail %d\n", realm->ino, realm, err); return err; } /* * rebuild snap context for the given realm and all of its children. */ static void rebuild_snap_realms(struct ceph_snap_realm *realm) { struct ceph_snap_realm *child; dout("rebuild_snap_realms %llx %p\n", realm->ino, realm); build_snap_context(realm); list_for_each_entry(child, &realm->children, child_item) rebuild_snap_realms(child); } /* * helper to allocate and decode an array of snapids. free prior * instance, if any. */ static int dup_array(u64 **dst, __le64 *src, int num) { int i; kfree(*dst); if (num) { *dst = kcalloc(num, sizeof(u64), GFP_NOFS); if (!*dst) return -ENOMEM; for (i = 0; i < num; i++) (*dst)[i] = get_unaligned_le64(src + i); } else { *dst = NULL; } return 0; } /* * When a snapshot is applied, the size/mtime inode metadata is queued * in a ceph_cap_snap (one for each snapshot) until writeback * completes and the metadata can be flushed back to the MDS. * * However, if a (sync) write is currently in-progress when we apply * the snapshot, we have to wait until the write succeeds or fails * (and a final size/mtime is known). In this case the * cap_snap->writing = 1, and is said to be "pending." When the write * finishes, we __ceph_finish_cap_snap(). * * Caller must hold snap_rwsem for read (i.e., the realm topology won't * change). */ void ceph_queue_cap_snap(struct ceph_inode_info *ci, struct ceph_snap_context *snapc) { struct inode *inode = &ci->vfs_inode; struct ceph_cap_snap *capsnap; int used; capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS); if (!capsnap) { pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode); return; } spin_lock(&inode->i_lock); used = __ceph_caps_used(ci); if (__ceph_have_pending_cap_snap(ci)) { /* there is no point in queuing multiple "pending" cap_snaps, as no new writes are allowed to start when pending, so any writes in progress now were started before the previous cap_snap. lucky us. */ dout("queue_cap_snap %p snapc %p seq %llu used %d" " already pending\n", inode, snapc, snapc->seq, used); kfree(capsnap); } else if (ci->i_wrbuffer_ref_head || (used & CEPH_CAP_FILE_WR)) { igrab(inode); atomic_set(&capsnap->nref, 1); capsnap->ci = ci; INIT_LIST_HEAD(&capsnap->ci_item); INIT_LIST_HEAD(&capsnap->flushing_item); capsnap->follows = snapc->seq - 1; capsnap->context = ceph_get_snap_context(snapc); capsnap->issued = __ceph_caps_issued(ci, NULL); capsnap->dirty = __ceph_caps_dirty(ci); capsnap->mode = inode->i_mode; capsnap->uid = inode->i_uid; capsnap->gid = inode->i_gid; /* fixme? */ capsnap->xattr_blob = NULL; capsnap->xattr_len = 0; /* dirty page count moved from _head to this cap_snap; all subsequent writes page dirties occur _after_ this snapshot. */ capsnap->dirty_pages = ci->i_wrbuffer_ref_head; ci->i_wrbuffer_ref_head = 0; ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps); if (used & CEPH_CAP_FILE_WR) { dout("queue_cap_snap %p cap_snap %p snapc %p" " seq %llu used WR, now pending\n", inode, capsnap, snapc, snapc->seq); capsnap->writing = 1; } else { /* note mtime, size NOW. */ __ceph_finish_cap_snap(ci, capsnap); } } else { dout("queue_cap_snap %p nothing dirty|writing\n", inode); kfree(capsnap); } spin_unlock(&inode->i_lock); } /* * Finalize the size, mtime for a cap_snap.. that is, settle on final values * to be used for the snapshot, to be flushed back to the mds. * * If capsnap can now be flushed, add to snap_flush list, and return 1. * * Caller must hold i_lock. */ int __ceph_finish_cap_snap(struct ceph_inode_info *ci, struct ceph_cap_snap *capsnap) { struct inode *inode = &ci->vfs_inode; struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; BUG_ON(capsnap->writing); capsnap->size = inode->i_size; capsnap->mtime = inode->i_mtime; capsnap->atime = inode->i_atime; capsnap->ctime = inode->i_ctime; capsnap->time_warp_seq = ci->i_time_warp_seq; if (capsnap->dirty_pages) { dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu " "still has %d dirty pages\n", inode, capsnap, capsnap->context, capsnap->context->seq, ceph_cap_string(capsnap->dirty), capsnap->size, capsnap->dirty_pages); return 0; } dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n", inode, capsnap, capsnap->context, capsnap->context->seq, ceph_cap_string(capsnap->dirty), capsnap->size); spin_lock(&mdsc->snap_flush_lock); list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list); spin_unlock(&mdsc->snap_flush_lock); return 1; /* caller may want to ceph_flush_snaps */ } /* * Parse and apply a snapblob "snap trace" from the MDS. This specifies * the snap realm parameters from a given realm and all of its ancestors, * up to the root. * * Caller must hold snap_rwsem for write. */ int ceph_update_snap_trace(struct ceph_mds_client *mdsc, void *p, void *e, bool deletion) { struct ceph_mds_snap_realm *ri; /* encoded */ __le64 *snaps; /* encoded */ __le64 *prior_parent_snaps; /* encoded */ struct ceph_snap_realm *realm; int invalidate = 0; int err = -ENOMEM; dout("update_snap_trace deletion=%d\n", deletion); more: ceph_decode_need(&p, e, sizeof(*ri), bad); ri = p; p += sizeof(*ri); ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) + le32_to_cpu(ri->num_prior_parent_snaps)), bad); snaps = p; p += sizeof(u64) * le32_to_cpu(ri->num_snaps); prior_parent_snaps = p; p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps); realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino)); if (!realm) { realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino)); if (IS_ERR(realm)) { err = PTR_ERR(realm); goto fail; } } if (le64_to_cpu(ri->seq) > realm->seq) { dout("update_snap_trace updating %llx %p %lld -> %lld\n", realm->ino, realm, realm->seq, le64_to_cpu(ri->seq)); /* * if the realm seq has changed, queue a cap_snap for every * inode with open caps. we do this _before_ we update * the realm info so that we prepare for writeback under the * _previous_ snap context. * * ...unless it's a snap deletion! */ if (!deletion) { struct ceph_inode_info *ci; struct inode *lastinode = NULL; spin_lock(&realm->inodes_with_caps_lock); list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) { struct inode *inode = igrab(&ci->vfs_inode); if (!inode) continue; spin_unlock(&realm->inodes_with_caps_lock); if (lastinode) iput(lastinode); lastinode = inode; ceph_queue_cap_snap(ci, realm->cached_context); spin_lock(&realm->inodes_with_caps_lock); } spin_unlock(&realm->inodes_with_caps_lock); if (lastinode) iput(lastinode); dout("update_snap_trace cap_snaps queued\n"); } } else { dout("update_snap_trace %llx %p seq %lld unchanged\n", realm->ino, realm, realm->seq); } /* ensure the parent is correct */ err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent)); if (err < 0) goto fail; invalidate += err; if (le64_to_cpu(ri->seq) > realm->seq) { /* update realm parameters, snap lists */ realm->seq = le64_to_cpu(ri->seq); realm->created = le64_to_cpu(ri->created); realm->parent_since = le64_to_cpu(ri->parent_since); realm->num_snaps = le32_to_cpu(ri->num_snaps); err = dup_array(&realm->snaps, snaps, realm->num_snaps); if (err < 0) goto fail; realm->num_prior_parent_snaps = le32_to_cpu(ri->num_prior_parent_snaps); err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps, realm->num_prior_parent_snaps); if (err < 0) goto fail; invalidate = 1; } else if (!realm->cached_context) { invalidate = 1; } dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino, realm, invalidate, p, e); if (p < e) goto more; /* invalidate when we reach the _end_ (root) of the trace */ if (invalidate) rebuild_snap_realms(realm); __cleanup_empty_realms(mdsc); return 0; bad: err = -EINVAL; fail: pr_err("update_snap_trace error %d\n", err); return err; } /* * Send any cap_snaps that are queued for flush. Try to carry * s_mutex across multiple snap flushes to avoid locking overhead. * * Caller holds no locks. */ static void flush_snaps(struct ceph_mds_client *mdsc) { struct ceph_inode_info *ci; struct inode *inode; struct ceph_mds_session *session = NULL; dout("flush_snaps\n"); spin_lock(&mdsc->snap_flush_lock); while (!list_empty(&mdsc->snap_flush_list)) { ci = list_first_entry(&mdsc->snap_flush_list, struct ceph_inode_info, i_snap_flush_item); inode = &ci->vfs_inode; igrab(inode); spin_unlock(&mdsc->snap_flush_lock); spin_lock(&inode->i_lock); __ceph_flush_snaps(ci, &session); spin_unlock(&inode->i_lock); iput(inode); spin_lock(&mdsc->snap_flush_lock); } spin_unlock(&mdsc->snap_flush_lock); if (session) { mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); } dout("flush_snaps done\n"); } /* * Handle a snap notification from the MDS. * * This can take two basic forms: the simplest is just a snap creation * or deletion notification on an existing realm. This should update the * realm and its children. * * The more difficult case is realm creation, due to snap creation at a * new point in the file hierarchy, or due to a rename that moves a file or * directory into another realm. */ void ceph_handle_snap(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg) { struct super_block *sb = mdsc->client->sb; int mds = session->s_mds; u64 split; int op; int trace_len; struct ceph_snap_realm *realm = NULL; void *p = msg->front.iov_base; void *e = p + msg->front.iov_len; struct ceph_mds_snap_head *h; int num_split_inos, num_split_realms; __le64 *split_inos = NULL, *split_realms = NULL; int i; int locked_rwsem = 0; /* decode */ if (msg->front.iov_len < sizeof(*h)) goto bad; h = p; op = le32_to_cpu(h->op); split = le64_to_cpu(h->split); /* non-zero if we are splitting an * existing realm */ num_split_inos = le32_to_cpu(h->num_split_inos); num_split_realms = le32_to_cpu(h->num_split_realms); trace_len = le32_to_cpu(h->trace_len); p += sizeof(*h); dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds, ceph_snap_op_name(op), split, trace_len); mutex_lock(&session->s_mutex); session->s_seq++; mutex_unlock(&session->s_mutex); down_write(&mdsc->snap_rwsem); locked_rwsem = 1; if (op == CEPH_SNAP_OP_SPLIT) { struct ceph_mds_snap_realm *ri; /* * A "split" breaks part of an existing realm off into * a new realm. The MDS provides a list of inodes * (with caps) and child realms that belong to the new * child. */ split_inos = p; p += sizeof(u64) * num_split_inos; split_realms = p; p += sizeof(u64) * num_split_realms; ceph_decode_need(&p, e, sizeof(*ri), bad); /* we will peek at realm info here, but will _not_ * advance p, as the realm update will occur below in * ceph_update_snap_trace. */ ri = p; realm = ceph_lookup_snap_realm(mdsc, split); if (!realm) { realm = ceph_create_snap_realm(mdsc, split); if (IS_ERR(realm)) goto out; } ceph_get_snap_realm(mdsc, realm); dout("splitting snap_realm %llx %p\n", realm->ino, realm); for (i = 0; i < num_split_inos; i++) { struct ceph_vino vino = { .ino = le64_to_cpu(split_inos[i]), .snap = CEPH_NOSNAP, }; struct inode *inode = ceph_find_inode(sb, vino); struct ceph_inode_info *ci; if (!inode) continue; ci = ceph_inode(inode); spin_lock(&inode->i_lock); if (!ci->i_snap_realm) goto skip_inode; /* * If this inode belongs to a realm that was * created after our new realm, we experienced * a race (due to another split notifications * arriving from a different MDS). So skip * this inode. */ if (ci->i_snap_realm->created > le64_to_cpu(ri->created)) { dout(" leaving %p in newer realm %llx %p\n", inode, ci->i_snap_realm->ino, ci->i_snap_realm); goto skip_inode; } dout(" will move %p to split realm %llx %p\n", inode, realm->ino, realm); /* * Remove the inode from the realm's inode * list, but don't add it to the new realm * yet. We don't want the cap_snap to be * queued (again) by ceph_update_snap_trace() * below. Queue it _now_, under the old context. */ spin_lock(&realm->inodes_with_caps_lock); list_del_init(&ci->i_snap_realm_item); spin_unlock(&realm->inodes_with_caps_lock); spin_unlock(&inode->i_lock); ceph_queue_cap_snap(ci, ci->i_snap_realm->cached_context); iput(inode); continue; skip_inode: spin_unlock(&inode->i_lock); iput(inode); } /* we may have taken some of the old realm's children. */ for (i = 0; i < num_split_realms; i++) { struct ceph_snap_realm *child = ceph_lookup_snap_realm(mdsc, le64_to_cpu(split_realms[i])); if (!child) continue; adjust_snap_realm_parent(mdsc, child, realm->ino); } } /* * update using the provided snap trace. if we are deleting a * snap, we can avoid queueing cap_snaps. */ ceph_update_snap_trace(mdsc, p, e, op == CEPH_SNAP_OP_DESTROY); if (op == CEPH_SNAP_OP_SPLIT) { /* * ok, _now_ add the inodes into the new realm. */ for (i = 0; i < num_split_inos; i++) { struct ceph_vino vino = { .ino = le64_to_cpu(split_inos[i]), .snap = CEPH_NOSNAP, }; struct inode *inode = ceph_find_inode(sb, vino); struct ceph_inode_info *ci; if (!inode) continue; ci = ceph_inode(inode); spin_lock(&inode->i_lock); if (!ci->i_snap_realm) goto split_skip_inode; ceph_put_snap_realm(mdsc, ci->i_snap_realm); spin_lock(&realm->inodes_with_caps_lock); list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); ci->i_snap_realm = realm; spin_unlock(&realm->inodes_with_caps_lock); ceph_get_snap_realm(mdsc, realm); split_skip_inode: spin_unlock(&inode->i_lock); iput(inode); } /* we took a reference when we created the realm, above */ ceph_put_snap_realm(mdsc, realm); } __cleanup_empty_realms(mdsc); up_write(&mdsc->snap_rwsem); flush_snaps(mdsc); return; bad: pr_err("corrupt snap message from mds%d\n", mds); ceph_msg_dump(msg); out: if (locked_rwsem) up_write(&mdsc->snap_rwsem); return; }