#include "ceph_debug.h" #include #include #include #include #include #include "super.h" #include "decode.h" #include "messenger.h" /* * Capability management * * The Ceph metadata servers control client access to inode metadata * and file data by issuing capabilities, granting clients permission * to read and/or write both inode field and file data to OSDs * (storage nodes). Each capability consists of a set of bits * indicating which operations are allowed. * * If the client holds a *_SHARED cap, the client has a coherent value * that can be safely read from the cached inode. * * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the * client is allowed to change inode attributes (e.g., file size, * mtime), note its dirty state in the ceph_cap, and asynchronously * flush that metadata change to the MDS. * * In the event of a conflicting operation (perhaps by another * client), the MDS will revoke the conflicting client capabilities. * * In order for a client to cache an inode, it must hold a capability * with at least one MDS server. When inodes are released, release * notifications are batched and periodically sent en masse to the MDS * cluster to release server state. */ /* * Generate readable cap strings for debugging output. */ #define MAX_CAP_STR 20 static char cap_str[MAX_CAP_STR][40]; static DEFINE_SPINLOCK(cap_str_lock); static int last_cap_str; static char *gcap_string(char *s, int c) { if (c & CEPH_CAP_GSHARED) *s++ = 's'; if (c & CEPH_CAP_GEXCL) *s++ = 'x'; if (c & CEPH_CAP_GCACHE) *s++ = 'c'; if (c & CEPH_CAP_GRD) *s++ = 'r'; if (c & CEPH_CAP_GWR) *s++ = 'w'; if (c & CEPH_CAP_GBUFFER) *s++ = 'b'; if (c & CEPH_CAP_GLAZYIO) *s++ = 'l'; return s; } const char *ceph_cap_string(int caps) { int i; char *s; int c; spin_lock(&cap_str_lock); i = last_cap_str++; if (last_cap_str == MAX_CAP_STR) last_cap_str = 0; spin_unlock(&cap_str_lock); s = cap_str[i]; if (caps & CEPH_CAP_PIN) *s++ = 'p'; c = (caps >> CEPH_CAP_SAUTH) & 3; if (c) { *s++ = 'A'; s = gcap_string(s, c); } c = (caps >> CEPH_CAP_SLINK) & 3; if (c) { *s++ = 'L'; s = gcap_string(s, c); } c = (caps >> CEPH_CAP_SXATTR) & 3; if (c) { *s++ = 'X'; s = gcap_string(s, c); } c = caps >> CEPH_CAP_SFILE; if (c) { *s++ = 'F'; s = gcap_string(s, c); } if (s == cap_str[i]) *s++ = '-'; *s = 0; return cap_str[i]; } /* * Cap reservations * * Maintain a global pool of preallocated struct ceph_caps, referenced * by struct ceph_caps_reservations. This ensures that we preallocate * memory needed to successfully process an MDS response. (If an MDS * sends us cap information and we fail to process it, we will have * problems due to the client and MDS being out of sync.) * * Reservations are 'owned' by a ceph_cap_reservation context. */ static spinlock_t caps_list_lock; static struct list_head caps_list; /* unused (reserved or unreserved) */ static int caps_total_count; /* total caps allocated */ static int caps_use_count; /* in use */ static int caps_reserve_count; /* unused, reserved */ static int caps_avail_count; /* unused, unreserved */ static int caps_min_count; /* keep at least this many (unreserved) */ void __init ceph_caps_init(void) { INIT_LIST_HEAD(&caps_list); spin_lock_init(&caps_list_lock); } void ceph_caps_finalize(void) { struct ceph_cap *cap; spin_lock(&caps_list_lock); while (!list_empty(&caps_list)) { cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); kmem_cache_free(ceph_cap_cachep, cap); } caps_total_count = 0; caps_avail_count = 0; caps_use_count = 0; caps_reserve_count = 0; caps_min_count = 0; spin_unlock(&caps_list_lock); } void ceph_adjust_min_caps(int delta) { spin_lock(&caps_list_lock); caps_min_count += delta; BUG_ON(caps_min_count < 0); spin_unlock(&caps_list_lock); } int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) { int i; struct ceph_cap *cap; int have; int alloc = 0; LIST_HEAD(newcaps); int ret = 0; dout("reserve caps ctx=%p need=%d\n", ctx, need); /* first reserve any caps that are already allocated */ spin_lock(&caps_list_lock); if (caps_avail_count >= need) have = need; else have = caps_avail_count; caps_avail_count -= have; caps_reserve_count += have; BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + caps_avail_count); spin_unlock(&caps_list_lock); for (i = have; i < need; i++) { cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); if (!cap) { ret = -ENOMEM; goto out_alloc_count; } list_add(&cap->caps_item, &newcaps); alloc++; } BUG_ON(have + alloc != need); spin_lock(&caps_list_lock); caps_total_count += alloc; caps_reserve_count += alloc; list_splice(&newcaps, &caps_list); BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + caps_avail_count); spin_unlock(&caps_list_lock); ctx->count = need; dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", ctx, caps_total_count, caps_use_count, caps_reserve_count, caps_avail_count); return 0; out_alloc_count: /* we didn't manage to reserve as much as we needed */ pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", ctx, need, have); return ret; } int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) { dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); if (ctx->count) { spin_lock(&caps_list_lock); BUG_ON(caps_reserve_count < ctx->count); caps_reserve_count -= ctx->count; caps_avail_count += ctx->count; ctx->count = 0; dout("unreserve caps %d = %d used + %d resv + %d avail\n", caps_total_count, caps_use_count, caps_reserve_count, caps_avail_count); BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + caps_avail_count); spin_unlock(&caps_list_lock); } return 0; } static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) { struct ceph_cap *cap = NULL; /* temporary, until we do something about cap import/export */ if (!ctx) return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); spin_lock(&caps_list_lock); dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", ctx, ctx->count, caps_total_count, caps_use_count, caps_reserve_count, caps_avail_count); BUG_ON(!ctx->count); BUG_ON(ctx->count > caps_reserve_count); BUG_ON(list_empty(&caps_list)); ctx->count--; caps_reserve_count--; caps_use_count++; cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + caps_avail_count); spin_unlock(&caps_list_lock); return cap; } void ceph_put_cap(struct ceph_cap *cap) { spin_lock(&caps_list_lock); dout("put_cap %p %d = %d used + %d resv + %d avail\n", cap, caps_total_count, caps_use_count, caps_reserve_count, caps_avail_count); caps_use_count--; /* * Keep some preallocated caps around (ceph_min_count), to * avoid lots of free/alloc churn. */ if (caps_avail_count >= caps_reserve_count + caps_min_count) { caps_total_count--; kmem_cache_free(ceph_cap_cachep, cap); } else { caps_avail_count++; list_add(&cap->caps_item, &caps_list); } BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + caps_avail_count); spin_unlock(&caps_list_lock); } void ceph_reservation_status(struct ceph_client *client, int *total, int *avail, int *used, int *reserved, int *min) { if (total) *total = caps_total_count; if (avail) *avail = caps_avail_count; if (used) *used = caps_use_count; if (reserved) *reserved = caps_reserve_count; if (min) *min = caps_min_count; } /* * Find ceph_cap for given mds, if any. * * Called with i_lock held. */ static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) { struct ceph_cap *cap; struct rb_node *n = ci->i_caps.rb_node; while (n) { cap = rb_entry(n, struct ceph_cap, ci_node); if (mds < cap->mds) n = n->rb_left; else if (mds > cap->mds) n = n->rb_right; else return cap; } return NULL; } /* * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else * -1. */ static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) { struct ceph_cap *cap; int mds = -1; struct rb_node *p; /* prefer mds with WR|WRBUFFER|EXCL caps */ for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); mds = cap->mds; if (mseq) *mseq = cap->mseq; if (cap->issued & (CEPH_CAP_FILE_WR | CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_EXCL)) break; } return mds; } int ceph_get_cap_mds(struct inode *inode) { int mds; spin_lock(&inode->i_lock); mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); spin_unlock(&inode->i_lock); return mds; } /* * Called under i_lock. */ static void __insert_cap_node(struct ceph_inode_info *ci, struct ceph_cap *new) { struct rb_node **p = &ci->i_caps.rb_node; struct rb_node *parent = NULL; struct ceph_cap *cap = NULL; while (*p) { parent = *p; cap = rb_entry(parent, struct ceph_cap, ci_node); if (new->mds < cap->mds) p = &(*p)->rb_left; else if (new->mds > cap->mds) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->ci_node, parent, p); rb_insert_color(&new->ci_node, &ci->i_caps); } /* * (re)set cap hold timeouts, which control the delayed release * of unused caps back to the MDS. Should be called on cap use. */ static void __cap_set_timeouts(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { struct ceph_mount_args *ma = mdsc->client->mount_args; ci->i_hold_caps_min = round_jiffies(jiffies + ma->caps_wanted_delay_min * HZ); ci->i_hold_caps_max = round_jiffies(jiffies + ma->caps_wanted_delay_max * HZ); dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); } /* * (Re)queue cap at the end of the delayed cap release list. * * If I_FLUSH is set, leave the inode at the front of the list. * * Caller holds i_lock * -> we take mdsc->cap_delay_lock */ static void __cap_delay_requeue(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { __cap_set_timeouts(mdsc, ci); dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, ci->i_ceph_flags, ci->i_hold_caps_max); if (!mdsc->stopping) { spin_lock(&mdsc->cap_delay_lock); if (!list_empty(&ci->i_cap_delay_list)) { if (ci->i_ceph_flags & CEPH_I_FLUSH) goto no_change; list_del_init(&ci->i_cap_delay_list); } list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); no_change: spin_unlock(&mdsc->cap_delay_lock); } } /* * Queue an inode for immediate writeback. Mark inode with I_FLUSH, * indicating we should send a cap message to flush dirty metadata * asap, and move to the front of the delayed cap list. */ static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); spin_lock(&mdsc->cap_delay_lock); ci->i_ceph_flags |= CEPH_I_FLUSH; if (!list_empty(&ci->i_cap_delay_list)) list_del_init(&ci->i_cap_delay_list); list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); spin_unlock(&mdsc->cap_delay_lock); } /* * Cancel delayed work on cap. * * Caller must hold i_lock. */ static void __cap_delay_cancel(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { dout("__cap_delay_cancel %p\n", &ci->vfs_inode); if (list_empty(&ci->i_cap_delay_list)) return; spin_lock(&mdsc->cap_delay_lock); list_del_init(&ci->i_cap_delay_list); spin_unlock(&mdsc->cap_delay_lock); } /* * Common issue checks for add_cap, handle_cap_grant. */ static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, unsigned issued) { unsigned had = __ceph_caps_issued(ci, NULL); /* * Each time we receive FILE_CACHE anew, we increment * i_rdcache_gen. */ if ((issued & CEPH_CAP_FILE_CACHE) && (had & CEPH_CAP_FILE_CACHE) == 0) ci->i_rdcache_gen++; /* * if we are newly issued FILE_SHARED, clear I_COMPLETE; we * don't know what happened to this directory while we didn't * have the cap. */ if ((issued & CEPH_CAP_FILE_SHARED) && (had & CEPH_CAP_FILE_SHARED) == 0) { ci->i_shared_gen++; if (S_ISDIR(ci->vfs_inode.i_mode)) { dout(" marking %p NOT complete\n", &ci->vfs_inode); ci->i_ceph_flags &= ~CEPH_I_COMPLETE; } } } /* * Add a capability under the given MDS session. * * Caller should hold session snap_rwsem (read) and s_mutex. * * @fmode is the open file mode, if we are opening a file, otherwise * it is < 0. (This is so we can atomically add the cap and add an * open file reference to it.) */ int ceph_add_cap(struct inode *inode, struct ceph_mds_session *session, u64 cap_id, int fmode, unsigned issued, unsigned wanted, unsigned seq, unsigned mseq, u64 realmino, int flags, struct ceph_cap_reservation *caps_reservation) { struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap *new_cap = NULL; struct ceph_cap *cap; int mds = session->s_mds; int actual_wanted; dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, session->s_mds, cap_id, ceph_cap_string(issued), seq); /* * If we are opening the file, include file mode wanted bits * in wanted. */ if (fmode >= 0) wanted |= ceph_caps_for_mode(fmode); retry: spin_lock(&inode->i_lock); cap = __get_cap_for_mds(ci, mds); if (!cap) { if (new_cap) { cap = new_cap; new_cap = NULL; } else { spin_unlock(&inode->i_lock); new_cap = get_cap(caps_reservation); if (new_cap == NULL) return -ENOMEM; goto retry; } cap->issued = 0; cap->implemented = 0; cap->mds = mds; cap->mds_wanted = 0; cap->ci = ci; __insert_cap_node(ci, cap); /* clear out old exporting info? (i.e. on cap import) */ if (ci->i_cap_exporting_mds == mds) { ci->i_cap_exporting_issued = 0; ci->i_cap_exporting_mseq = 0; ci->i_cap_exporting_mds = -1; } /* add to session cap list */ cap->session = session; spin_lock(&session->s_cap_lock); list_add_tail(&cap->session_caps, &session->s_caps); session->s_nr_caps++; spin_unlock(&session->s_cap_lock); } if (!ci->i_snap_realm) { /* * add this inode to the appropriate snap realm */ struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, realmino); if (realm) { ceph_get_snap_realm(mdsc, realm); spin_lock(&realm->inodes_with_caps_lock); ci->i_snap_realm = realm; list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps); spin_unlock(&realm->inodes_with_caps_lock); } else { pr_err("ceph_add_cap: couldn't find snap realm %llx\n", realmino); } } __check_cap_issue(ci, cap, issued); /* * If we are issued caps we don't want, or the mds' wanted * value appears to be off, queue a check so we'll release * later and/or update the mds wanted value. */ actual_wanted = __ceph_caps_wanted(ci); if ((wanted & ~actual_wanted) || (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { dout(" issued %s, mds wanted %s, actual %s, queueing\n", ceph_cap_string(issued), ceph_cap_string(wanted), ceph_cap_string(actual_wanted)); __cap_delay_requeue(mdsc, ci); } if (flags & CEPH_CAP_FLAG_AUTH) ci->i_auth_cap = cap; else if (ci->i_auth_cap == cap) ci->i_auth_cap = NULL; dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", inode, ceph_vinop(inode), cap, ceph_cap_string(issued), ceph_cap_string(issued|cap->issued), seq, mds); cap->cap_id = cap_id; cap->issued = issued; cap->implemented |= issued; cap->mds_wanted |= wanted; cap->seq = seq; cap->issue_seq = seq; cap->mseq = mseq; cap->cap_gen = session->s_cap_gen; if (fmode >= 0) __ceph_get_fmode(ci, fmode); spin_unlock(&inode->i_lock); wake_up(&ci->i_cap_wq); return 0; } /* * Return true if cap has not timed out and belongs to the current * generation of the MDS session (i.e. has not gone 'stale' due to * us losing touch with the mds). */ static int __cap_is_valid(struct ceph_cap *cap) { unsigned long ttl; u32 gen; spin_lock(&cap->session->s_cap_lock); gen = cap->session->s_cap_gen; ttl = cap->session->s_cap_ttl; spin_unlock(&cap->session->s_cap_lock); if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { dout("__cap_is_valid %p cap %p issued %s " "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); return 0; } return 1; } /* * Return set of valid cap bits issued to us. Note that caps time * out, and may be invalidated in bulk if the client session times out * and session->s_cap_gen is bumped. */ int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) { int have = ci->i_snap_caps | ci->i_cap_exporting_issued; struct ceph_cap *cap; struct rb_node *p; if (implemented) *implemented = 0; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; dout("__ceph_caps_issued %p cap %p issued %s\n", &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); have |= cap->issued; if (implemented) *implemented |= cap->implemented; } return have; } /* * Get cap bits issued by caps other than @ocap */ int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) { int have = ci->i_snap_caps; struct ceph_cap *cap; struct rb_node *p; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (cap == ocap) continue; if (!__cap_is_valid(cap)) continue; have |= cap->issued; } return have; } /* * Move a cap to the end of the LRU (oldest caps at list head, newest * at list tail). */ static void __touch_cap(struct ceph_cap *cap) { struct ceph_mds_session *s = cap->session; spin_lock(&s->s_cap_lock); if (s->s_cap_iterator == NULL) { dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, s->s_mds); list_move_tail(&cap->session_caps, &s->s_caps); } else { dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", &cap->ci->vfs_inode, cap, s->s_mds); } spin_unlock(&s->s_cap_lock); } /* * Check if we hold the given mask. If so, move the cap(s) to the * front of their respective LRUs. (This is the preferred way for * callers to check for caps they want.) */ int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) { struct ceph_cap *cap; struct rb_node *p; int have = ci->i_snap_caps; if ((have & mask) == mask) { dout("__ceph_caps_issued_mask %p snap issued %s" " (mask %s)\n", &ci->vfs_inode, ceph_cap_string(have), ceph_cap_string(mask)); return 1; } for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; if ((cap->issued & mask) == mask) { dout("__ceph_caps_issued_mask %p cap %p issued %s" " (mask %s)\n", &ci->vfs_inode, cap, ceph_cap_string(cap->issued), ceph_cap_string(mask)); if (touch) __touch_cap(cap); return 1; } /* does a combination of caps satisfy mask? */ have |= cap->issued; if ((have & mask) == mask) { dout("__ceph_caps_issued_mask %p combo issued %s" " (mask %s)\n", &ci->vfs_inode, ceph_cap_string(cap->issued), ceph_cap_string(mask)); if (touch) { struct rb_node *q; /* touch this + preceeding caps */ __touch_cap(cap); for (q = rb_first(&ci->i_caps); q != p; q = rb_next(q)) { cap = rb_entry(q, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; __touch_cap(cap); } } return 1; } } return 0; } /* * Return true if mask caps are currently being revoked by an MDS. */ int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) { struct inode *inode = &ci->vfs_inode; struct ceph_cap *cap; struct rb_node *p; int ret = 0; spin_lock(&inode->i_lock); for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (__cap_is_valid(cap) && (cap->implemented & ~cap->issued & mask)) { ret = 1; break; } } spin_unlock(&inode->i_lock); dout("ceph_caps_revoking %p %s = %d\n", inode, ceph_cap_string(mask), ret); return ret; } int __ceph_caps_used(struct ceph_inode_info *ci) { int used = 0; if (ci->i_pin_ref) used |= CEPH_CAP_PIN; if (ci->i_rd_ref) used |= CEPH_CAP_FILE_RD; if (ci->i_rdcache_ref || ci->i_rdcache_gen) used |= CEPH_CAP_FILE_CACHE; if (ci->i_wr_ref) used |= CEPH_CAP_FILE_WR; if (ci->i_wrbuffer_ref) used |= CEPH_CAP_FILE_BUFFER; return used; } /* * wanted, by virtue of open file modes */ int __ceph_caps_file_wanted(struct ceph_inode_info *ci) { int want = 0; int mode; for (mode = 0; mode < 4; mode++) if (ci->i_nr_by_mode[mode]) want |= ceph_caps_for_mode(mode); return want; } /* * Return caps we have registered with the MDS(s) as 'wanted'. */ int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) { struct ceph_cap *cap; struct rb_node *p; int mds_wanted = 0; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; mds_wanted |= cap->mds_wanted; } return mds_wanted; } /* * called under i_lock */ static int __ceph_is_any_caps(struct ceph_inode_info *ci) { return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; } /* * caller should hold i_lock. * caller will not hold session s_mutex if called from destroy_inode. */ void __ceph_remove_cap(struct ceph_cap *cap) { struct ceph_mds_session *session = cap->session; struct ceph_inode_info *ci = cap->ci; struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); /* remove from inode list */ rb_erase(&cap->ci_node, &ci->i_caps); cap->ci = NULL; if (ci->i_auth_cap == cap) ci->i_auth_cap = NULL; /* remove from session list */ spin_lock(&session->s_cap_lock); if (session->s_cap_iterator == cap) { /* not yet, we are iterating over this very cap */ dout("__ceph_remove_cap delaying %p removal from session %p\n", cap, cap->session); } else { list_del_init(&cap->session_caps); session->s_nr_caps--; cap->session = NULL; } spin_unlock(&session->s_cap_lock); if (cap->session == NULL) ceph_put_cap(cap); if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { struct ceph_snap_realm *realm = ci->i_snap_realm; spin_lock(&realm->inodes_with_caps_lock); list_del_init(&ci->i_snap_realm_item); ci->i_snap_realm_counter++; ci->i_snap_realm = NULL; spin_unlock(&realm->inodes_with_caps_lock); ceph_put_snap_realm(mdsc, realm); } if (!__ceph_is_any_real_caps(ci)) __cap_delay_cancel(mdsc, ci); } /* * Build and send a cap message to the given MDS. * * Caller should be holding s_mutex. */ static int send_cap_msg(struct ceph_mds_session *session, u64 ino, u64 cid, int op, int caps, int wanted, int dirty, u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, u64 size, u64 max_size, struct timespec *mtime, struct timespec *atime, u64 time_warp_seq, uid_t uid, gid_t gid, mode_t mode, u64 xattr_version, struct ceph_buffer *xattrs_buf, u64 follows) { struct ceph_mds_caps *fc; struct ceph_msg *msg; dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" " seq %u/%u mseq %u follows %lld size %llu/%llu" " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), ceph_cap_string(dirty), seq, issue_seq, mseq, follows, size, max_size, xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL); if (IS_ERR(msg)) return PTR_ERR(msg); msg->hdr.tid = cpu_to_le64(flush_tid); fc = msg->front.iov_base; memset(fc, 0, sizeof(*fc)); fc->cap_id = cpu_to_le64(cid); fc->op = cpu_to_le32(op); fc->seq = cpu_to_le32(seq); fc->issue_seq = cpu_to_le32(issue_seq); fc->migrate_seq = cpu_to_le32(mseq); fc->caps = cpu_to_le32(caps); fc->wanted = cpu_to_le32(wanted); fc->dirty = cpu_to_le32(dirty); fc->ino = cpu_to_le64(ino); fc->snap_follows = cpu_to_le64(follows); fc->size = cpu_to_le64(size); fc->max_size = cpu_to_le64(max_size); if (mtime) ceph_encode_timespec(&fc->mtime, mtime); if (atime) ceph_encode_timespec(&fc->atime, atime); fc->time_warp_seq = cpu_to_le32(time_warp_seq); fc->uid = cpu_to_le32(uid); fc->gid = cpu_to_le32(gid); fc->mode = cpu_to_le32(mode); fc->xattr_version = cpu_to_le64(xattr_version); if (xattrs_buf) { msg->middle = ceph_buffer_get(xattrs_buf); fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); } ceph_con_send(&session->s_con, msg); return 0; } /* * Queue cap releases when an inode is dropped from our cache. Since * inode is about to be destroyed, there is no need for i_lock. */ void ceph_queue_caps_release(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct rb_node *p; p = rb_first(&ci->i_caps); while (p) { struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); struct ceph_mds_session *session = cap->session; struct ceph_msg *msg; struct ceph_mds_cap_release *head; struct ceph_mds_cap_item *item; spin_lock(&session->s_cap_lock); BUG_ON(!session->s_num_cap_releases); msg = list_first_entry(&session->s_cap_releases, struct ceph_msg, list_head); dout(" adding %p release to mds%d msg %p (%d left)\n", inode, session->s_mds, msg, session->s_num_cap_releases); BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); head = msg->front.iov_base; head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); item = msg->front.iov_base + msg->front.iov_len; item->ino = cpu_to_le64(ceph_ino(inode)); item->cap_id = cpu_to_le64(cap->cap_id); item->migrate_seq = cpu_to_le32(cap->mseq); item->seq = cpu_to_le32(cap->issue_seq); session->s_num_cap_releases--; msg->front.iov_len += sizeof(*item); if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { dout(" release msg %p full\n", msg); list_move_tail(&msg->list_head, &session->s_cap_releases_done); } else { dout(" release msg %p at %d/%d (%d)\n", msg, (int)le32_to_cpu(head->num), (int)CEPH_CAPS_PER_RELEASE, (int)msg->front.iov_len); } spin_unlock(&session->s_cap_lock); p = rb_next(p); __ceph_remove_cap(cap); } } /* * Send a cap msg on the given inode. Update our caps state, then * drop i_lock and send the message. * * Make note of max_size reported/requested from mds, revoked caps * that have now been implemented. * * Make half-hearted attempt ot to invalidate page cache if we are * dropping RDCACHE. Note that this will leave behind locked pages * that we'll then need to deal with elsewhere. * * Return non-zero if delayed release, or we experienced an error * such that the caller should requeue + retry later. * * called with i_lock, then drops it. * caller should hold snap_rwsem (read), s_mutex. */ static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, int op, int used, int want, int retain, int flushing, unsigned *pflush_tid) __releases(cap->ci->vfs_inode->i_lock) { struct ceph_inode_info *ci = cap->ci; struct inode *inode = &ci->vfs_inode; u64 cap_id = cap->cap_id; int held, revoking, dropping, keep; u64 seq, issue_seq, mseq, time_warp_seq, follows; u64 size, max_size; struct timespec mtime, atime; int wake = 0; mode_t mode; uid_t uid; gid_t gid; struct ceph_mds_session *session; u64 xattr_version = 0; int delayed = 0; u64 flush_tid = 0; int i; int ret; held = cap->issued | cap->implemented; revoking = cap->implemented & ~cap->issued; retain &= ~revoking; dropping = cap->issued & ~retain; dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", inode, cap, cap->session, ceph_cap_string(held), ceph_cap_string(held & retain), ceph_cap_string(revoking)); BUG_ON((retain & CEPH_CAP_PIN) == 0); session = cap->session; /* don't release wanted unless we've waited a bit. */ if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && time_before(jiffies, ci->i_hold_caps_min)) { dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", ceph_cap_string(cap->issued), ceph_cap_string(cap->issued & retain), ceph_cap_string(cap->mds_wanted), ceph_cap_string(want)); want |= cap->mds_wanted; retain |= cap->issued; delayed = 1; } ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); cap->issued &= retain; /* drop bits we don't want */ if (cap->implemented & ~cap->issued) { /* * Wake up any waiters on wanted -> needed transition. * This is due to the weird transition from buffered * to sync IO... we need to flush dirty pages _before_ * allowing sync writes to avoid reordering. */ wake = 1; } cap->implemented &= cap->issued | used; cap->mds_wanted = want; if (flushing) { /* * assign a tid for flush operations so we can avoid * flush1 -> dirty1 -> flush2 -> flushack1 -> mark * clean type races. track latest tid for every bit * so we can handle flush AxFw, flush Fw, and have the * first ack clean Ax. */ flush_tid = ++ci->i_cap_flush_last_tid; if (pflush_tid) *pflush_tid = flush_tid; dout(" cap_flush_tid %d\n", (int)flush_tid); for (i = 0; i < CEPH_CAP_BITS; i++) if (flushing & (1 << i)) ci->i_cap_flush_tid[i] = flush_tid; } keep = cap->implemented; seq = cap->seq; issue_seq = cap->issue_seq; mseq = cap->mseq; size = inode->i_size; ci->i_reported_size = size; max_size = ci->i_wanted_max_size; ci->i_requested_max_size = max_size; mtime = inode->i_mtime; atime = inode->i_atime; time_warp_seq = ci->i_time_warp_seq; follows = ci->i_snap_realm->cached_context->seq; uid = inode->i_uid; gid = inode->i_gid; mode = inode->i_mode; if (dropping & CEPH_CAP_XATTR_EXCL) { __ceph_build_xattrs_blob(ci); xattr_version = ci->i_xattrs.version + 1; } spin_unlock(&inode->i_lock); ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, size, max_size, &mtime, &atime, time_warp_seq, uid, gid, mode, xattr_version, (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, follows); if (ret < 0) { dout("error sending cap msg, must requeue %p\n", inode); delayed = 1; } if (wake) wake_up(&ci->i_cap_wq); return delayed; } /* * When a snapshot is taken, clients accumulate dirty metadata on * inodes with capabilities in ceph_cap_snaps to describe the file * state at the time the snapshot was taken. This must be flushed * asynchronously back to the MDS once sync writes complete and dirty * data is written out. * * Called under i_lock. Takes s_mutex as needed. */ void __ceph_flush_snaps(struct ceph_inode_info *ci, struct ceph_mds_session **psession) { struct inode *inode = &ci->vfs_inode; int mds; struct ceph_cap_snap *capsnap; u32 mseq; struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; struct ceph_mds_session *session = NULL; /* if session != NULL, we hold session->s_mutex */ u64 next_follows = 0; /* keep track of how far we've gotten through the i_cap_snaps list, and skip these entries next time around to avoid an infinite loop */ if (psession) session = *psession; dout("__flush_snaps %p\n", inode); retry: list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { /* avoid an infiniute loop after retry */ if (capsnap->follows < next_follows) continue; /* * we need to wait for sync writes to complete and for dirty * pages to be written out. */ if (capsnap->dirty_pages || capsnap->writing) continue; /* pick mds, take s_mutex */ mds = __ceph_get_cap_mds(ci, &mseq); if (session && session->s_mds != mds) { dout("oops, wrong session %p mutex\n", session); mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); session = NULL; } if (!session) { spin_unlock(&inode->i_lock); mutex_lock(&mdsc->mutex); session = __ceph_lookup_mds_session(mdsc, mds); mutex_unlock(&mdsc->mutex); if (session) { dout("inverting session/ino locks on %p\n", session); mutex_lock(&session->s_mutex); } /* * if session == NULL, we raced against a cap * deletion. retry, and we'll get a better * @mds value next time. */ spin_lock(&inode->i_lock); goto retry; } capsnap->flush_tid = ++ci->i_cap_flush_last_tid; atomic_inc(&capsnap->nref); if (!list_empty(&capsnap->flushing_item)) list_del_init(&capsnap->flushing_item); list_add_tail(&capsnap->flushing_item, &session->s_cap_snaps_flushing); spin_unlock(&inode->i_lock); dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", inode, capsnap, next_follows, capsnap->size); send_cap_msg(session, ceph_vino(inode).ino, 0, CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, capsnap->size, 0, &capsnap->mtime, &capsnap->atime, capsnap->time_warp_seq, capsnap->uid, capsnap->gid, capsnap->mode, 0, NULL, capsnap->follows); next_follows = capsnap->follows + 1; ceph_put_cap_snap(capsnap); spin_lock(&inode->i_lock); goto retry; } /* we flushed them all; remove this inode from the queue */ spin_lock(&mdsc->snap_flush_lock); list_del_init(&ci->i_snap_flush_item); spin_unlock(&mdsc->snap_flush_lock); if (psession) *psession = session; else if (session) { mutex_unlock(&session->s_mutex); ceph_put_mds_session(session); } } static void ceph_flush_snaps(struct ceph_inode_info *ci) { struct inode *inode = &ci->vfs_inode; spin_lock(&inode->i_lock); __ceph_flush_snaps(ci, NULL); spin_unlock(&inode->i_lock); } /* * Mark caps dirty. If inode is newly dirty, add to the global dirty * list. */ void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) { struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; struct inode *inode = &ci->vfs_inode; int was = ci->i_dirty_caps; int dirty = 0; dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, ceph_cap_string(mask), ceph_cap_string(was), ceph_cap_string(was | mask)); ci->i_dirty_caps |= mask; if (was == 0) { dout(" inode %p now dirty\n", &ci->vfs_inode); BUG_ON(!list_empty(&ci->i_dirty_item)); spin_lock(&mdsc->cap_dirty_lock); list_add(&ci->i_dirty_item, &mdsc->cap_dirty); spin_unlock(&mdsc->cap_dirty_lock); if (ci->i_flushing_caps == 0) { igrab(inode); dirty |= I_DIRTY_SYNC; } } BUG_ON(list_empty(&ci->i_dirty_item)); if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && (mask & CEPH_CAP_FILE_BUFFER)) dirty |= I_DIRTY_DATASYNC; if (dirty) __mark_inode_dirty(inode, dirty); __cap_delay_requeue(mdsc, ci); } /* * Add dirty inode to the flushing list. Assigned a seq number so we * can wait for caps to flush without starving. * * Called under i_lock. */ static int __mark_caps_flushing(struct inode *inode, struct ceph_mds_session *session) { struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); int flushing; BUG_ON(ci->i_dirty_caps == 0); BUG_ON(list_empty(&ci->i_dirty_item)); flushing = ci->i_dirty_caps; dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", ceph_cap_string(flushing), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(ci->i_flushing_caps | flushing)); ci->i_flushing_caps |= flushing; ci->i_dirty_caps = 0; dout(" inode %p now !dirty\n", inode); spin_lock(&mdsc->cap_dirty_lock); list_del_init(&ci->i_dirty_item); ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; if (list_empty(&ci->i_flushing_item)) { list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); mdsc->num_cap_flushing++; dout(" inode %p now flushing seq %lld\n", inode, ci->i_cap_flush_seq); } else { list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); dout(" inode %p now flushing (more) seq %lld\n", inode, ci->i_cap_flush_seq); } spin_unlock(&mdsc->cap_dirty_lock); return flushing; } /* * try to invalidate mapping pages without blocking. */ static int mapping_is_empty(struct address_space *mapping) { struct page *page = find_get_page(mapping, 0); if (!page) return 1; put_page(page); return 0; } static int try_nonblocking_invalidate(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); u32 invalidating_gen = ci->i_rdcache_gen; spin_unlock(&inode->i_lock); invalidate_mapping_pages(&inode->i_data, 0, -1); spin_lock(&inode->i_lock); if (mapping_is_empty(&inode->i_data) && invalidating_gen == ci->i_rdcache_gen) { /* success. */ dout("try_nonblocking_invalidate %p success\n", inode); ci->i_rdcache_gen = 0; ci->i_rdcache_revoking = 0; return 0; } dout("try_nonblocking_invalidate %p failed\n", inode); return -1; } /* * Swiss army knife function to examine currently used and wanted * versus held caps. Release, flush, ack revoked caps to mds as * appropriate. * * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay * cap release further. * CHECK_CAPS_AUTHONLY - we should only check the auth cap * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without * further delay. */ void ceph_check_caps(struct ceph_inode_info *ci, int flags, struct ceph_mds_session *session) { struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); struct ceph_mds_client *mdsc = &client->mdsc; struct inode *inode = &ci->vfs_inode; struct ceph_cap *cap; int file_wanted, used; int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ int drop_session_lock = session ? 0 : 1; int issued, implemented, want, retain, revoking, flushing = 0; int mds = -1; /* keep track of how far we've gone through i_caps list to avoid an infinite loop on retry */ struct rb_node *p; int tried_invalidate = 0; int delayed = 0, sent = 0, force_requeue = 0, num; int queue_invalidate = 0; int is_delayed = flags & CHECK_CAPS_NODELAY; /* if we are unmounting, flush any unused caps immediately. */ if (mdsc->stopping) is_delayed = 1; spin_lock(&inode->i_lock); if (ci->i_ceph_flags & CEPH_I_FLUSH) flags |= CHECK_CAPS_FLUSH; /* flush snaps first time around only */ if (!list_empty(&ci->i_cap_snaps)) __ceph_flush_snaps(ci, &session); goto retry_locked; retry: spin_lock(&inode->i_lock); retry_locked: file_wanted = __ceph_caps_file_wanted(ci); used = __ceph_caps_used(ci); want = file_wanted | used; issued = __ceph_caps_issued(ci, &implemented); revoking = implemented & ~issued; retain = want | CEPH_CAP_PIN; if (!mdsc->stopping && inode->i_nlink > 0) { if (want) { retain |= CEPH_CAP_ANY; /* be greedy */ } else { retain |= CEPH_CAP_ANY_SHARED; /* * keep RD only if we didn't have the file open RW, * because then the mds would revoke it anyway to * journal max_size=0. */ if (ci->i_max_size == 0) retain |= CEPH_CAP_ANY_RD; } } dout("check_caps %p file_want %s used %s dirty %s flushing %s" " issued %s revoking %s retain %s %s%s%s\n", inode, ceph_cap_string(file_wanted), ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(issued), ceph_cap_string(revoking), ceph_cap_string(retain), (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); /* * If we no longer need to hold onto old our caps, and we may * have cached pages, but don't want them, then try to invalidate. * If we fail, it's because pages are locked.... try again later. */ if ((!is_delayed || mdsc->stopping) && ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ ci->i_rdcache_gen && /* may have cached pages */ (file_wanted == 0 || /* no open files */ (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ !tried_invalidate) { dout("check_caps trying to invalidate on %p\n", inode); if (try_nonblocking_invalidate(inode) < 0) { if (revoking & CEPH_CAP_FILE_CACHE) { dout("check_caps queuing invalidate\n"); queue_invalidate = 1; ci->i_rdcache_revoking = ci->i_rdcache_gen; } else { dout("check_caps failed to invalidate pages\n"); /* we failed to invalidate pages. check these caps again later. */ force_requeue = 1; __cap_set_timeouts(mdsc, ci); } } tried_invalidate = 1; goto retry_locked; } num = 0; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); num++; /* avoid looping forever */ if (mds >= cap->mds || ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) continue; /* NOTE: no side-effects allowed, until we take s_mutex */ revoking = cap->implemented & ~cap->issued; if (revoking) dout(" mds%d revoking %s\n", cap->mds, ceph_cap_string(revoking)); if (cap == ci->i_auth_cap && (cap->issued & CEPH_CAP_FILE_WR)) { /* request larger max_size from MDS? */ if (ci->i_wanted_max_size > ci->i_max_size && ci->i_wanted_max_size > ci->i_requested_max_size) { dout("requesting new max_size\n"); goto ack; } /* approaching file_max? */ if ((inode->i_size << 1) >= ci->i_max_size && (ci->i_reported_size << 1) < ci->i_max_size) { dout("i_size approaching max_size\n"); goto ack; } } /* flush anything dirty? */ if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && ci->i_dirty_caps) { dout("flushing dirty caps\n"); goto ack; } /* completed revocation? going down and there are no caps? */ if (revoking && (revoking & used) == 0) { dout("completed revocation of %s\n", ceph_cap_string(cap->implemented & ~cap->issued)); goto ack; } /* want more caps from mds? */ if (want & ~(cap->mds_wanted | cap->issued)) goto ack; /* things we might delay */ if ((cap->issued & ~retain) == 0 && cap->mds_wanted == want) continue; /* nope, all good */ if (is_delayed) goto ack; /* delay? */ if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && time_before(jiffies, ci->i_hold_caps_max)) { dout(" delaying issued %s -> %s, wanted %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(cap->issued & retain), ceph_cap_string(cap->mds_wanted), ceph_cap_string(want)); delayed++; continue; } ack: if (session && session != cap->session) { dout("oops, wrong session %p mutex\n", session); mutex_unlock(&session->s_mutex); session = NULL; } if (!session) { session = cap->session; if (mutex_trylock(&session->s_mutex) == 0) { dout("inverting session/ino locks on %p\n", session); spin_unlock(&inode->i_lock); if (took_snap_rwsem) { up_read(&mdsc->snap_rwsem); took_snap_rwsem = 0; } mutex_lock(&session->s_mutex); goto retry; } } /* take snap_rwsem after session mutex */ if (!took_snap_rwsem) { if (down_read_trylock(&mdsc->snap_rwsem) == 0) { dout("inverting snap/in locks on %p\n", inode); spin_unlock(&inode->i_lock); down_read(&mdsc->snap_rwsem); took_snap_rwsem = 1; goto retry; } took_snap_rwsem = 1; } if (cap == ci->i_auth_cap && ci->i_dirty_caps) flushing = __mark_caps_flushing(inode, session); mds = cap->mds; /* remember mds, so we don't repeat */ sent++; /* __send_cap drops i_lock */ delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, retain, flushing, NULL); goto retry; /* retake i_lock and restart our cap scan. */ } /* * Reschedule delayed caps release if we delayed anything, * otherwise cancel. */ if (delayed && is_delayed) force_requeue = 1; /* __send_cap delayed release; requeue */ if (!delayed && !is_delayed) __cap_delay_cancel(mdsc, ci); else if (!is_delayed || force_requeue) __cap_delay_requeue(mdsc, ci); spin_unlock(&inode->i_lock); if (queue_invalidate) ceph_queue_invalidate(inode); if (session && drop_session_lock) mutex_unlock(&session->s_mutex); if (took_snap_rwsem) up_read(&mdsc->snap_rwsem); } /* * Try to flush dirty caps back to the auth mds. */ static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, unsigned *flush_tid) { struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); int unlock_session = session ? 0 : 1; int flushing = 0; retry: spin_lock(&inode->i_lock); if (ci->i_dirty_caps && ci->i_auth_cap) { struct ceph_cap *cap = ci->i_auth_cap; int used = __ceph_caps_used(ci); int want = __ceph_caps_wanted(ci); int delayed; if (!session) { spin_unlock(&inode->i_lock); session = cap->session; mutex_lock(&session->s_mutex); goto retry; } BUG_ON(session != cap->session); if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) goto out; flushing = __mark_caps_flushing(inode, session); /* __send_cap drops i_lock */ delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, cap->issued | cap->implemented, flushing, flush_tid); if (!delayed) goto out_unlocked; spin_lock(&inode->i_lock); __cap_delay_requeue(mdsc, ci); } out: spin_unlock(&inode->i_lock); out_unlocked: if (session && unlock_session) mutex_unlock(&session->s_mutex); return flushing; } /* * Return true if we've flushed caps through the given flush_tid. */ static int caps_are_flushed(struct inode *inode, unsigned tid) { struct ceph_inode_info *ci = ceph_inode(inode); int dirty, i, ret = 1; spin_lock(&inode->i_lock); dirty = __ceph_caps_dirty(ci); for (i = 0; i < CEPH_CAP_BITS; i++) if ((ci->i_flushing_caps & (1 << i)) && ci->i_cap_flush_tid[i] <= tid) { /* still flushing this bit */ ret = 0; break; } spin_unlock(&inode->i_lock); return ret; } /* * Wait on any unsafe replies for the given inode. First wait on the * newest request, and make that the upper bound. Then, if there are * more requests, keep waiting on the oldest as long as it is still older * than the original request. */ static void sync_write_wait(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct list_head *head = &ci->i_unsafe_writes; struct ceph_osd_request *req; u64 last_tid; spin_lock(&ci->i_unsafe_lock); if (list_empty(head)) goto out; /* set upper bound as _last_ entry in chain */ req = list_entry(head->prev, struct ceph_osd_request, r_unsafe_item); last_tid = req->r_tid; do { ceph_osdc_get_request(req); spin_unlock(&ci->i_unsafe_lock); dout("sync_write_wait on tid %llu (until %llu)\n", req->r_tid, last_tid); wait_for_completion(&req->r_safe_completion); spin_lock(&ci->i_unsafe_lock); ceph_osdc_put_request(req); /* * from here on look at first entry in chain, since we * only want to wait for anything older than last_tid */ if (list_empty(head)) break; req = list_entry(head->next, struct ceph_osd_request, r_unsafe_item); } while (req->r_tid < last_tid); out: spin_unlock(&ci->i_unsafe_lock); } int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; struct ceph_inode_info *ci = ceph_inode(inode); unsigned flush_tid; int ret; int dirty; dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); sync_write_wait(inode); ret = filemap_write_and_wait(inode->i_mapping); if (ret < 0) return ret; dirty = try_flush_caps(inode, NULL, &flush_tid); dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); /* * only wait on non-file metadata writeback (the mds * can recover size and mtime, so we don't need to * wait for that) */ if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { dout("fsync waiting for flush_tid %u\n", flush_tid); ret = wait_event_interruptible(ci->i_cap_wq, caps_are_flushed(inode, flush_tid)); } dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); return ret; } /* * Flush any dirty caps back to the mds. If we aren't asked to wait, * queue inode for flush but don't do so immediately, because we can * get by with fewer MDS messages if we wait for data writeback to * complete first. */ int ceph_write_inode(struct inode *inode, int wait) { struct ceph_inode_info *ci = ceph_inode(inode); unsigned flush_tid; int err = 0; int dirty; dout("write_inode %p wait=%d\n", inode, wait); if (wait) { dirty = try_flush_caps(inode, NULL, &flush_tid); if (dirty) err = wait_event_interruptible(ci->i_cap_wq, caps_are_flushed(inode, flush_tid)); } else { struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; spin_lock(&inode->i_lock); if (__ceph_caps_dirty(ci)) __cap_delay_requeue_front(mdsc, ci); spin_unlock(&inode->i_lock); } return err; } /* * After a recovering MDS goes active, we need to resend any caps * we were flushing. * * Caller holds session->s_mutex. */ static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_cap_snap *capsnap; dout("kick_flushing_capsnaps mds%d\n", session->s_mds); list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, flushing_item) { struct ceph_inode_info *ci = capsnap->ci; struct inode *inode = &ci->vfs_inode; struct ceph_cap *cap; spin_lock(&inode->i_lock); cap = ci->i_auth_cap; if (cap && cap->session == session) { dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, cap, capsnap); __ceph_flush_snaps(ci, &session); } else { pr_err("%p auth cap %p not mds%d ???\n", inode, cap, session->s_mds); spin_unlock(&inode->i_lock); } } } void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_inode_info *ci; kick_flushing_capsnaps(mdsc, session); dout("kick_flushing_caps mds%d\n", session->s_mds); list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { struct inode *inode = &ci->vfs_inode; struct ceph_cap *cap; int delayed = 0; spin_lock(&inode->i_lock); cap = ci->i_auth_cap; if (cap && cap->session == session) { dout("kick_flushing_caps %p cap %p %s\n", inode, cap, ceph_cap_string(ci->i_flushing_caps)); delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, __ceph_caps_used(ci), __ceph_caps_wanted(ci), cap->issued | cap->implemented, ci->i_flushing_caps, NULL); if (delayed) { spin_lock(&inode->i_lock); __cap_delay_requeue(mdsc, ci); spin_unlock(&inode->i_lock); } } else { pr_err("%p auth cap %p not mds%d ???\n", inode, cap, session->s_mds); spin_unlock(&inode->i_lock); } } } /* * Take references to capabilities we hold, so that we don't release * them to the MDS prematurely. * * Protected by i_lock. */ static void __take_cap_refs(struct ceph_inode_info *ci, int got) { if (got & CEPH_CAP_PIN) ci->i_pin_ref++; if (got & CEPH_CAP_FILE_RD) ci->i_rd_ref++; if (got & CEPH_CAP_FILE_CACHE) ci->i_rdcache_ref++; if (got & CEPH_CAP_FILE_WR) ci->i_wr_ref++; if (got & CEPH_CAP_FILE_BUFFER) { if (ci->i_wrbuffer_ref == 0) igrab(&ci->vfs_inode); ci->i_wrbuffer_ref++; dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); } } /* * Try to grab cap references. Specify those refs we @want, and the * minimal set we @need. Also include the larger offset we are writing * to (when applicable), and check against max_size here as well. * Note that caller is responsible for ensuring max_size increases are * requested from the MDS. */ static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, int *got, loff_t endoff, int *check_max, int *err) { struct inode *inode = &ci->vfs_inode; int ret = 0; int have, implemented; int file_wanted; dout("get_cap_refs %p need %s want %s\n", inode, ceph_cap_string(need), ceph_cap_string(want)); spin_lock(&inode->i_lock); /* make sure file is actually open */ file_wanted = __ceph_caps_file_wanted(ci); if ((file_wanted & need) == 0) { dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", ceph_cap_string(need), ceph_cap_string(file_wanted)); *err = -EBADF; ret = 1; goto out; } if (need & CEPH_CAP_FILE_WR) { if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { dout("get_cap_refs %p endoff %llu > maxsize %llu\n", inode, endoff, ci->i_max_size); if (endoff > ci->i_wanted_max_size) { *check_max = 1; ret = 1; } goto out; } /* * If a sync write is in progress, we must wait, so that we * can get a final snapshot value for size+mtime. */ if (__ceph_have_pending_cap_snap(ci)) { dout("get_cap_refs %p cap_snap_pending\n", inode); goto out; } } have = __ceph_caps_issued(ci, &implemented); /* * disallow writes while a truncate is pending */ if (ci->i_truncate_pending) have &= ~CEPH_CAP_FILE_WR; if ((have & need) == need) { /* * Look at (implemented & ~have & not) so that we keep waiting * on transition from wanted -> needed caps. This is needed * for WRBUFFER|WR -> WR to avoid a new WR sync write from * going before a prior buffered writeback happens. */ int not = want & ~(have & need); int revoking = implemented & ~have; dout("get_cap_refs %p have %s but not %s (revoking %s)\n", inode, ceph_cap_string(have), ceph_cap_string(not), ceph_cap_string(revoking)); if ((revoking & not) == 0) { *got = need | (have & want); __take_cap_refs(ci, *got); ret = 1; } } else { dout("get_cap_refs %p have %s needed %s\n", inode, ceph_cap_string(have), ceph_cap_string(need)); } out: spin_unlock(&inode->i_lock); dout("get_cap_refs %p ret %d got %s\n", inode, ret, ceph_cap_string(*got)); return ret; } /* * Check the offset we are writing up to against our current * max_size. If necessary, tell the MDS we want to write to * a larger offset. */ static void check_max_size(struct inode *inode, loff_t endoff) { struct ceph_inode_info *ci = ceph_inode(inode); int check = 0; /* do we need to explicitly request a larger max_size? */ spin_lock(&inode->i_lock); if ((endoff >= ci->i_max_size || endoff > (inode->i_size << 1)) && endoff > ci->i_wanted_max_size) { dout("write %p at large endoff %llu, req max_size\n", inode, endoff); ci->i_wanted_max_size = endoff; check = 1; } spin_unlock(&inode->i_lock); if (check) ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); } /* * Wait for caps, and take cap references. If we can't get a WR cap * due to a small max_size, make sure we check_max_size (and possibly * ask the mds) so we don't get hung up indefinitely. */ int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, loff_t endoff) { int check_max, ret, err; retry: if (endoff > 0) check_max_size(&ci->vfs_inode, endoff); check_max = 0; err = 0; ret = wait_event_interruptible(ci->i_cap_wq, try_get_cap_refs(ci, need, want, got, endoff, &check_max, &err)); if (err) ret = err; if (check_max) goto retry; return ret; } /* * Take cap refs. Caller must already know we hold at least one ref * on the caps in question or we don't know this is safe. */ void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) { spin_lock(&ci->vfs_inode.i_lock); __take_cap_refs(ci, caps); spin_unlock(&ci->vfs_inode.i_lock); } /* * Release cap refs. * * If we released the last ref on any given cap, call ceph_check_caps * to release (or schedule a release). * * If we are releasing a WR cap (from a sync write), finalize any affected * cap_snap, and wake up any waiters. */ void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) { struct inode *inode = &ci->vfs_inode; int last = 0, put = 0, flushsnaps = 0, wake = 0; struct ceph_cap_snap *capsnap; spin_lock(&inode->i_lock); if (had & CEPH_CAP_PIN) --ci->i_pin_ref; if (had & CEPH_CAP_FILE_RD) if (--ci->i_rd_ref == 0) last++; if (had & CEPH_CAP_FILE_CACHE) if (--ci->i_rdcache_ref == 0) last++; if (had & CEPH_CAP_FILE_BUFFER) { if (--ci->i_wrbuffer_ref == 0) { last++; put++; } dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); } if (had & CEPH_CAP_FILE_WR) if (--ci->i_wr_ref == 0) { last++; if (!list_empty(&ci->i_cap_snaps)) { capsnap = list_first_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); if (capsnap->writing) { capsnap->writing = 0; flushsnaps = __ceph_finish_cap_snap(ci, capsnap); wake = 1; } } } spin_unlock(&inode->i_lock); dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had), last ? "last" : ""); if (last && !flushsnaps) ceph_check_caps(ci, 0, NULL); else if (flushsnaps) ceph_flush_snaps(ci); if (wake) wake_up(&ci->i_cap_wq); if (put) iput(inode); } /* * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap * context. Adjust per-snap dirty page accounting as appropriate. * Once all dirty data for a cap_snap is flushed, flush snapped file * metadata back to the MDS. If we dropped the last ref, call * ceph_check_caps. */ void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, struct ceph_snap_context *snapc) { struct inode *inode = &ci->vfs_inode; int last = 0; int last_snap = 0; int found = 0; struct ceph_cap_snap *capsnap = NULL; spin_lock(&inode->i_lock); ci->i_wrbuffer_ref -= nr; last = !ci->i_wrbuffer_ref; if (ci->i_head_snapc == snapc) { ci->i_wrbuffer_ref_head -= nr; if (!ci->i_wrbuffer_ref_head) { ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", inode, ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, last ? " LAST" : ""); } else { list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { if (capsnap->context == snapc) { found = 1; capsnap->dirty_pages -= nr; last_snap = !capsnap->dirty_pages; break; } } BUG_ON(!found); dout("put_wrbuffer_cap_refs on %p cap_snap %p " " snap %lld %d/%d -> %d/%d %s%s\n", inode, capsnap, capsnap->context->seq, ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, ci->i_wrbuffer_ref, capsnap->dirty_pages, last ? " (wrbuffer last)" : "", last_snap ? " (capsnap last)" : ""); } spin_unlock(&inode->i_lock); if (last) { ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); iput(inode); } else if (last_snap) { ceph_flush_snaps(ci); wake_up(&ci->i_cap_wq); } } /* * Handle a cap GRANT message from the MDS. (Note that a GRANT may * actually be a revocation if it specifies a smaller cap set.) * * caller holds s_mutex. * return value: * 0 - ok * 1 - check_caps on auth cap only (writeback) * 2 - check_caps (ack revoke) */ static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, struct ceph_mds_session *session, struct ceph_cap *cap, struct ceph_buffer *xattr_buf) __releases(inode->i_lock) { struct ceph_inode_info *ci = ceph_inode(inode); int mds = session->s_mds; int seq = le32_to_cpu(grant->seq); int newcaps = le32_to_cpu(grant->caps); int issued, implemented, used, wanted, dirty; u64 size = le64_to_cpu(grant->size); u64 max_size = le64_to_cpu(grant->max_size); struct timespec mtime, atime, ctime; int reply = 0; int wake = 0; int writeback = 0; int revoked_rdcache = 0; int queue_invalidate = 0; dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", inode, cap, mds, seq, ceph_cap_string(newcaps)); dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, inode->i_size); /* * If CACHE is being revoked, and we have no dirty buffers, * try to invalidate (once). (If there are dirty buffers, we * will invalidate _after_ writeback.) */ if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && !ci->i_wrbuffer_ref) { if (try_nonblocking_invalidate(inode) == 0) { revoked_rdcache = 1; } else { /* there were locked pages.. invalidate later in a separate thread. */ if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { queue_invalidate = 1; ci->i_rdcache_revoking = ci->i_rdcache_gen; } } } /* side effects now are allowed */ issued = __ceph_caps_issued(ci, &implemented); issued |= implemented | __ceph_caps_dirty(ci); cap->cap_gen = session->s_cap_gen; __check_cap_issue(ci, cap, newcaps); if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { inode->i_mode = le32_to_cpu(grant->mode); inode->i_uid = le32_to_cpu(grant->uid); inode->i_gid = le32_to_cpu(grant->gid); dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, inode->i_uid, inode->i_gid); } if ((issued & CEPH_CAP_LINK_EXCL) == 0) inode->i_nlink = le32_to_cpu(grant->nlink); if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { int len = le32_to_cpu(grant->xattr_len); u64 version = le64_to_cpu(grant->xattr_version); if (version > ci->i_xattrs.version) { dout(" got new xattrs v%llu on %p len %d\n", version, inode, len); if (ci->i_xattrs.blob) ceph_buffer_put(ci->i_xattrs.blob); ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); ci->i_xattrs.version = version; } } /* size/ctime/mtime/atime? */ ceph_fill_file_size(inode, issued, le32_to_cpu(grant->truncate_seq), le64_to_cpu(grant->truncate_size), size); ceph_decode_timespec(&mtime, &grant->mtime); ceph_decode_timespec(&atime, &grant->atime); ceph_decode_timespec(&ctime, &grant->ctime); ceph_fill_file_time(inode, issued, le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, &atime); /* max size increase? */ if (max_size != ci->i_max_size) { dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); ci->i_max_size = max_size; if (max_size >= ci->i_wanted_max_size) { ci->i_wanted_max_size = 0; /* reset */ ci->i_requested_max_size = 0; } wake = 1; } /* check cap bits */ wanted = __ceph_caps_wanted(ci); used = __ceph_caps_used(ci); dirty = __ceph_caps_dirty(ci); dout(" my wanted = %s, used = %s, dirty %s\n", ceph_cap_string(wanted), ceph_cap_string(used), ceph_cap_string(dirty)); if (wanted != le32_to_cpu(grant->wanted)) { dout("mds wanted %s -> %s\n", ceph_cap_string(le32_to_cpu(grant->wanted)), ceph_cap_string(wanted)); grant->wanted = cpu_to_le32(wanted); } cap->seq = seq; /* file layout may have changed */ ci->i_layout = grant->layout; /* revocation, grant, or no-op? */ if (cap->issued & ~newcaps) { dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) writeback = 1; /* will delay ack */ else if (dirty & ~newcaps) reply = 1; /* initiate writeback in check_caps */ else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || revoked_rdcache) reply = 2; /* send revoke ack in check_caps */ cap->issued = newcaps; } else if (cap->issued == newcaps) { dout("caps unchanged: %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); } else { dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); cap->issued = newcaps; cap->implemented |= newcaps; /* add bits only, to * avoid stepping on a * pending revocation */ wake = 1; } spin_unlock(&inode->i_lock); if (writeback) /* * queue inode for writeback: we can't actually call * filemap_write_and_wait, etc. from message handler * context. */ ceph_queue_writeback(inode); if (queue_invalidate) ceph_queue_invalidate(inode); if (wake) wake_up(&ci->i_cap_wq); return reply; } /* * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the * MDS has been safely committed. */ static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, struct ceph_mds_caps *m, struct ceph_mds_session *session, struct ceph_cap *cap) __releases(inode->i_lock) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; unsigned seq = le32_to_cpu(m->seq); int dirty = le32_to_cpu(m->dirty); int cleaned = 0; int drop = 0; int i; for (i = 0; i < CEPH_CAP_BITS; i++) if ((dirty & (1 << i)) && flush_tid == ci->i_cap_flush_tid[i]) cleaned |= 1 << i; dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," " flushing %s -> %s\n", inode, session->s_mds, seq, ceph_cap_string(dirty), ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(ci->i_flushing_caps & ~cleaned)); if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) goto out; ci->i_flushing_caps &= ~cleaned; spin_lock(&mdsc->cap_dirty_lock); if (ci->i_flushing_caps == 0) { list_del_init(&ci->i_flushing_item); if (!list_empty(&session->s_cap_flushing)) dout(" mds%d still flushing cap on %p\n", session->s_mds, &list_entry(session->s_cap_flushing.next, struct ceph_inode_info, i_flushing_item)->vfs_inode); mdsc->num_cap_flushing--; wake_up(&mdsc->cap_flushing_wq); dout(" inode %p now !flushing\n", inode); if (ci->i_dirty_caps == 0) { dout(" inode %p now clean\n", inode); BUG_ON(!list_empty(&ci->i_dirty_item)); drop = 1; } else { BUG_ON(list_empty(&ci->i_dirty_item)); } } spin_unlock(&mdsc->cap_dirty_lock); wake_up(&ci->i_cap_wq); out: spin_unlock(&inode->i_lock); if (drop) iput(inode); } /* * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can * throw away our cap_snap. * * Caller hold s_mutex. */ static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, struct ceph_mds_caps *m, struct ceph_mds_session *session) { struct ceph_inode_info *ci = ceph_inode(inode); u64 follows = le64_to_cpu(m->snap_follows); struct ceph_cap_snap *capsnap; int drop = 0; dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", inode, ci, session->s_mds, follows); spin_lock(&inode->i_lock); list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { if (capsnap->follows == follows) { if (capsnap->flush_tid != flush_tid) { dout(" cap_snap %p follows %lld tid %lld !=" " %lld\n", capsnap, follows, flush_tid, capsnap->flush_tid); break; } WARN_ON(capsnap->dirty_pages || capsnap->writing); dout(" removing cap_snap %p follows %lld\n", capsnap, follows); ceph_put_snap_context(capsnap->context); list_del(&capsnap->ci_item); list_del(&capsnap->flushing_item); ceph_put_cap_snap(capsnap); drop = 1; break; } else { dout(" skipping cap_snap %p follows %lld\n", capsnap, capsnap->follows); } } spin_unlock(&inode->i_lock); if (drop) iput(inode); } /* * Handle TRUNC from MDS, indicating file truncation. * * caller hold s_mutex. */ static void handle_cap_trunc(struct inode *inode, struct ceph_mds_caps *trunc, struct ceph_mds_session *session) __releases(inode->i_lock) { struct ceph_inode_info *ci = ceph_inode(inode); int mds = session->s_mds; int seq = le32_to_cpu(trunc->seq); u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); u64 truncate_size = le64_to_cpu(trunc->truncate_size); u64 size = le64_to_cpu(trunc->size); int implemented = 0; int dirty = __ceph_caps_dirty(ci); int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); int queue_trunc = 0; issued |= implemented | dirty; dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", inode, mds, seq, truncate_size, truncate_seq); queue_trunc = ceph_fill_file_size(inode, issued, truncate_seq, truncate_size, size); spin_unlock(&inode->i_lock); if (queue_trunc) ceph_queue_vmtruncate(inode); } /* * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a * different one. If we are the most recent migration we've seen (as * indicated by mseq), make note of the migrating cap bits for the * duration (until we see the corresponding IMPORT). * * caller holds s_mutex */ static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, struct ceph_mds_session *session) { struct ceph_inode_info *ci = ceph_inode(inode); int mds = session->s_mds; unsigned mseq = le32_to_cpu(ex->migrate_seq); struct ceph_cap *cap = NULL, *t; struct rb_node *p; int remember = 1; dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", inode, ci, mds, mseq); spin_lock(&inode->i_lock); /* make sure we haven't seen a higher mseq */ for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { t = rb_entry(p, struct ceph_cap, ci_node); if (ceph_seq_cmp(t->mseq, mseq) > 0) { dout(" higher mseq on cap from mds%d\n", t->session->s_mds); remember = 0; } if (t->session->s_mds == mds) cap = t; } if (cap) { if (remember) { /* make note */ ci->i_cap_exporting_mds = mds; ci->i_cap_exporting_mseq = mseq; ci->i_cap_exporting_issued = cap->issued; } __ceph_remove_cap(cap); } else { WARN_ON(!cap); } spin_unlock(&inode->i_lock); } /* * Handle cap IMPORT. If there are temp bits from an older EXPORT, * clean them up. * * caller holds s_mutex. */ static void handle_cap_import(struct ceph_mds_client *mdsc, struct inode *inode, struct ceph_mds_caps *im, struct ceph_mds_session *session, void *snaptrace, int snaptrace_len) { struct ceph_inode_info *ci = ceph_inode(inode); int mds = session->s_mds; unsigned issued = le32_to_cpu(im->caps); unsigned wanted = le32_to_cpu(im->wanted); unsigned seq = le32_to_cpu(im->seq); unsigned mseq = le32_to_cpu(im->migrate_seq); u64 realmino = le64_to_cpu(im->realm); u64 cap_id = le64_to_cpu(im->cap_id); if (ci->i_cap_exporting_mds >= 0 && ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { dout("handle_cap_import inode %p ci %p mds%d mseq %d" " - cleared exporting from mds%d\n", inode, ci, mds, mseq, ci->i_cap_exporting_mds); ci->i_cap_exporting_issued = 0; ci->i_cap_exporting_mseq = 0; ci->i_cap_exporting_mds = -1; } else { dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", inode, ci, mds, mseq); } down_write(&mdsc->snap_rwsem); ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, false); downgrade_write(&mdsc->snap_rwsem); ceph_add_cap(inode, session, cap_id, -1, issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, NULL /* no caps context */); try_flush_caps(inode, session, NULL); up_read(&mdsc->snap_rwsem); } /* * Handle a caps message from the MDS. * * Identify the appropriate session, inode, and call the right handler * based on the cap op. */ void ceph_handle_caps(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; struct super_block *sb = mdsc->client->sb; struct inode *inode; struct ceph_cap *cap; struct ceph_mds_caps *h; int mds = session->s_mds; int op; u32 seq; struct ceph_vino vino; u64 cap_id; u64 size, max_size; u64 tid; int check_caps = 0; void *snaptrace; int r; dout("handle_caps from mds%d\n", mds); /* decode */ tid = le64_to_cpu(msg->hdr.tid); if (msg->front.iov_len < sizeof(*h)) goto bad; h = msg->front.iov_base; snaptrace = h + 1; op = le32_to_cpu(h->op); vino.ino = le64_to_cpu(h->ino); vino.snap = CEPH_NOSNAP; cap_id = le64_to_cpu(h->cap_id); seq = le32_to_cpu(h->seq); size = le64_to_cpu(h->size); max_size = le64_to_cpu(h->max_size); mutex_lock(&session->s_mutex); session->s_seq++; dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, (unsigned)seq); /* lookup ino */ inode = ceph_find_inode(sb, vino); dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, vino.snap, inode); if (!inode) { dout(" i don't have ino %llx\n", vino.ino); goto done; } /* these will work even if we don't have a cap yet */ switch (op) { case CEPH_CAP_OP_FLUSHSNAP_ACK: handle_cap_flushsnap_ack(inode, tid, h, session); goto done; case CEPH_CAP_OP_EXPORT: handle_cap_export(inode, h, session); goto done; case CEPH_CAP_OP_IMPORT: handle_cap_import(mdsc, inode, h, session, snaptrace, le32_to_cpu(h->snap_trace_len)); check_caps = 1; /* we may have sent a RELEASE to the old auth */ goto done; } /* the rest require a cap */ spin_lock(&inode->i_lock); cap = __get_cap_for_mds(ceph_inode(inode), mds); if (!cap) { dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", inode, ceph_ino(inode), ceph_snap(inode), mds); spin_unlock(&inode->i_lock); goto done; } /* note that each of these drops i_lock for us */ switch (op) { case CEPH_CAP_OP_REVOKE: case CEPH_CAP_OP_GRANT: r = handle_cap_grant(inode, h, session, cap, msg->middle); if (r == 1) ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, session); else if (r == 2) ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, session); break; case CEPH_CAP_OP_FLUSH_ACK: handle_cap_flush_ack(inode, tid, h, session, cap); break; case CEPH_CAP_OP_TRUNC: handle_cap_trunc(inode, h, session); break; default: spin_unlock(&inode->i_lock); pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, ceph_cap_op_name(op)); } done: mutex_unlock(&session->s_mutex); if (check_caps) ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL); if (inode) iput(inode); return; bad: pr_err("ceph_handle_caps: corrupt message\n"); ceph_msg_dump(msg); return; } /* * Delayed work handler to process end of delayed cap release LRU list. */ void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) { struct ceph_inode_info *ci; int flags = CHECK_CAPS_NODELAY; dout("check_delayed_caps\n"); while (1) { spin_lock(&mdsc->cap_delay_lock); if (list_empty(&mdsc->cap_delay_list)) break; ci = list_first_entry(&mdsc->cap_delay_list, struct ceph_inode_info, i_cap_delay_list); if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && time_before(jiffies, ci->i_hold_caps_max)) break; list_del_init(&ci->i_cap_delay_list); spin_unlock(&mdsc->cap_delay_lock); dout("check_delayed_caps on %p\n", &ci->vfs_inode); ceph_check_caps(ci, flags, NULL); } spin_unlock(&mdsc->cap_delay_lock); } /* * Flush all dirty caps to the mds */ void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) { struct ceph_inode_info *ci; struct inode *inode; dout("flush_dirty_caps\n"); spin_lock(&mdsc->cap_dirty_lock); while (!list_empty(&mdsc->cap_dirty)) { ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, i_dirty_item); inode = igrab(&ci->vfs_inode); spin_unlock(&mdsc->cap_dirty_lock); if (inode) { ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); iput(inode); } spin_lock(&mdsc->cap_dirty_lock); } spin_unlock(&mdsc->cap_dirty_lock); } /* * Drop open file reference. If we were the last open file, * we may need to release capabilities to the MDS (or schedule * their delayed release). */ void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) { struct inode *inode = &ci->vfs_inode; int last = 0; spin_lock(&inode->i_lock); dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); BUG_ON(ci->i_nr_by_mode[fmode] == 0); if (--ci->i_nr_by_mode[fmode] == 0) last++; spin_unlock(&inode->i_lock); if (last && ci->i_vino.snap == CEPH_NOSNAP) ceph_check_caps(ci, 0, NULL); } /* * Helpers for embedding cap and dentry lease releases into mds * requests. * * @force is used by dentry_release (below) to force inclusion of a * record for the directory inode, even when there aren't any caps to * drop. */ int ceph_encode_inode_release(void **p, struct inode *inode, int mds, int drop, int unless, int force) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap *cap; struct ceph_mds_request_release *rel = *p; int ret = 0; dout("encode_inode_release %p mds%d drop %s unless %s\n", inode, mds, ceph_cap_string(drop), ceph_cap_string(unless)); spin_lock(&inode->i_lock); cap = __get_cap_for_mds(ci, mds); if (cap && __cap_is_valid(cap)) { if (force || ((cap->issued & drop) && (cap->issued & unless) == 0)) { if ((cap->issued & drop) && (cap->issued & unless) == 0) { dout("encode_inode_release %p cap %p %s -> " "%s\n", inode, cap, ceph_cap_string(cap->issued), ceph_cap_string(cap->issued & ~drop)); cap->issued &= ~drop; cap->implemented &= ~drop; if (ci->i_ceph_flags & CEPH_I_NODELAY) { int wanted = __ceph_caps_wanted(ci); dout(" wanted %s -> %s (act %s)\n", ceph_cap_string(cap->mds_wanted), ceph_cap_string(cap->mds_wanted & ~wanted), ceph_cap_string(wanted)); cap->mds_wanted &= wanted; } } else { dout("encode_inode_release %p cap %p %s" " (force)\n", inode, cap, ceph_cap_string(cap->issued)); } rel->ino = cpu_to_le64(ceph_ino(inode)); rel->cap_id = cpu_to_le64(cap->cap_id); rel->seq = cpu_to_le32(cap->seq); rel->issue_seq = cpu_to_le32(cap->issue_seq), rel->mseq = cpu_to_le32(cap->mseq); rel->caps = cpu_to_le32(cap->issued); rel->wanted = cpu_to_le32(cap->mds_wanted); rel->dname_len = 0; rel->dname_seq = 0; *p += sizeof(*rel); ret = 1; } else { dout("encode_inode_release %p cap %p %s\n", inode, cap, ceph_cap_string(cap->issued)); } } spin_unlock(&inode->i_lock); return ret; } int ceph_encode_dentry_release(void **p, struct dentry *dentry, int mds, int drop, int unless) { struct inode *dir = dentry->d_parent->d_inode; struct ceph_mds_request_release *rel = *p; struct ceph_dentry_info *di = ceph_dentry(dentry); int force = 0; int ret; /* * force an record for the directory caps if we have a dentry lease. * this is racy (can't take i_lock and d_lock together), but it * doesn't have to be perfect; the mds will revoke anything we don't * release. */ spin_lock(&dentry->d_lock); if (di->lease_session && di->lease_session->s_mds == mds) force = 1; spin_unlock(&dentry->d_lock); ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); spin_lock(&dentry->d_lock); if (ret && di->lease_session && di->lease_session->s_mds == mds) { dout("encode_dentry_release %p mds%d seq %d\n", dentry, mds, (int)di->lease_seq); rel->dname_len = cpu_to_le32(dentry->d_name.len); memcpy(*p, dentry->d_name.name, dentry->d_name.len); *p += dentry->d_name.len; rel->dname_seq = cpu_to_le32(di->lease_seq); } spin_unlock(&dentry->d_lock); return ret; }