/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include "ctree.h" #include "transaction.h" #include "disk-io.h" #include "locking.h" #include "ulist.h" #include "backref.h" #include "extent_io.h" /* TODO XXX FIXME * - subvol delete -> delete when ref goes to 0? delete limits also? * - reorganize keys * - compressed * - sync * - copy also limits on subvol creation * - limit * - caches fuer ulists * - performance benchmarks * - check all ioctl parameters */ /* * one struct for each qgroup, organized in fs_info->qgroup_tree. */ struct btrfs_qgroup { u64 qgroupid; /* * state */ u64 rfer; /* referenced */ u64 rfer_cmpr; /* referenced compressed */ u64 excl; /* exclusive */ u64 excl_cmpr; /* exclusive compressed */ /* * limits */ u64 lim_flags; /* which limits are set */ u64 max_rfer; u64 max_excl; u64 rsv_rfer; u64 rsv_excl; /* * reservation tracking */ u64 reserved; /* * lists */ struct list_head groups; /* groups this group is member of */ struct list_head members; /* groups that are members of this group */ struct list_head dirty; /* dirty groups */ struct rb_node node; /* tree of qgroups */ /* * temp variables for accounting operations */ u64 tag; u64 refcnt; }; /* * glue structure to represent the relations between qgroups. */ struct btrfs_qgroup_list { struct list_head next_group; struct list_head next_member; struct btrfs_qgroup *group; struct btrfs_qgroup *member; }; static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags); static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info); /* must be called with qgroup_ioctl_lock held */ static struct btrfs_qgroup *find_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node *n = fs_info->qgroup_tree.rb_node; struct btrfs_qgroup *qgroup; while (n) { qgroup = rb_entry(n, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) n = n->rb_left; else if (qgroup->qgroupid > qgroupid) n = n->rb_right; else return qgroup; } return NULL; } /* must be called with qgroup_lock held */ static struct btrfs_qgroup *add_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node **p = &fs_info->qgroup_tree.rb_node; struct rb_node *parent = NULL; struct btrfs_qgroup *qgroup; while (*p) { parent = *p; qgroup = rb_entry(parent, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) p = &(*p)->rb_left; else if (qgroup->qgroupid > qgroupid) p = &(*p)->rb_right; else return qgroup; } qgroup = kzalloc(sizeof(*qgroup), GFP_ATOMIC); if (!qgroup) return ERR_PTR(-ENOMEM); qgroup->qgroupid = qgroupid; INIT_LIST_HEAD(&qgroup->groups); INIT_LIST_HEAD(&qgroup->members); INIT_LIST_HEAD(&qgroup->dirty); rb_link_node(&qgroup->node, parent, p); rb_insert_color(&qgroup->node, &fs_info->qgroup_tree); return qgroup; } static void __del_qgroup_rb(struct btrfs_qgroup *qgroup) { struct btrfs_qgroup_list *list; list_del(&qgroup->dirty); while (!list_empty(&qgroup->groups)) { list = list_first_entry(&qgroup->groups, struct btrfs_qgroup_list, next_group); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } while (!list_empty(&qgroup->members)) { list = list_first_entry(&qgroup->members, struct btrfs_qgroup_list, next_member); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } kfree(qgroup); } /* must be called with qgroup_lock held */ static int del_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_qgroup *qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) return -ENOENT; rb_erase(&qgroup->node, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); return 0; } /* must be called with qgroup_lock held */ static int add_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list = kzalloc(sizeof(*list), GFP_ATOMIC); if (!list) return -ENOMEM; list->group = parent; list->member = member; list_add_tail(&list->next_group, &member->groups); list_add_tail(&list->next_member, &parent->members); return 0; } /* must be called with qgroup_lock held */ static int del_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { list_del(&list->next_group); list_del(&list->next_member); kfree(list); return 0; } } return -ENOENT; } /* * The full config is read in one go, only called from open_ctree() * It doesn't use any locking, as at this point we're still single-threaded */ int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_path *path = NULL; struct extent_buffer *l; int slot; int ret = 0; u64 flags = 0; u64 rescan_progress = 0; if (!fs_info->quota_enabled) return 0; fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } /* default this to quota off, in case no status key is found */ fs_info->qgroup_flags = 0; /* * pass 1: read status, all qgroup infos and limits */ key.objectid = 0; key.type = 0; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 1); if (ret) goto out; while (1) { struct btrfs_qgroup *qgroup; slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type == BTRFS_QGROUP_STATUS_KEY) { struct btrfs_qgroup_status_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); if (btrfs_qgroup_status_version(l, ptr) != BTRFS_QGROUP_STATUS_VERSION) { printk(KERN_ERR "btrfs: old qgroup version, quota disabled\n"); goto out; } if (btrfs_qgroup_status_generation(l, ptr) != fs_info->generation) { flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; printk(KERN_ERR "btrfs: qgroup generation mismatch, " "marked as inconsistent\n"); } fs_info->qgroup_flags = btrfs_qgroup_status_flags(l, ptr); rescan_progress = btrfs_qgroup_status_rescan(l, ptr); goto next1; } if (found_key.type != BTRFS_QGROUP_INFO_KEY && found_key.type != BTRFS_QGROUP_LIMIT_KEY) goto next1; qgroup = find_qgroup_rb(fs_info, found_key.offset); if ((qgroup && found_key.type == BTRFS_QGROUP_INFO_KEY) || (!qgroup && found_key.type == BTRFS_QGROUP_LIMIT_KEY)) { printk(KERN_ERR "btrfs: inconsitent qgroup config\n"); flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } if (!qgroup) { qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out; } } switch (found_key.type) { case BTRFS_QGROUP_INFO_KEY: { struct btrfs_qgroup_info_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item); qgroup->rfer = btrfs_qgroup_info_rfer(l, ptr); qgroup->rfer_cmpr = btrfs_qgroup_info_rfer_cmpr(l, ptr); qgroup->excl = btrfs_qgroup_info_excl(l, ptr); qgroup->excl_cmpr = btrfs_qgroup_info_excl_cmpr(l, ptr); /* generation currently unused */ break; } case BTRFS_QGROUP_LIMIT_KEY: { struct btrfs_qgroup_limit_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item); qgroup->lim_flags = btrfs_qgroup_limit_flags(l, ptr); qgroup->max_rfer = btrfs_qgroup_limit_max_rfer(l, ptr); qgroup->max_excl = btrfs_qgroup_limit_max_excl(l, ptr); qgroup->rsv_rfer = btrfs_qgroup_limit_rsv_rfer(l, ptr); qgroup->rsv_excl = btrfs_qgroup_limit_rsv_excl(l, ptr); break; } } next1: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } btrfs_release_path(path); /* * pass 2: read all qgroup relations */ key.objectid = 0; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 0); if (ret) goto out; while (1) { slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type != BTRFS_QGROUP_RELATION_KEY) goto next2; if (found_key.objectid > found_key.offset) { /* parent <- member, not needed to build config */ /* FIXME should we omit the key completely? */ goto next2; } ret = add_relation_rb(fs_info, found_key.objectid, found_key.offset); if (ret == -ENOENT) { printk(KERN_WARNING "btrfs: orphan qgroup relation 0x%llx->0x%llx\n", (unsigned long long)found_key.objectid, (unsigned long long)found_key.offset); ret = 0; /* ignore the error */ } if (ret) goto out; next2: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } out: fs_info->qgroup_flags |= flags; if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) { fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; } else if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN && ret >= 0) { ret = qgroup_rescan_init(fs_info, rescan_progress, 0); } btrfs_free_path(path); if (ret < 0) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; } return ret < 0 ? ret : 0; } /* * This is called from close_ctree() or open_ctree() or btrfs_quota_disable(), * first two are in single-threaded paths.And for the third one, we have set * quota_root to be null with qgroup_lock held before, so it is safe to clean * up the in-memory structures without qgroup_lock held. */ void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; while ((n = rb_first(&fs_info->qgroup_tree))) { qgroup = rb_entry(n, struct btrfs_qgroup, node); rb_erase(n, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); } /* * we call btrfs_free_qgroup_config() when umounting * filesystem and disabling quota, so we set qgroup_ulit * to be null here to avoid double free. */ ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } static int add_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, 0); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); return ret; } static int del_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int add_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_qgroup_info_item *qgroup_info; struct btrfs_qgroup_limit_item *qgroup_limit; struct extent_buffer *leaf; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_info)); if (ret) goto out; leaf = path->nodes[0]; qgroup_info = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(leaf, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(leaf, qgroup_info, 0); btrfs_set_qgroup_info_rfer_cmpr(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl_cmpr(leaf, qgroup_info, 0); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_limit)); if (ret) goto out; leaf = path->nodes[0]; qgroup_limit = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_excl(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_excl(leaf, qgroup_limit, 0); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } static int del_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); if (ret) goto out; btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int update_qgroup_limit_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 qgroupid, u64 flags, u64 max_rfer, u64 max_excl, u64 rsv_rfer, u64 rsv_excl) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_limit_item *qgroup_limit; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_LIMIT_KEY; key.offset = qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_limit = btrfs_item_ptr(l, path->slots[0], struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(l, qgroup_limit, flags); btrfs_set_qgroup_limit_max_rfer(l, qgroup_limit, max_rfer); btrfs_set_qgroup_limit_max_excl(l, qgroup_limit, max_excl); btrfs_set_qgroup_limit_rsv_rfer(l, qgroup_limit, rsv_rfer); btrfs_set_qgroup_limit_rsv_excl(l, qgroup_limit, rsv_excl); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_info_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_qgroup *qgroup) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_info_item *qgroup_info; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroup->qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_info = btrfs_item_ptr(l, path->slots[0], struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(l, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(l, qgroup_info, qgroup->rfer); btrfs_set_qgroup_info_rfer_cmpr(l, qgroup_info, qgroup->rfer_cmpr); btrfs_set_qgroup_info_excl(l, qgroup_info, qgroup->excl); btrfs_set_qgroup_info_excl_cmpr(l, qgroup_info, qgroup->excl_cmpr); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_status_item(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_status_item *ptr; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_flags(l, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_generation(l, ptr, trans->transid); btrfs_set_qgroup_status_rescan(l, ptr, fs_info->qgroup_rescan_progress.objectid); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } /* * called with qgroup_lock held */ static int btrfs_clean_quota_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf = NULL; int ret; int nr = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->leave_spinning = 1; key.objectid = 0; key.offset = 0; key.type = 0; while (1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; leaf = path->nodes[0]; nr = btrfs_header_nritems(leaf); if (!nr) break; /* * delete the leaf one by one * since the whole tree is going * to be deleted. */ path->slots[0] = 0; ret = btrfs_del_items(trans, root, path, 0, nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: root->fs_info->pending_quota_state = 0; btrfs_free_path(path); return ret; } int btrfs_quota_enable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path = NULL; struct btrfs_qgroup_status_item *ptr; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_qgroup *qgroup = NULL; int ret = 0; int slot; mutex_lock(&fs_info->qgroup_ioctl_lock); if (fs_info->quota_root) { fs_info->pending_quota_state = 1; goto out; } fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } /* * initially create the quota tree */ quota_root = btrfs_create_tree(trans, fs_info, BTRFS_QUOTA_TREE_OBJECTID); if (IS_ERR(quota_root)) { ret = PTR_ERR(quota_root); goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out_free_root; } key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*ptr)); if (ret) goto out_free_path; leaf = path->nodes[0]; ptr = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_generation(leaf, ptr, trans->transid); btrfs_set_qgroup_status_version(leaf, ptr, BTRFS_QGROUP_STATUS_VERSION); fs_info->qgroup_flags = BTRFS_QGROUP_STATUS_FLAG_ON | BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_set_qgroup_status_flags(leaf, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_rescan(leaf, ptr, 0); btrfs_mark_buffer_dirty(leaf); key.objectid = 0; key.type = BTRFS_ROOT_REF_KEY; key.offset = 0; btrfs_release_path(path); ret = btrfs_search_slot_for_read(tree_root, &key, path, 1, 0); if (ret > 0) goto out_add_root; if (ret < 0) goto out_free_path; while (1) { slot = path->slots[0]; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_ROOT_REF_KEY) { ret = add_qgroup_item(trans, quota_root, found_key.offset); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } } ret = btrfs_next_item(tree_root, path); if (ret < 0) goto out_free_path; if (ret) break; } out_add_root: btrfs_release_path(path); ret = add_qgroup_item(trans, quota_root, BTRFS_FS_TREE_OBJECTID); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, BTRFS_FS_TREE_OBJECTID); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } spin_lock(&fs_info->qgroup_lock); fs_info->quota_root = quota_root; fs_info->pending_quota_state = 1; spin_unlock(&fs_info->qgroup_lock); out_free_path: btrfs_free_path(path); out_free_root: if (ret) { free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); } out: if (ret) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_quota_disable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *quota_root; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_root) goto out; spin_lock(&fs_info->qgroup_lock); fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; quota_root = fs_info->quota_root; fs_info->quota_root = NULL; spin_unlock(&fs_info->qgroup_lock); btrfs_free_qgroup_config(fs_info); ret = btrfs_clean_quota_tree(trans, quota_root); if (ret) goto out; ret = btrfs_del_root(trans, tree_root, "a_root->root_key); if (ret) goto out; list_del("a_root->dirty_list); btrfs_tree_lock(quota_root->node); clean_tree_block(trans, tree_root, quota_root->node); btrfs_tree_unlock(quota_root->node); btrfs_free_tree_block(trans, quota_root, quota_root->node, 0, 1); free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } static void qgroup_dirty(struct btrfs_fs_info *fs_info, struct btrfs_qgroup *qgroup) { if (list_empty(&qgroup->dirty)) list_add(&qgroup->dirty, &fs_info->dirty_qgroups); } int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { ret = -EEXIST; goto out; } } ret = add_qgroup_relation_item(trans, quota_root, src, dst); if (ret) goto out; ret = add_qgroup_relation_item(trans, quota_root, dst, src); if (ret) { del_qgroup_relation_item(trans, quota_root, src, dst); goto out; } spin_lock(&fs_info->qgroup_lock); ret = add_relation_rb(quota_root->fs_info, src, dst); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; int ret = 0; int err; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) goto exist; } ret = -ENOENT; goto out; exist: ret = del_qgroup_relation_item(trans, quota_root, src, dst); err = del_qgroup_relation_item(trans, quota_root, dst, src); if (err && !ret) ret = err; spin_lock(&fs_info->qgroup_lock); del_relation_rb(fs_info, src, dst); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_create_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid, char *name) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (qgroup) { ret = -EEXIST; goto out; } ret = add_qgroup_item(trans, quota_root, qgroupid); if (ret) goto out; spin_lock(&fs_info->qgroup_lock); qgroup = add_qgroup_rb(fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); if (IS_ERR(qgroup)) ret = PTR_ERR(qgroup); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } else { /* check if there are no relations to this qgroup */ if (!list_empty(&qgroup->groups) || !list_empty(&qgroup->members)) { ret = -EBUSY; goto out; } } ret = del_qgroup_item(trans, quota_root, qgroupid); spin_lock(&fs_info->qgroup_lock); del_qgroup_rb(quota_root->fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid, struct btrfs_qgroup_limit *limit) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } ret = update_qgroup_limit_item(trans, quota_root, qgroupid, limit->flags, limit->max_rfer, limit->max_excl, limit->rsv_rfer, limit->rsv_excl); if (ret) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; printk(KERN_INFO "unable to update quota limit for %llu\n", (unsigned long long)qgroupid); } spin_lock(&fs_info->qgroup_lock); qgroup->lim_flags = limit->flags; qgroup->max_rfer = limit->max_rfer; qgroup->max_excl = limit->max_excl; qgroup->rsv_rfer = limit->rsv_rfer; qgroup->rsv_excl = limit->rsv_excl; spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } /* * btrfs_qgroup_record_ref is called when the ref is added or deleted. it puts * the modification into a list that's later used by btrfs_end_transaction to * pass the recorded modifications on to btrfs_qgroup_account_ref. */ int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op) { struct qgroup_update *u; BUG_ON(!trans->delayed_ref_elem.seq); u = kmalloc(sizeof(*u), GFP_NOFS); if (!u) return -ENOMEM; u->node = node; u->extent_op = extent_op; list_add_tail(&u->list, &trans->qgroup_ref_list); return 0; } static int qgroup_account_ref_step1(struct btrfs_fs_info *fs_info, struct ulist *roots, struct ulist *tmp, u64 seq) { struct ulist_node *unode; struct ulist_iterator uiter; struct ulist_node *tmp_unode; struct ulist_iterator tmp_uiter; struct btrfs_qgroup *qg; int ret; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; ulist_reinit(tmp); /* XXX id not needed */ ret = ulist_add(tmp, qg->qgroupid, (u64)(uintptr_t)qg, GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&tmp_uiter); while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) { struct btrfs_qgroup_list *glist; qg = (struct btrfs_qgroup *)(uintptr_t)tmp_unode->aux; if (qg->refcnt < seq) qg->refcnt = seq + 1; else ++qg->refcnt; list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, (u64)(uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) return ret; } } } return 0; } static int qgroup_account_ref_step2(struct btrfs_fs_info *fs_info, struct ulist *roots, struct ulist *tmp, u64 seq, int sgn, u64 num_bytes, struct btrfs_qgroup *qgroup) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; int ret; ulist_reinit(tmp); ret = ulist_add(tmp, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { qg = (struct btrfs_qgroup *)(uintptr_t)unode->aux; if (qg->refcnt < seq) { /* not visited by step 1 */ qg->rfer += sgn * num_bytes; qg->rfer_cmpr += sgn * num_bytes; if (roots->nnodes == 0) { qg->excl += sgn * num_bytes; qg->excl_cmpr += sgn * num_bytes; } qgroup_dirty(fs_info, qg); } WARN_ON(qg->tag >= seq); qg->tag = seq; list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) return ret; } } return 0; } static int qgroup_account_ref_step3(struct btrfs_fs_info *fs_info, struct ulist *roots, struct ulist *tmp, u64 seq, int sgn, u64 num_bytes) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; struct ulist_node *tmp_unode; struct ulist_iterator tmp_uiter; int ret; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; ulist_reinit(tmp); ret = ulist_add(tmp, qg->qgroupid, (uintptr_t)qg, GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&tmp_uiter); while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) { struct btrfs_qgroup_list *glist; qg = (struct btrfs_qgroup *)(uintptr_t)tmp_unode->aux; if (qg->tag == seq) continue; if (qg->refcnt - seq == roots->nnodes) { qg->excl -= sgn * num_bytes; qg->excl_cmpr -= sgn * num_bytes; qgroup_dirty(fs_info, qg); } list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) return ret; } } } return 0; } /* * btrfs_qgroup_account_ref is called for every ref that is added to or deleted * from the fs. First, all roots referencing the extent are searched, and * then the space is accounted accordingly to the different roots. The * accounting algorithm works in 3 steps documented inline. */ int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_delayed_ref_node *node, struct btrfs_delayed_extent_op *extent_op) { struct btrfs_key ins; struct btrfs_root *quota_root; u64 ref_root; struct btrfs_qgroup *qgroup; struct ulist *roots = NULL; u64 seq; int ret = 0; int sgn; if (!fs_info->quota_enabled) return 0; BUG_ON(!fs_info->quota_root); ins.objectid = node->bytenr; ins.offset = node->num_bytes; ins.type = BTRFS_EXTENT_ITEM_KEY; if (node->type == BTRFS_TREE_BLOCK_REF_KEY || node->type == BTRFS_SHARED_BLOCK_REF_KEY) { struct btrfs_delayed_tree_ref *ref; ref = btrfs_delayed_node_to_tree_ref(node); ref_root = ref->root; } else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || node->type == BTRFS_SHARED_DATA_REF_KEY) { struct btrfs_delayed_data_ref *ref; ref = btrfs_delayed_node_to_data_ref(node); ref_root = ref->root; } else { BUG(); } if (!is_fstree(ref_root)) { /* * non-fs-trees are not being accounted */ return 0; } switch (node->action) { case BTRFS_ADD_DELAYED_REF: case BTRFS_ADD_DELAYED_EXTENT: sgn = 1; seq = btrfs_tree_mod_seq_prev(node->seq); break; case BTRFS_DROP_DELAYED_REF: sgn = -1; seq = node->seq; break; case BTRFS_UPDATE_DELAYED_HEAD: return 0; default: BUG(); } mutex_lock(&fs_info->qgroup_rescan_lock); if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { if (fs_info->qgroup_rescan_progress.objectid <= node->bytenr) { mutex_unlock(&fs_info->qgroup_rescan_lock); return 0; } } mutex_unlock(&fs_info->qgroup_rescan_lock); /* * the delayed ref sequence number we pass depends on the direction of * the operation. for add operations, we pass * tree_mod_log_prev_seq(node->seq) to skip * the delayed ref's current sequence number, because we need the state * of the tree before the add operation. for delete operations, we pass * (node->seq) to include the delayed ref's current sequence number, * because we need the state of the tree after the delete operation. */ ret = btrfs_find_all_roots(trans, fs_info, node->bytenr, seq, &roots); if (ret < 0) return ret; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto unlock; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto unlock; /* * step 1: for each old ref, visit all nodes once and inc refcnt */ ulist_reinit(fs_info->qgroup_ulist); seq = fs_info->qgroup_seq; fs_info->qgroup_seq += roots->nnodes + 1; /* max refcnt */ ret = qgroup_account_ref_step1(fs_info, roots, fs_info->qgroup_ulist, seq); if (ret) goto unlock; /* * step 2: walk from the new root */ ret = qgroup_account_ref_step2(fs_info, roots, fs_info->qgroup_ulist, seq, sgn, node->num_bytes, qgroup); if (ret) goto unlock; /* * step 3: walk again from old refs */ ret = qgroup_account_ref_step3(fs_info, roots, fs_info->qgroup_ulist, seq, sgn, node->num_bytes); if (ret) goto unlock; unlock: spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); return ret; } /* * called from commit_transaction. Writes all changed qgroups to disk. */ int btrfs_run_qgroups(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root = fs_info->quota_root; int ret = 0; int start_rescan_worker = 0; if (!quota_root) goto out; if (!fs_info->quota_enabled && fs_info->pending_quota_state) start_rescan_worker = 1; fs_info->quota_enabled = fs_info->pending_quota_state; spin_lock(&fs_info->qgroup_lock); while (!list_empty(&fs_info->dirty_qgroups)) { struct btrfs_qgroup *qgroup; qgroup = list_first_entry(&fs_info->dirty_qgroups, struct btrfs_qgroup, dirty); list_del_init(&qgroup->dirty); spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_info_item(trans, quota_root, qgroup); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; spin_lock(&fs_info->qgroup_lock); } if (fs_info->quota_enabled) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_ON; else fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON; spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_status_item(trans, fs_info, quota_root); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; if (!ret && start_rescan_worker) { ret = qgroup_rescan_init(fs_info, 0, 1); if (!ret) { qgroup_rescan_zero_tracking(fs_info); btrfs_queue_worker(&fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); } ret = 0; } out: return ret; } /* * copy the acounting information between qgroups. This is necessary when a * snapshot or a subvolume is created */ int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid, struct btrfs_qgroup_inherit *inherit) { int ret = 0; int i; u64 *i_qgroups; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_qgroup *srcgroup; struct btrfs_qgroup *dstgroup; u32 level_size = 0; u64 nums; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_enabled) goto out; if (!quota_root) { ret = -EINVAL; goto out; } if (inherit) { i_qgroups = (u64 *)(inherit + 1); nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2 * inherit->num_excl_copies; for (i = 0; i < nums; ++i) { srcgroup = find_qgroup_rb(fs_info, *i_qgroups); if (!srcgroup) { ret = -EINVAL; goto out; } ++i_qgroups; } } /* * create a tracking group for the subvol itself */ ret = add_qgroup_item(trans, quota_root, objectid); if (ret) goto out; if (inherit && inherit->flags & BTRFS_QGROUP_INHERIT_SET_LIMITS) { ret = update_qgroup_limit_item(trans, quota_root, objectid, inherit->lim.flags, inherit->lim.max_rfer, inherit->lim.max_excl, inherit->lim.rsv_rfer, inherit->lim.rsv_excl); if (ret) goto out; } if (srcid) { struct btrfs_root *srcroot; struct btrfs_key srckey; int srcroot_level; srckey.objectid = srcid; srckey.type = BTRFS_ROOT_ITEM_KEY; srckey.offset = (u64)-1; srcroot = btrfs_read_fs_root_no_name(fs_info, &srckey); if (IS_ERR(srcroot)) { ret = PTR_ERR(srcroot); goto out; } rcu_read_lock(); srcroot_level = btrfs_header_level(srcroot->node); level_size = btrfs_level_size(srcroot, srcroot_level); rcu_read_unlock(); } /* * add qgroup to all inherited groups */ if (inherit) { i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i) { ret = add_qgroup_relation_item(trans, quota_root, objectid, *i_qgroups); if (ret) goto out; ret = add_qgroup_relation_item(trans, quota_root, *i_qgroups, objectid); if (ret) goto out; ++i_qgroups; } } spin_lock(&fs_info->qgroup_lock); dstgroup = add_qgroup_rb(fs_info, objectid); if (IS_ERR(dstgroup)) { ret = PTR_ERR(dstgroup); goto unlock; } if (srcid) { srcgroup = find_qgroup_rb(fs_info, srcid); if (!srcgroup) goto unlock; dstgroup->rfer = srcgroup->rfer - level_size; dstgroup->rfer_cmpr = srcgroup->rfer_cmpr - level_size; srcgroup->excl = level_size; srcgroup->excl_cmpr = level_size; qgroup_dirty(fs_info, dstgroup); qgroup_dirty(fs_info, srcgroup); } if (!inherit) goto unlock; i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i) { ret = add_relation_rb(quota_root->fs_info, objectid, *i_qgroups); if (ret) goto unlock; ++i_qgroups; } for (i = 0; i < inherit->num_ref_copies; ++i) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->rfer = src->rfer - level_size; dst->rfer_cmpr = src->rfer_cmpr - level_size; i_qgroups += 2; } for (i = 0; i < inherit->num_excl_copies; ++i) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->excl = src->excl + level_size; dst->excl_cmpr = src->excl_cmpr + level_size; i_qgroups += 2; } unlock: spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } /* * reserve some space for a qgroup and all its parents. The reservation takes * place with start_transaction or dealloc_reserve, similar to ENOSPC * accounting. If not enough space is available, EDQUOT is returned. * We assume that the requested space is new for all qgroups. */ int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_fs_info *fs_info = root->fs_info; u64 ref_root = root->root_key.objectid; int ret = 0; struct ulist_node *unode; struct ulist_iterator uiter; if (!is_fstree(ref_root)) return 0; if (num_bytes == 0) return 0; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; /* * in a first step, we check all affected qgroups if any limits would * be exceeded */ ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = (struct btrfs_qgroup *)(uintptr_t)unode->aux; if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_RFER) && qg->reserved + (s64)qg->rfer + num_bytes > qg->max_rfer) { ret = -EDQUOT; goto out; } if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) && qg->reserved + (s64)qg->excl + num_bytes > qg->max_excl) { ret = -EDQUOT; goto out; } list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } ret = 0; /* * no limits exceeded, now record the reservation into all qgroups */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; qg = (struct btrfs_qgroup *)(uintptr_t)unode->aux; qg->reserved += num_bytes; } out: spin_unlock(&fs_info->qgroup_lock); return ret; } void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_fs_info *fs_info = root->fs_info; struct ulist_node *unode; struct ulist_iterator uiter; u64 ref_root = root->root_key.objectid; int ret = 0; if (!is_fstree(ref_root)) return; if (num_bytes == 0) return; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = (struct btrfs_qgroup *)(uintptr_t)unode->aux; qg->reserved -= num_bytes; list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } out: spin_unlock(&fs_info->qgroup_lock); } void assert_qgroups_uptodate(struct btrfs_trans_handle *trans) { if (list_empty(&trans->qgroup_ref_list) && !trans->delayed_ref_elem.seq) return; pr_err("btrfs: qgroups not uptodate in trans handle %p: list is%s empty, seq is %#x.%x\n", trans, list_empty(&trans->qgroup_ref_list) ? "" : " not", (u32)(trans->delayed_ref_elem.seq >> 32), (u32)trans->delayed_ref_elem.seq); BUG(); } /* * returns < 0 on error, 0 when more leafs are to be scanned. * returns 1 when done, 2 when done and FLAG_INCONSISTENT was cleared. */ static int qgroup_rescan_leaf(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_trans_handle *trans, struct ulist *tmp, struct extent_buffer *scratch_leaf) { struct btrfs_key found; struct ulist *roots = NULL; struct ulist_node *unode; struct ulist_iterator uiter; struct seq_list tree_mod_seq_elem = {}; u64 seq; int slot; int ret; path->leave_spinning = 1; mutex_lock(&fs_info->qgroup_rescan_lock); ret = btrfs_search_slot_for_read(fs_info->extent_root, &fs_info->qgroup_rescan_progress, path, 1, 0); pr_debug("current progress key (%llu %u %llu), search_slot ret %d\n", (unsigned long long)fs_info->qgroup_rescan_progress.objectid, fs_info->qgroup_rescan_progress.type, (unsigned long long)fs_info->qgroup_rescan_progress.offset, ret); if (ret) { /* * The rescan is about to end, we will not be scanning any * further blocks. We cannot unset the RESCAN flag here, because * we want to commit the transaction if everything went well. * To make the live accounting work in this phase, we set our * scan progress pointer such that every real extent objectid * will be smaller. */ fs_info->qgroup_rescan_progress.objectid = (u64)-1; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); return ret; } btrfs_item_key_to_cpu(path->nodes[0], &found, btrfs_header_nritems(path->nodes[0]) - 1); fs_info->qgroup_rescan_progress.objectid = found.objectid + 1; btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); memcpy(scratch_leaf, path->nodes[0], sizeof(*scratch_leaf)); slot = path->slots[0]; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); for (; slot < btrfs_header_nritems(scratch_leaf); ++slot) { btrfs_item_key_to_cpu(scratch_leaf, &found, slot); if (found.type != BTRFS_EXTENT_ITEM_KEY) continue; ret = btrfs_find_all_roots(trans, fs_info, found.objectid, tree_mod_seq_elem.seq, &roots); if (ret < 0) goto out; spin_lock(&fs_info->qgroup_lock); seq = fs_info->qgroup_seq; fs_info->qgroup_seq += roots->nnodes + 1; /* max refcnt */ ret = qgroup_account_ref_step1(fs_info, roots, tmp, seq); if (ret) { spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); goto out; } /* * step2 of btrfs_qgroup_account_ref works from a single root, * we're doing all at once here. */ ulist_reinit(tmp); ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { struct btrfs_qgroup *qg; qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; ret = ulist_add(tmp, qg->qgroupid, (uintptr_t)qg, GFP_ATOMIC); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); goto out; } } /* this loop is similar to step 2 of btrfs_qgroup_account_ref */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = (struct btrfs_qgroup *)(uintptr_t) unode->aux; qg->rfer += found.offset; qg->rfer_cmpr += found.offset; WARN_ON(qg->tag >= seq); if (qg->refcnt - seq == roots->nnodes) { qg->excl += found.offset; qg->excl_cmpr += found.offset; } qgroup_dirty(fs_info, qg); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); goto out; } } } spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); ret = 0; } out: btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); return ret; } static void btrfs_qgroup_rescan_worker(struct btrfs_work *work) { struct btrfs_fs_info *fs_info = container_of(work, struct btrfs_fs_info, qgroup_rescan_work); struct btrfs_path *path; struct btrfs_trans_handle *trans = NULL; struct ulist *tmp = NULL; struct extent_buffer *scratch_leaf = NULL; int err = -ENOMEM; path = btrfs_alloc_path(); if (!path) goto out; tmp = ulist_alloc(GFP_NOFS); if (!tmp) goto out; scratch_leaf = kmalloc(sizeof(*scratch_leaf), GFP_NOFS); if (!scratch_leaf) goto out; err = 0; while (!err) { trans = btrfs_start_transaction(fs_info->fs_root, 0); if (IS_ERR(trans)) { err = PTR_ERR(trans); break; } if (!fs_info->quota_enabled) { err = -EINTR; } else { err = qgroup_rescan_leaf(fs_info, path, trans, tmp, scratch_leaf); } if (err > 0) btrfs_commit_transaction(trans, fs_info->fs_root); else btrfs_end_transaction(trans, fs_info->fs_root); } out: kfree(scratch_leaf); ulist_free(tmp); btrfs_free_path(path); mutex_lock(&fs_info->qgroup_rescan_lock); fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; if (err == 2 && fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } else if (err < 0) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } mutex_unlock(&fs_info->qgroup_rescan_lock); if (err >= 0) { pr_info("btrfs: qgroup scan completed%s\n", err == 2 ? " (inconsistency flag cleared)" : ""); } else { pr_err("btrfs: qgroup scan failed with %d\n", err); } complete_all(&fs_info->qgroup_rescan_completion); } /* * Checks that (a) no rescan is running and (b) quota is enabled. Allocates all * memory required for the rescan context. */ static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags) { int ret = 0; if (!init_flags && (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) || !(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON))) { ret = -EINVAL; goto err; } mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); if (init_flags) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) ret = -EINPROGRESS; else if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) ret = -EINVAL; if (ret) { spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); goto err; } fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN; } memset(&fs_info->qgroup_rescan_progress, 0, sizeof(fs_info->qgroup_rescan_progress)); fs_info->qgroup_rescan_progress.objectid = progress_objectid; spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); init_completion(&fs_info->qgroup_rescan_completion); memset(&fs_info->qgroup_rescan_work, 0, sizeof(fs_info->qgroup_rescan_work)); fs_info->qgroup_rescan_work.func = btrfs_qgroup_rescan_worker; if (ret) { err: pr_info("btrfs: qgroup_rescan_init failed with %d\n", ret); return ret; } return 0; } static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; spin_lock(&fs_info->qgroup_lock); /* clear all current qgroup tracking information */ for (n = rb_first(&fs_info->qgroup_tree); n; n = rb_next(n)) { qgroup = rb_entry(n, struct btrfs_qgroup, node); qgroup->rfer = 0; qgroup->rfer_cmpr = 0; qgroup->excl = 0; qgroup->excl_cmpr = 0; } spin_unlock(&fs_info->qgroup_lock); } int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info) { int ret = 0; struct btrfs_trans_handle *trans; ret = qgroup_rescan_init(fs_info, 0, 1); if (ret) return ret; /* * We have set the rescan_progress to 0, which means no more * delayed refs will be accounted by btrfs_qgroup_account_ref. * However, btrfs_qgroup_account_ref may be right after its call * to btrfs_find_all_roots, in which case it would still do the * accounting. * To solve this, we're committing the transaction, which will * ensure we run all delayed refs and only after that, we are * going to clear all tracking information for a clean start. */ trans = btrfs_join_transaction(fs_info->fs_root); if (IS_ERR(trans)) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, fs_info->fs_root); if (ret) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return ret; } qgroup_rescan_zero_tracking(fs_info); btrfs_queue_worker(&fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); return 0; } int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info) { int running; int ret = 0; mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); running = fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN; spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); if (running) ret = wait_for_completion_interruptible( &fs_info->qgroup_rescan_completion); return ret; } /* * this is only called from open_ctree where we're still single threaded, thus * locking is omitted here. */ void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) btrfs_queue_worker(&fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); }