/* * Copyright (C) 2008 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include "ctree.h" #include "extent_io.h" #include "locking.h" static void btrfs_assert_tree_read_locked(struct extent_buffer *eb); /* * if we currently have a spinning reader or writer lock * (indicated by the rw flag) this will bump the count * of blocking holders and drop the spinlock. */ void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw) { /* * no lock is required. The lock owner may change if * we have a read lock, but it won't change to or away * from us. If we have the write lock, we are the owner * and it'll never change. */ if (eb->lock_nested && current->pid == eb->lock_owner) return; if (rw == BTRFS_WRITE_LOCK) { if (atomic_read(&eb->blocking_writers) == 0) { WARN_ON(atomic_read(&eb->spinning_writers) != 1); atomic_dec(&eb->spinning_writers); btrfs_assert_tree_locked(eb); atomic_inc(&eb->blocking_writers); write_unlock(&eb->lock); } } else if (rw == BTRFS_READ_LOCK) { btrfs_assert_tree_read_locked(eb); atomic_inc(&eb->blocking_readers); WARN_ON(atomic_read(&eb->spinning_readers) == 0); atomic_dec(&eb->spinning_readers); read_unlock(&eb->lock); } return; } /* * if we currently have a blocking lock, take the spinlock * and drop our blocking count */ void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw) { /* * no lock is required. The lock owner may change if * we have a read lock, but it won't change to or away * from us. If we have the write lock, we are the owner * and it'll never change. */ if (eb->lock_nested && current->pid == eb->lock_owner) return; if (rw == BTRFS_WRITE_LOCK_BLOCKING) { BUG_ON(atomic_read(&eb->blocking_writers) != 1); write_lock(&eb->lock); WARN_ON(atomic_read(&eb->spinning_writers)); atomic_inc(&eb->spinning_writers); if (atomic_dec_and_test(&eb->blocking_writers) && waitqueue_active(&eb->write_lock_wq)) wake_up(&eb->write_lock_wq); } else if (rw == BTRFS_READ_LOCK_BLOCKING) { BUG_ON(atomic_read(&eb->blocking_readers) == 0); read_lock(&eb->lock); atomic_inc(&eb->spinning_readers); if (atomic_dec_and_test(&eb->blocking_readers) && waitqueue_active(&eb->read_lock_wq)) wake_up(&eb->read_lock_wq); } return; } /* * take a spinning read lock. This will wait for any blocking * writers */ void btrfs_tree_read_lock(struct extent_buffer *eb) { again: BUG_ON(!atomic_read(&eb->blocking_writers) && current->pid == eb->lock_owner); read_lock(&eb->lock); if (atomic_read(&eb->blocking_writers) && current->pid == eb->lock_owner) { /* * This extent is already write-locked by our thread. We allow * an additional read lock to be added because it's for the same * thread. btrfs_find_all_roots() depends on this as it may be * called on a partly (write-)locked tree. */ BUG_ON(eb->lock_nested); eb->lock_nested = 1; read_unlock(&eb->lock); return; } if (atomic_read(&eb->blocking_writers)) { read_unlock(&eb->lock); wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0); goto again; } atomic_inc(&eb->read_locks); atomic_inc(&eb->spinning_readers); } /* * take a spinning read lock. * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers */ int btrfs_tree_read_lock_atomic(struct extent_buffer *eb) { if (atomic_read(&eb->blocking_writers)) return 0; read_lock(&eb->lock); if (atomic_read(&eb->blocking_writers)) { read_unlock(&eb->lock); return 0; } atomic_inc(&eb->read_locks); atomic_inc(&eb->spinning_readers); return 1; } /* * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers */ int btrfs_try_tree_read_lock(struct extent_buffer *eb) { if (atomic_read(&eb->blocking_writers)) return 0; if (!read_trylock(&eb->lock)) return 0; if (atomic_read(&eb->blocking_writers)) { read_unlock(&eb->lock); return 0; } atomic_inc(&eb->read_locks); atomic_inc(&eb->spinning_readers); return 1; } /* * returns 1 if we get the read lock and 0 if we don't * this won't wait for blocking writers or readers */ int btrfs_try_tree_write_lock(struct extent_buffer *eb) { if (atomic_read(&eb->blocking_writers) || atomic_read(&eb->blocking_readers)) return 0; write_lock(&eb->lock); if (atomic_read(&eb->blocking_writers) || atomic_read(&eb->blocking_readers)) { write_unlock(&eb->lock); return 0; } atomic_inc(&eb->write_locks); atomic_inc(&eb->spinning_writers); eb->lock_owner = current->pid; return 1; } /* * drop a spinning read lock */ void btrfs_tree_read_unlock(struct extent_buffer *eb) { /* * if we're nested, we have the write lock. No new locking * is needed as long as we are the lock owner. * The write unlock will do a barrier for us, and the lock_nested * field only matters to the lock owner. */ if (eb->lock_nested && current->pid == eb->lock_owner) { eb->lock_nested = 0; return; } btrfs_assert_tree_read_locked(eb); WARN_ON(atomic_read(&eb->spinning_readers) == 0); atomic_dec(&eb->spinning_readers); atomic_dec(&eb->read_locks); read_unlock(&eb->lock); } /* * drop a blocking read lock */ void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb) { /* * if we're nested, we have the write lock. No new locking * is needed as long as we are the lock owner. * The write unlock will do a barrier for us, and the lock_nested * field only matters to the lock owner. */ if (eb->lock_nested && current->pid == eb->lock_owner) { eb->lock_nested = 0; return; } btrfs_assert_tree_read_locked(eb); WARN_ON(atomic_read(&eb->blocking_readers) == 0); if (atomic_dec_and_test(&eb->blocking_readers) && waitqueue_active(&eb->read_lock_wq)) wake_up(&eb->read_lock_wq); atomic_dec(&eb->read_locks); } /* * take a spinning write lock. This will wait for both * blocking readers or writers */ void btrfs_tree_lock(struct extent_buffer *eb) { again: wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0); wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0); write_lock(&eb->lock); if (atomic_read(&eb->blocking_readers)) { write_unlock(&eb->lock); wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0); goto again; } if (atomic_read(&eb->blocking_writers)) { write_unlock(&eb->lock); wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0); goto again; } WARN_ON(atomic_read(&eb->spinning_writers)); atomic_inc(&eb->spinning_writers); atomic_inc(&eb->write_locks); eb->lock_owner = current->pid; } /* * drop a spinning or a blocking write lock. */ void btrfs_tree_unlock(struct extent_buffer *eb) { int blockers = atomic_read(&eb->blocking_writers); BUG_ON(blockers > 1); btrfs_assert_tree_locked(eb); eb->lock_owner = 0; atomic_dec(&eb->write_locks); if (blockers) { WARN_ON(atomic_read(&eb->spinning_writers)); atomic_dec(&eb->blocking_writers); smp_mb(); if (waitqueue_active(&eb->write_lock_wq)) wake_up(&eb->write_lock_wq); } else { WARN_ON(atomic_read(&eb->spinning_writers) != 1); atomic_dec(&eb->spinning_writers); write_unlock(&eb->lock); } } void btrfs_assert_tree_locked(struct extent_buffer *eb) { BUG_ON(!atomic_read(&eb->write_locks)); } static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { BUG_ON(!atomic_read(&eb->read_locks)); }