/* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include "ctree.h" static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) p = &(*p)->rb_left; else if (offset > info->offset) p = &(*p)->rb_right; else return -EEXIST; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } static int tree_insert_bytes(struct rb_root *root, u64 bytes, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, bytes_index); if (bytes < info->bytes) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. * * fuzzy == 1: this is used for allocations where we are given a hint of where * to look for free space. Because the hint may not be completely on an offset * mark, or the hint may no longer point to free space we need to fudge our * results a bit. So we look for free space starting at or after offset with at * least bytes size. We prefer to find as close to the given offset as we can. * Also if the offset is within a free space range, then we will return the free * space that contains the given offset, which means we can return a free space * chunk with an offset before the provided offset. * * fuzzy == 0: this is just a normal tree search. Give us the free space that * starts at the given offset which is at least bytes size, and if its not there * return NULL. */ static struct btrfs_free_space *tree_search_offset(struct rb_root *root, u64 offset, u64 bytes, int fuzzy) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); if (offset < entry->offset) { if (fuzzy && (!ret || entry->offset < ret->offset) && (bytes <= entry->bytes)) ret = entry; n = n->rb_left; } else if (offset > entry->offset) { if (fuzzy && (entry->offset + entry->bytes - 1) >= offset && bytes <= entry->bytes) { ret = entry; break; } n = n->rb_right; } else { if (bytes > entry->bytes) { n = n->rb_right; continue; } ret = entry; break; } } return ret; } /* * return a chunk at least bytes size, as close to offset that we can get. */ static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, u64 offset, u64 bytes) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, bytes_index); if (bytes < entry->bytes) { /* * We prefer to get a hole size as close to the size we * are asking for so we don't take small slivers out of * huge holes, but we also want to get as close to the * offset as possible so we don't have a whole lot of * fragmentation. */ if (offset <= entry->offset) { if (!ret) ret = entry; else if (entry->bytes < ret->bytes) ret = entry; else if (entry->offset < ret->offset) ret = entry; } n = n->rb_left; } else if (bytes > entry->bytes) { n = n->rb_right; } else { /* * Ok we may have multiple chunks of the wanted size, * so we don't want to take the first one we find, we * want to take the one closest to our given offset, so * keep searching just in case theres a better match. */ n = n->rb_right; if (offset > entry->offset) continue; else if (!ret || entry->offset < ret->offset) ret = entry; } } return ret; } static void unlink_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &block_group->free_space_offset); rb_erase(&info->bytes_index, &block_group->free_space_bytes); } static int link_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { int ret = 0; BUG_ON(!info->bytes); ret = tree_insert_offset(&block_group->free_space_offset, info->offset, &info->offset_index); if (ret) return ret; ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, &info->bytes_index); if (ret) return ret; return ret; } int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *right_info; struct btrfs_free_space *left_info; struct btrfs_free_space *info = NULL; int ret = 0; info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!info) return -ENOMEM; info->offset = offset; info->bytes = bytes; spin_lock(&block_group->tree_lock); /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(&block_group->free_space_offset, offset+bytes, 0, 0); left_info = tree_search_offset(&block_group->free_space_offset, offset-1, 0, 1); if (right_info) { unlink_free_space(block_group, right_info); info->bytes += right_info->bytes; kfree(right_info); } if (left_info && left_info->offset + left_info->bytes == offset) { unlink_free_space(block_group, left_info); info->offset = left_info->offset; info->bytes += left_info->bytes; kfree(left_info); } ret = link_free_space(block_group, info); if (ret) kfree(info); spin_unlock(&block_group->tree_lock); if (ret) { printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); if (ret == -EEXIST) BUG(); } return ret; } int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *info; int ret = 0; spin_lock(&block_group->tree_lock); info = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); if (info && info->offset == offset) { if (info->bytes < bytes) { printk(KERN_ERR "Found free space at %llu, size %llu," "trying to use %llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (unsigned long long)bytes); WARN_ON(1); ret = -EINVAL; spin_unlock(&block_group->tree_lock); goto out; } unlink_free_space(block_group, info); if (info->bytes == bytes) { kfree(info); spin_unlock(&block_group->tree_lock); goto out; } info->offset += bytes; info->bytes -= bytes; ret = link_free_space(block_group, info); spin_unlock(&block_group->tree_lock); BUG_ON(ret); } else if (info && info->offset < offset && info->offset + info->bytes >= offset + bytes) { u64 old_start = info->offset; /* * we're freeing space in the middle of the info, * this can happen during tree log replay * * first unlink the old info and then * insert it again after the hole we're creating */ unlink_free_space(block_group, info); if (offset + bytes < info->offset + info->bytes) { u64 old_end = info->offset + info->bytes; info->offset = offset + bytes; info->bytes = old_end - info->offset; ret = link_free_space(block_group, info); BUG_ON(ret); } else { /* the hole we're creating ends at the end * of the info struct, just free the info */ kfree(info); } spin_unlock(&block_group->tree_lock); /* step two, insert a new info struct to cover anything * before the hole */ ret = btrfs_add_free_space(block_group, old_start, offset - old_start); BUG_ON(ret); } else { spin_unlock(&block_group->tree_lock); if (!info) { printk(KERN_ERR "couldn't find space %llu to free\n", (unsigned long long)offset); printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n", block_group->cached, block_group->key.objectid, block_group->key.offset); btrfs_dump_free_space(block_group, bytes); } else if (info) { printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, " "but wanted offset=%llu bytes=%llu\n", info->offset, info->bytes, offset, bytes); } WARN_ON(1); } out: return ret; } void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, u64 bytes) { struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes) count++; printk(KERN_ERR "entry offset %llu, bytes %llu\n", info->offset, info->bytes); } printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" "\n", count); } u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *n; u64 ret = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); ret += info->bytes; } return ret; } void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *node; spin_lock(&block_group->tree_lock); while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { info = rb_entry(node, struct btrfs_free_space, bytes_index); unlink_free_space(block_group, info); kfree(info); if (need_resched()) { spin_unlock(&block_group->tree_lock); cond_resched(); spin_lock(&block_group->tree_lock); } } spin_unlock(&block_group->tree_lock); } u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space *entry = NULL; u64 ret = 0; spin_lock(&block_group->tree_lock); entry = tree_search_offset(&block_group->free_space_offset, offset, bytes + empty_size, 1); if (!entry) entry = tree_search_bytes(&block_group->free_space_bytes, offset, bytes + empty_size); if (entry) { unlink_free_space(block_group, entry); ret = entry->offset; entry->offset += bytes; entry->bytes -= bytes; if (!entry->bytes) kfree(entry); else link_free_space(block_group, entry); } spin_unlock(&block_group->tree_lock); return ret; }