/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ordered-data.h" #include "ioctl.h" #include "print-tree.h" static int btrfs_copy_from_user(loff_t pos, int num_pages, int write_bytes, struct page **prepared_pages, const char __user * buf) { long page_fault = 0; int i; int offset = pos & (PAGE_CACHE_SIZE - 1); for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) { size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); struct page *page = prepared_pages[i]; fault_in_pages_readable(buf, count); /* Copy data from userspace to the current page */ kmap(page); page_fault = __copy_from_user(page_address(page) + offset, buf, count); /* Flush processor's dcache for this page */ flush_dcache_page(page); kunmap(page); buf += count; write_bytes -= count; if (page_fault) break; } return page_fault ? -EFAULT : 0; } static void btrfs_drop_pages(struct page **pages, size_t num_pages) { size_t i; for (i = 0; i < num_pages; i++) { if (!pages[i]) break; unlock_page(pages[i]); mark_page_accessed(pages[i]); page_cache_release(pages[i]); } } static int noinline insert_inline_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 offset, size_t size, struct page **pages, size_t page_offset, int num_pages) { struct btrfs_key key; struct btrfs_path *path; struct extent_buffer *leaf; char *kaddr; unsigned long ptr; struct btrfs_file_extent_item *ei; struct page *page; u32 datasize; int err = 0; int ret; int i; ssize_t cur_size; path = btrfs_alloc_path(); if (!path) return -ENOMEM; btrfs_set_trans_block_group(trans, inode); key.objectid = inode->i_ino; key.offset = offset; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) { err = ret; goto fail; } if (ret == 1) { struct btrfs_key found_key; if (path->slots[0] == 0) goto insert; path->slots[0]--; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != inode->i_ino) goto insert; if (found_key.type != BTRFS_EXTENT_DATA_KEY) goto insert; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, ei) != BTRFS_FILE_EXTENT_INLINE) { goto insert; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); ret = 0; } if (ret == 0) { u32 found_size; u64 found_end; leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, ei) != BTRFS_FILE_EXTENT_INLINE) { err = ret; btrfs_print_leaf(root, leaf); printk("found wasn't inline offset %Lu inode %lu\n", offset, inode->i_ino); goto fail; } found_size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf, path->slots[0])); found_end = key.offset + found_size; if (found_end < offset + size) { btrfs_release_path(root, path); ret = btrfs_search_slot(trans, root, &key, path, offset + size - found_end, 1); BUG_ON(ret != 0); ret = btrfs_extend_item(trans, root, path, offset + size - found_end); if (ret) { err = ret; goto fail; } leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); } if (found_end < offset) { ptr = btrfs_file_extent_inline_start(ei) + found_size; memset_extent_buffer(leaf, 0, ptr, offset - found_end); } } else { insert: btrfs_release_path(root, path); datasize = offset + size - key.offset; datasize = btrfs_file_extent_calc_inline_size(datasize); ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); if (ret) { err = ret; printk("got bad ret %d\n", ret); goto fail; } leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, ei, trans->transid); btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); } ptr = btrfs_file_extent_inline_start(ei) + offset - key.offset; cur_size = size; i = 0; while (size > 0) { page = pages[i]; kaddr = kmap_atomic(page, KM_USER0); cur_size = min_t(size_t, PAGE_CACHE_SIZE - page_offset, size); write_extent_buffer(leaf, kaddr + page_offset, ptr, cur_size); kunmap_atomic(kaddr, KM_USER0); page_offset = 0; ptr += cur_size; size -= cur_size; if (i >= num_pages) { printk("i %d num_pages %d\n", i, num_pages); } i++; } btrfs_mark_buffer_dirty(leaf); fail: btrfs_free_path(path); return err; } static int noinline dirty_and_release_pages(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes) { int err = 0; int i; struct inode *inode = fdentry(file)->d_inode; struct extent_map *em; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; u64 hint_byte; u64 num_bytes; u64 start_pos; u64 end_of_last_block; u64 end_pos = pos + write_bytes; u64 inline_size; loff_t isize = i_size_read(inode); em = alloc_extent_map(GFP_NOFS); if (!em) return -ENOMEM; em->bdev = inode->i_sb->s_bdev; start_pos = pos & ~((u64)root->sectorsize - 1); num_bytes = (write_bytes + pos - start_pos + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); end_of_last_block = start_pos + num_bytes - 1; lock_extent(em_tree, start_pos, end_of_last_block, GFP_NOFS); mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); if (!trans) { err = -ENOMEM; goto out_unlock; } btrfs_set_trans_block_group(trans, inode); inode->i_blocks += num_bytes >> 9; hint_byte = 0; if ((end_of_last_block & 4095) == 0) { printk("strange end of last %Lu %zu %Lu\n", start_pos, write_bytes, end_of_last_block); } set_extent_uptodate(em_tree, start_pos, end_of_last_block, GFP_NOFS); /* FIXME...EIEIO, ENOSPC and more */ /* insert any holes we need to create */ if (inode->i_size < start_pos) { u64 last_pos_in_file; u64 hole_size; u64 mask = root->sectorsize - 1; last_pos_in_file = (isize + mask) & ~mask; hole_size = (start_pos - last_pos_in_file + mask) & ~mask; if (last_pos_in_file < start_pos) { err = btrfs_drop_extents(trans, root, inode, last_pos_in_file, last_pos_in_file + hole_size, last_pos_in_file, &hint_byte); if (err) goto failed; err = btrfs_insert_file_extent(trans, root, inode->i_ino, last_pos_in_file, 0, 0, hole_size); } if (err) goto failed; } /* * either allocate an extent for the new bytes or setup the key * to show we are doing inline data in the extent */ inline_size = end_pos; if (isize >= BTRFS_MAX_INLINE_DATA_SIZE(root) || inline_size > 8192 || inline_size >= BTRFS_MAX_INLINE_DATA_SIZE(root)) { u64 last_end; u64 existing_delalloc = 0; for (i = 0; i < num_pages; i++) { struct page *p = pages[i]; SetPageUptodate(p); set_page_dirty(p); } last_end = (u64)(pages[num_pages -1]->index) << PAGE_CACHE_SHIFT; last_end += PAGE_CACHE_SIZE - 1; if (start_pos < isize) { u64 delalloc_start = start_pos; existing_delalloc = count_range_bits(em_tree, &delalloc_start, end_of_last_block, (u64)-1, EXTENT_DELALLOC); } set_extent_delalloc(em_tree, start_pos, end_of_last_block, GFP_NOFS); spin_lock(&root->fs_info->delalloc_lock); root->fs_info->delalloc_bytes += (end_of_last_block + 1 - start_pos) - existing_delalloc; spin_unlock(&root->fs_info->delalloc_lock); btrfs_add_ordered_inode(inode); } else { u64 aligned_end; /* step one, delete the existing extents in this range */ aligned_end = (pos + write_bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); err = btrfs_drop_extents(trans, root, inode, start_pos, aligned_end, aligned_end, &hint_byte); if (err) goto failed; if (isize > inline_size) inline_size = min_t(u64, isize, aligned_end); inline_size -= start_pos; err = insert_inline_extent(trans, root, inode, start_pos, inline_size, pages, 0, num_pages); BUG_ON(err); } if (end_pos > isize) { i_size_write(inode, end_pos); btrfs_update_inode(trans, root, inode); } failed: err = btrfs_end_transaction(trans, root); out_unlock: mutex_unlock(&root->fs_info->fs_mutex); unlock_extent(em_tree, start_pos, end_of_last_block, GFP_NOFS); free_extent_map(em); return err; } int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end) { struct extent_map *em; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; while(1) { em = lookup_extent_mapping(em_tree, start, end); if (!em) break; remove_extent_mapping(em_tree, em); /* once for us */ free_extent_map(em); /* once for the tree*/ free_extent_map(em); } return 0; } /* * this is very complex, but the basic idea is to drop all extents * in the range start - end. hint_block is filled in with a block number * that would be a good hint to the block allocator for this file. * * If an extent intersects the range but is not entirely inside the range * it is either truncated or split. Anything entirely inside the range * is deleted from the tree. */ int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end, u64 inline_limit, u64 *hint_byte) { u64 extent_end = 0; u64 search_start = start; struct extent_buffer *leaf; struct btrfs_file_extent_item *extent; struct btrfs_path *path; struct btrfs_key key; struct btrfs_file_extent_item old; int keep; int slot; int bookend; int found_type; int found_extent; int found_inline; int recow; int ret; btrfs_drop_extent_cache(inode, start, end - 1); path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { recow = 0; btrfs_release_path(root, path); ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, search_start, -1); if (ret < 0) goto out; if (ret > 0) { if (path->slots[0] == 0) { ret = 0; goto out; } path->slots[0]--; } next_slot: keep = 0; bookend = 0; found_extent = 0; found_inline = 0; extent = NULL; leaf = path->nodes[0]; slot = path->slots[0]; ret = 0; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.offset >= end || key.objectid != inode->i_ino) { goto out; } if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY) { goto out; } if (recow) { search_start = key.offset; continue; } if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(leaf, extent); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = btrfs_file_extent_disk_bytenr(leaf, extent); if (extent_end) *hint_byte = extent_end; extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, extent); found_extent = 1; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { struct btrfs_item *item; item = btrfs_item_nr(leaf, slot); found_inline = 1; extent_end = key.offset + btrfs_file_extent_inline_len(leaf, item); } } else { extent_end = search_start; } /* we found nothing we can drop */ if ((!found_extent && !found_inline) || search_start >= extent_end) { int nextret; u32 nritems; nritems = btrfs_header_nritems(leaf); if (slot >= nritems - 1) { nextret = btrfs_next_leaf(root, path); if (nextret) goto out; recow = 1; } else { path->slots[0]++; } goto next_slot; } if (found_inline) { u64 mask = root->sectorsize - 1; search_start = (extent_end + mask) & ~mask; } else search_start = extent_end; if (end <= extent_end && start >= key.offset && found_inline) { *hint_byte = EXTENT_MAP_INLINE; continue; } if (end < extent_end && end >= key.offset) { if (found_extent) { u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, extent); u64 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, extent); read_extent_buffer(leaf, &old, (unsigned long)extent, sizeof(old)); if (disk_bytenr != 0) { ret = btrfs_inc_extent_ref(trans, root, disk_bytenr, disk_num_bytes, root->root_key.objectid, trans->transid, key.objectid, end); BUG_ON(ret); } } bookend = 1; if (found_inline && start <= key.offset && inline_limit < extent_end) keep = 1; } /* truncate existing extent */ if (start > key.offset) { u64 new_num; u64 old_num; keep = 1; WARN_ON(start & (root->sectorsize - 1)); if (found_extent) { new_num = start - key.offset; old_num = btrfs_file_extent_num_bytes(leaf, extent); *hint_byte = btrfs_file_extent_disk_bytenr(leaf, extent); if (btrfs_file_extent_disk_bytenr(leaf, extent)) { inode->i_blocks -= (old_num - new_num) >> 9; } btrfs_set_file_extent_num_bytes(leaf, extent, new_num); btrfs_mark_buffer_dirty(leaf); } else if (key.offset < inline_limit && (end > extent_end) && (inline_limit < extent_end)) { u32 new_size; new_size = btrfs_file_extent_calc_inline_size( inline_limit - key.offset); btrfs_truncate_item(trans, root, path, new_size, 1); } } /* delete the entire extent */ if (!keep) { u64 disk_bytenr = 0; u64 disk_num_bytes = 0; u64 extent_num_bytes = 0; u64 root_gen; u64 root_owner; root_gen = btrfs_header_generation(leaf); root_owner = btrfs_header_owner(leaf); if (found_extent) { disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, extent); disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, extent); extent_num_bytes = btrfs_file_extent_num_bytes(leaf, extent); *hint_byte = btrfs_file_extent_disk_bytenr(leaf, extent); } ret = btrfs_del_item(trans, root, path); /* TODO update progress marker and return */ BUG_ON(ret); btrfs_release_path(root, path); extent = NULL; if (found_extent && disk_bytenr != 0) { inode->i_blocks -= extent_num_bytes >> 9; ret = btrfs_free_extent(trans, root, disk_bytenr, disk_num_bytes, root_owner, root_gen, inode->i_ino, key.offset, 0); } BUG_ON(ret); if (!bookend && search_start >= end) { ret = 0; goto out; } if (!bookend) continue; } if (bookend && found_inline && start <= key.offset && inline_limit < extent_end && key.offset <= inline_limit) { u32 new_size; new_size = btrfs_file_extent_calc_inline_size( extent_end - inline_limit); btrfs_truncate_item(trans, root, path, new_size, 0); } /* create bookend, splitting the extent in two */ if (bookend && found_extent) { struct btrfs_key ins; ins.objectid = inode->i_ino; ins.offset = end; btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY); btrfs_release_path(root, path); ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*extent)); leaf = path->nodes[0]; if (ret) { btrfs_print_leaf(root, leaf); printk("got %d on inserting %Lu %u %Lu start %Lu end %Lu found %Lu %Lu keep was %d\n", ret , ins.objectid, ins.type, ins.offset, start, end, key.offset, extent_end, keep); } BUG_ON(ret); extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); write_extent_buffer(leaf, &old, (unsigned long)extent, sizeof(old)); btrfs_set_file_extent_offset(leaf, extent, le64_to_cpu(old.offset) + end - key.offset); WARN_ON(le64_to_cpu(old.num_bytes) < (extent_end - end)); btrfs_set_file_extent_num_bytes(leaf, extent, extent_end - end); btrfs_set_file_extent_type(leaf, extent, BTRFS_FILE_EXTENT_REG); btrfs_mark_buffer_dirty(path->nodes[0]); if (le64_to_cpu(old.disk_bytenr) != 0) { inode->i_blocks += btrfs_file_extent_num_bytes(leaf, extent) >> 9; } ret = 0; goto out; } } out: btrfs_free_path(path); return ret; } /* * this gets pages into the page cache and locks them down */ static int prepare_pages(struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, unsigned long first_index, unsigned long last_index, size_t write_bytes) { int i; unsigned long index = pos >> PAGE_CACHE_SHIFT; struct inode *inode = fdentry(file)->d_inode; int err = 0; u64 start_pos; start_pos = pos & ~((u64)root->sectorsize - 1); memset(pages, 0, num_pages * sizeof(struct page *)); for (i = 0; i < num_pages; i++) { pages[i] = grab_cache_page(inode->i_mapping, index + i); if (!pages[i]) { err = -ENOMEM; BUG_ON(1); } #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) ClearPageDirty(pages[i]); #else cancel_dirty_page(pages[i], PAGE_CACHE_SIZE); #endif wait_on_page_writeback(pages[i]); set_page_extent_mapped(pages[i]); WARN_ON(!PageLocked(pages[i])); } return 0; } static ssize_t btrfs_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { loff_t pos; loff_t start_pos; ssize_t num_written = 0; ssize_t err = 0; int ret = 0; struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct page **pages = NULL; int nrptrs; struct page *pinned[2]; unsigned long first_index; unsigned long last_index; nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / (sizeof(struct page *))); pinned[0] = NULL; pinned[1] = NULL; if (file->f_flags & O_DIRECT) return -EINVAL; pos = *ppos; start_pos = pos; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); current->backing_dev_info = inode->i_mapping->backing_dev_info; err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); if (err) goto out_nolock; if (count == 0) goto out_nolock; err = remove_suid(fdentry(file)); if (err) goto out_nolock; file_update_time(file); pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); mutex_lock(&inode->i_mutex); first_index = pos >> PAGE_CACHE_SHIFT; last_index = (pos + count) >> PAGE_CACHE_SHIFT; /* * there are lots of better ways to do this, but this code * makes sure the first and last page in the file range are * up to date and ready for cow */ if ((pos & (PAGE_CACHE_SIZE - 1))) { pinned[0] = grab_cache_page(inode->i_mapping, first_index); if (!PageUptodate(pinned[0])) { ret = btrfs_readpage(NULL, pinned[0]); BUG_ON(ret); wait_on_page_locked(pinned[0]); } else { unlock_page(pinned[0]); } } if ((pos + count) & (PAGE_CACHE_SIZE - 1)) { pinned[1] = grab_cache_page(inode->i_mapping, last_index); if (!PageUptodate(pinned[1])) { ret = btrfs_readpage(NULL, pinned[1]); BUG_ON(ret); wait_on_page_locked(pinned[1]); } else { unlock_page(pinned[1]); } } while(count > 0) { size_t offset = pos & (PAGE_CACHE_SIZE - 1); size_t write_bytes = min(count, nrptrs * (size_t)PAGE_CACHE_SIZE - offset); size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; WARN_ON(num_pages > nrptrs); memset(pages, 0, sizeof(pages)); mutex_lock(&root->fs_info->fs_mutex); ret = btrfs_check_free_space(root, write_bytes, 0); mutex_unlock(&root->fs_info->fs_mutex); if (ret) goto out; ret = prepare_pages(root, file, pages, num_pages, pos, first_index, last_index, write_bytes); if (ret) goto out; ret = btrfs_copy_from_user(pos, num_pages, write_bytes, pages, buf); if (ret) { btrfs_drop_pages(pages, num_pages); goto out; } ret = dirty_and_release_pages(NULL, root, file, pages, num_pages, pos, write_bytes); btrfs_drop_pages(pages, num_pages); if (ret) goto out; buf += write_bytes; count -= write_bytes; pos += write_bytes; num_written += write_bytes; balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); if (num_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) btrfs_btree_balance_dirty(root, 1); cond_resched(); } out: mutex_unlock(&inode->i_mutex); out_nolock: kfree(pages); if (pinned[0]) page_cache_release(pinned[0]); if (pinned[1]) page_cache_release(pinned[1]); *ppos = pos; if (num_written > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { err = sync_page_range(inode, inode->i_mapping, start_pos, num_written); if (err < 0) num_written = err; } current->backing_dev_info = NULL; return num_written ? num_written : err; } static int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; struct btrfs_trans_handle *trans; /* * check the transaction that last modified this inode * and see if its already been committed */ mutex_lock(&root->fs_info->fs_mutex); if (!BTRFS_I(inode)->last_trans) goto out; mutex_lock(&root->fs_info->trans_mutex); if (BTRFS_I(inode)->last_trans <= root->fs_info->last_trans_committed) { BTRFS_I(inode)->last_trans = 0; mutex_unlock(&root->fs_info->trans_mutex); goto out; } mutex_unlock(&root->fs_info->trans_mutex); /* * ok we haven't committed the transaction yet, lets do a commit */ trans = btrfs_start_transaction(root, 1); if (!trans) { ret = -ENOMEM; goto out; } ret = btrfs_commit_transaction(trans, root); out: mutex_unlock(&root->fs_info->fs_mutex); return ret > 0 ? EIO : ret; } static struct vm_operations_struct btrfs_file_vm_ops = { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) .nopage = filemap_nopage, .populate = filemap_populate, #else .fault = filemap_fault, #endif .page_mkwrite = btrfs_page_mkwrite, }; static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) { vma->vm_ops = &btrfs_file_vm_ops; file_accessed(filp); return 0; } struct file_operations btrfs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .aio_read = generic_file_aio_read, .splice_read = generic_file_splice_read, #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) .sendfile = generic_file_sendfile, #endif .write = btrfs_file_write, .mmap = btrfs_file_mmap, .open = generic_file_open, .fsync = btrfs_sync_file, .unlocked_ioctl = btrfs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_ioctl, #endif };