/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_CTREE__ #define __BTRFS_CTREE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "extent_io.h" #include "extent_map.h" #include "async-thread.h" struct btrfs_trans_handle; struct btrfs_transaction; struct btrfs_pending_snapshot; extern struct kmem_cache *btrfs_trans_handle_cachep; extern struct kmem_cache *btrfs_transaction_cachep; extern struct kmem_cache *btrfs_bit_radix_cachep; extern struct kmem_cache *btrfs_path_cachep; extern struct kmem_cache *btrfs_free_space_cachep; struct btrfs_ordered_sum; #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS #define STATIC noinline #else #define STATIC static noinline #endif #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ #define BTRFS_MAX_MIRRORS 3 #define BTRFS_MAX_LEVEL 8 #define BTRFS_COMPAT_EXTENT_TREE_V0 /* holds pointers to all of the tree roots */ #define BTRFS_ROOT_TREE_OBJECTID 1ULL /* stores information about which extents are in use, and reference counts */ #define BTRFS_EXTENT_TREE_OBJECTID 2ULL /* * chunk tree stores translations from logical -> physical block numbering * the super block points to the chunk tree */ #define BTRFS_CHUNK_TREE_OBJECTID 3ULL /* * stores information about which areas of a given device are in use. * one per device. The tree of tree roots points to the device tree */ #define BTRFS_DEV_TREE_OBJECTID 4ULL /* one per subvolume, storing files and directories */ #define BTRFS_FS_TREE_OBJECTID 5ULL /* directory objectid inside the root tree */ #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL /* holds checksums of all the data extents */ #define BTRFS_CSUM_TREE_OBJECTID 7ULL /* holds quota configuration and tracking */ #define BTRFS_QUOTA_TREE_OBJECTID 8ULL /* for storing items that use the BTRFS_UUID_KEY* types */ #define BTRFS_UUID_TREE_OBJECTID 9ULL /* for storing balance parameters in the root tree */ #define BTRFS_BALANCE_OBJECTID -4ULL /* orhpan objectid for tracking unlinked/truncated files */ #define BTRFS_ORPHAN_OBJECTID -5ULL /* does write ahead logging to speed up fsyncs */ #define BTRFS_TREE_LOG_OBJECTID -6ULL #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL /* for space balancing */ #define BTRFS_TREE_RELOC_OBJECTID -8ULL #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL /* * extent checksums all have this objectid * this allows them to share the logging tree * for fsyncs */ #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL /* For storing free space cache */ #define BTRFS_FREE_SPACE_OBJECTID -11ULL /* * The inode number assigned to the special inode for storing * free ino cache */ #define BTRFS_FREE_INO_OBJECTID -12ULL /* dummy objectid represents multiple objectids */ #define BTRFS_MULTIPLE_OBJECTIDS -255ULL /* * All files have objectids in this range. */ #define BTRFS_FIRST_FREE_OBJECTID 256ULL #define BTRFS_LAST_FREE_OBJECTID -256ULL #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL /* * the device items go into the chunk tree. The key is in the form * [ 1 BTRFS_DEV_ITEM_KEY device_id ] */ #define BTRFS_DEV_ITEMS_OBJECTID 1ULL #define BTRFS_BTREE_INODE_OBJECTID 1 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 #define BTRFS_DEV_REPLACE_DEVID 0ULL /* * the max metadata block size. This limit is somewhat artificial, * but the memmove costs go through the roof for larger blocks. */ #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 /* * we can actually store much bigger names, but lets not confuse the rest * of linux */ #define BTRFS_NAME_LEN 255 /* * Theoretical limit is larger, but we keep this down to a sane * value. That should limit greatly the possibility of collisions on * inode ref items. */ #define BTRFS_LINK_MAX 65535U /* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32 /* csum types */ #define BTRFS_CSUM_TYPE_CRC32 0 static int btrfs_csum_sizes[] = { 4 }; /* four bytes for CRC32 */ #define BTRFS_EMPTY_DIR_SIZE 0 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */ #define REQ_GET_READ_MIRRORS (1 << 30) #define BTRFS_FT_UNKNOWN 0 #define BTRFS_FT_REG_FILE 1 #define BTRFS_FT_DIR 2 #define BTRFS_FT_CHRDEV 3 #define BTRFS_FT_BLKDEV 4 #define BTRFS_FT_FIFO 5 #define BTRFS_FT_SOCK 6 #define BTRFS_FT_SYMLINK 7 #define BTRFS_FT_XATTR 8 #define BTRFS_FT_MAX 9 /* ioprio of readahead is set to idle */ #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024) #define BTRFS_MAX_EXTENT_SIZE (128 * 1024 * 1024) /* * The key defines the order in the tree, and so it also defines (optimal) * block layout. * * objectid corresponds to the inode number. * * type tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with type of 1 might refer to the inode data, * type of 2 may point to file data in the btree and type == 3 may point to * extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; u8 type; __le64 offset; } __attribute__ ((__packed__)); struct btrfs_key { u64 objectid; u8 type; u64 offset; } __attribute__ ((__packed__)); struct btrfs_mapping_tree { struct extent_map_tree map_tree; }; struct btrfs_dev_item { /* the internal btrfs device id */ __le64 devid; /* size of the device */ __le64 total_bytes; /* bytes used */ __le64 bytes_used; /* optimal io alignment for this device */ __le32 io_align; /* optimal io width for this device */ __le32 io_width; /* minimal io size for this device */ __le32 sector_size; /* type and info about this device */ __le64 type; /* expected generation for this device */ __le64 generation; /* * starting byte of this partition on the device, * to allow for stripe alignment in the future */ __le64 start_offset; /* grouping information for allocation decisions */ __le32 dev_group; /* seek speed 0-100 where 100 is fastest */ u8 seek_speed; /* bandwidth 0-100 where 100 is fastest */ u8 bandwidth; /* btrfs generated uuid for this device */ u8 uuid[BTRFS_UUID_SIZE]; /* uuid of FS who owns this device */ u8 fsid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_stripe { __le64 devid; __le64 offset; u8 dev_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_chunk { /* size of this chunk in bytes */ __le64 length; /* objectid of the root referencing this chunk */ __le64 owner; __le64 stripe_len; __le64 type; /* optimal io alignment for this chunk */ __le32 io_align; /* optimal io width for this chunk */ __le32 io_width; /* minimal io size for this chunk */ __le32 sector_size; /* 2^16 stripes is quite a lot, a second limit is the size of a single * item in the btree */ __le16 num_stripes; /* sub stripes only matter for raid10 */ __le16 sub_stripes; struct btrfs_stripe stripe; /* additional stripes go here */ } __attribute__ ((__packed__)); #define BTRFS_FREE_SPACE_EXTENT 1 #define BTRFS_FREE_SPACE_BITMAP 2 struct btrfs_free_space_entry { __le64 offset; __le64 bytes; u8 type; } __attribute__ ((__packed__)); struct btrfs_free_space_header { struct btrfs_disk_key location; __le64 generation; __le64 num_entries; __le64 num_bitmaps; } __attribute__ ((__packed__)); static inline unsigned long btrfs_chunk_item_size(int num_stripes) { BUG_ON(num_stripes == 0); return sizeof(struct btrfs_chunk) + sizeof(struct btrfs_stripe) * (num_stripes - 1); } #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) /* * File system states */ #define BTRFS_FS_STATE_ERROR 0 #define BTRFS_FS_STATE_REMOUNTING 1 #define BTRFS_FS_STATE_TRANS_ABORTED 2 #define BTRFS_FS_STATE_DEV_REPLACING 3 /* Super block flags */ /* Errors detected */ #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) #define BTRFS_BACKREF_REV_MAX 256 #define BTRFS_BACKREF_REV_SHIFT 56 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ BTRFS_BACKREF_REV_SHIFT) #define BTRFS_OLD_BACKREF_REV 0 #define BTRFS_MIXED_BACKREF_REV 1 /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { /* these first four must match the super block */ u8 csum[BTRFS_CSUM_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ __le64 bytenr; /* which block this node is supposed to live in */ __le64 flags; /* allowed to be different from the super from here on down */ u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; __le64 generation; __le64 owner; __le32 nritems; u8 level; } __attribute__ ((__packed__)); #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ sizeof(struct btrfs_header)) / \ sizeof(struct btrfs_key_ptr)) #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize)) #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ (offsetof(struct btrfs_file_extent_item, disk_bytenr)) #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) - \ BTRFS_FILE_EXTENT_INLINE_DATA_START) #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) -\ sizeof(struct btrfs_dir_item)) /* * this is a very generous portion of the super block, giving us * room to translate 14 chunks with 3 stripes each. */ #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 #define BTRFS_LABEL_SIZE 256 /* * just in case we somehow lose the roots and are not able to mount, * we store an array of the roots from previous transactions * in the super. */ #define BTRFS_NUM_BACKUP_ROOTS 4 struct btrfs_root_backup { __le64 tree_root; __le64 tree_root_gen; __le64 chunk_root; __le64 chunk_root_gen; __le64 extent_root; __le64 extent_root_gen; __le64 fs_root; __le64 fs_root_gen; __le64 dev_root; __le64 dev_root_gen; __le64 csum_root; __le64 csum_root_gen; __le64 total_bytes; __le64 bytes_used; __le64 num_devices; /* future */ __le64 unused_64[4]; u8 tree_root_level; u8 chunk_root_level; u8 extent_root_level; u8 fs_root_level; u8 dev_root_level; u8 csum_root_level; /* future and to align */ u8 unused_8[10]; } __attribute__ ((__packed__)); /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct btrfs_super_block { u8 csum[BTRFS_CSUM_SIZE]; /* the first 4 fields must match struct btrfs_header */ u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ __le64 bytenr; /* this block number */ __le64 flags; /* allowed to be different from the btrfs_header from here own down */ __le64 magic; __le64 generation; __le64 root; __le64 chunk_root; __le64 log_root; /* this will help find the new super based on the log root */ __le64 log_root_transid; __le64 total_bytes; __le64 bytes_used; __le64 root_dir_objectid; __le64 num_devices; __le32 sectorsize; __le32 nodesize; __le32 __unused_leafsize; __le32 stripesize; __le32 sys_chunk_array_size; __le64 chunk_root_generation; __le64 compat_flags; __le64 compat_ro_flags; __le64 incompat_flags; __le16 csum_type; u8 root_level; u8 chunk_root_level; u8 log_root_level; struct btrfs_dev_item dev_item; char label[BTRFS_LABEL_SIZE]; __le64 cache_generation; __le64 uuid_tree_generation; /* future expansion */ __le64 reserved[30]; u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; } __attribute__ ((__packed__)); /* * Compat flags that we support. If any incompat flags are set other than the * ones specified below then we will fail to mount */ #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1) #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2) #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3) /* * some patches floated around with a second compression method * lets save that incompat here for when they do get in * Note we don't actually support it, we're just reserving the * number */ #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4) /* * older kernels tried to do bigger metadata blocks, but the * code was pretty buggy. Lets not let them try anymore. */ #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5) #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6) #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7) #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8) #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9) #define BTRFS_FEATURE_COMPAT_SUPP 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES) #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL /* * A leaf is full of items. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le32 offset; __le32 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct btrfs_key_ptr { struct btrfs_disk_key key; __le64 blockptr; __le64 generation; } __attribute__ ((__packed__)); struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; } __attribute__ ((__packed__)); /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; /* if there is real range locking, this locks field will change */ int locks[BTRFS_MAX_LEVEL]; int reada; /* keep some upper locks as we walk down */ int lowest_level; /* * set by btrfs_split_item, tells search_slot to keep all locks * and to force calls to keep space in the nodes */ unsigned int search_for_split:1; unsigned int keep_locks:1; unsigned int skip_locking:1; unsigned int leave_spinning:1; unsigned int search_commit_root:1; unsigned int need_commit_sem:1; unsigned int skip_release_on_error:1; }; /* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */ struct btrfs_extent_item { __le64 refs; __le64 generation; __le64 flags; } __attribute__ ((__packed__)); struct btrfs_extent_item_v0 { __le32 refs; } __attribute__ ((__packed__)); #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \ sizeof(struct btrfs_item)) #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) /* following flags only apply to tree blocks */ /* use full backrefs for extent pointers in the block */ #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) /* * this flag is only used internally by scrub and may be changed at any time * it is only declared here to avoid collisions */ #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) struct btrfs_tree_block_info { struct btrfs_disk_key key; u8 level; } __attribute__ ((__packed__)); struct btrfs_extent_data_ref { __le64 root; __le64 objectid; __le64 offset; __le32 count; } __attribute__ ((__packed__)); struct btrfs_shared_data_ref { __le32 count; } __attribute__ ((__packed__)); struct btrfs_extent_inline_ref { u8 type; __le64 offset; } __attribute__ ((__packed__)); /* old style backrefs item */ struct btrfs_extent_ref_v0 { __le64 root; __le64 generation; __le64 objectid; __le32 count; } __attribute__ ((__packed__)); /* dev extents record free space on individual devices. The owner * field points back to the chunk allocation mapping tree that allocated * the extent. The chunk tree uuid field is a way to double check the owner */ struct btrfs_dev_extent { __le64 chunk_tree; __le64 chunk_objectid; __le64 chunk_offset; __le64 length; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_inode_ref { __le64 index; __le16 name_len; /* name goes here */ } __attribute__ ((__packed__)); struct btrfs_inode_extref { __le64 parent_objectid; __le64 index; __le16 name_len; __u8 name[0]; /* name goes here */ } __attribute__ ((__packed__)); struct btrfs_timespec { __le64 sec; __le32 nsec; } __attribute__ ((__packed__)); enum btrfs_compression_type { BTRFS_COMPRESS_NONE = 0, BTRFS_COMPRESS_ZLIB = 1, BTRFS_COMPRESS_LZO = 2, BTRFS_COMPRESS_TYPES = 2, BTRFS_COMPRESS_LAST = 3, }; struct btrfs_inode_item { /* nfs style generation number */ __le64 generation; /* transid that last touched this inode */ __le64 transid; __le64 size; __le64 nbytes; __le64 block_group; __le32 nlink; __le32 uid; __le32 gid; __le32 mode; __le64 rdev; __le64 flags; /* modification sequence number for NFS */ __le64 sequence; /* * a little future expansion, for more than this we can * just grow the inode item and version it */ __le64 reserved[4]; struct btrfs_timespec atime; struct btrfs_timespec ctime; struct btrfs_timespec mtime; struct btrfs_timespec otime; } __attribute__ ((__packed__)); struct btrfs_dir_log_item { __le64 end; } __attribute__ ((__packed__)); struct btrfs_dir_item { struct btrfs_disk_key location; __le64 transid; __le16 data_len; __le16 name_len; u8 type; } __attribute__ ((__packed__)); #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) /* * Internal in-memory flag that a subvolume has been marked for deletion but * still visible as a directory */ #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) struct btrfs_root_item { struct btrfs_inode_item inode; __le64 generation; __le64 root_dirid; __le64 bytenr; __le64 byte_limit; __le64 bytes_used; __le64 last_snapshot; __le64 flags; __le32 refs; struct btrfs_disk_key drop_progress; u8 drop_level; u8 level; /* * The following fields appear after subvol_uuids+subvol_times * were introduced. */ /* * This generation number is used to test if the new fields are valid * and up to date while reading the root item. Everytime the root item * is written out, the "generation" field is copied into this field. If * anyone ever mounted the fs with an older kernel, we will have * mismatching generation values here and thus must invalidate the * new fields. See btrfs_update_root and btrfs_find_last_root for * details. * the offset of generation_v2 is also used as the start for the memset * when invalidating the fields. */ __le64 generation_v2; u8 uuid[BTRFS_UUID_SIZE]; u8 parent_uuid[BTRFS_UUID_SIZE]; u8 received_uuid[BTRFS_UUID_SIZE]; __le64 ctransid; /* updated when an inode changes */ __le64 otransid; /* trans when created */ __le64 stransid; /* trans when sent. non-zero for received subvol */ __le64 rtransid; /* trans when received. non-zero for received subvol */ struct btrfs_timespec ctime; struct btrfs_timespec otime; struct btrfs_timespec stime; struct btrfs_timespec rtime; __le64 reserved[8]; /* for future */ } __attribute__ ((__packed__)); /* * this is used for both forward and backward root refs */ struct btrfs_root_ref { __le64 dirid; __le64 sequence; __le16 name_len; } __attribute__ ((__packed__)); struct btrfs_disk_balance_args { /* * profiles to operate on, single is denoted by * BTRFS_AVAIL_ALLOC_BIT_SINGLE */ __le64 profiles; /* usage filter */ __le64 usage; /* devid filter */ __le64 devid; /* devid subset filter [pstart..pend) */ __le64 pstart; __le64 pend; /* btrfs virtual address space subset filter [vstart..vend) */ __le64 vstart; __le64 vend; /* * profile to convert to, single is denoted by * BTRFS_AVAIL_ALLOC_BIT_SINGLE */ __le64 target; /* BTRFS_BALANCE_ARGS_* */ __le64 flags; /* BTRFS_BALANCE_ARGS_LIMIT value */ __le64 limit; __le64 unused[7]; } __attribute__ ((__packed__)); /* * store balance parameters to disk so that balance can be properly * resumed after crash or unmount */ struct btrfs_balance_item { /* BTRFS_BALANCE_* */ __le64 flags; struct btrfs_disk_balance_args data; struct btrfs_disk_balance_args meta; struct btrfs_disk_balance_args sys; __le64 unused[4]; } __attribute__ ((__packed__)); #define BTRFS_FILE_EXTENT_INLINE 0 #define BTRFS_FILE_EXTENT_REG 1 #define BTRFS_FILE_EXTENT_PREALLOC 2 struct btrfs_file_extent_item { /* * transaction id that created this extent */ __le64 generation; /* * max number of bytes to hold this extent in ram * when we split a compressed extent we can't know how big * each of the resulting pieces will be. So, this is * an upper limit on the size of the extent in ram instead of * an exact limit. */ __le64 ram_bytes; /* * 32 bits for the various ways we might encode the data, * including compression and encryption. If any of these * are set to something a given disk format doesn't understand * it is treated like an incompat flag for reading and writing, * but not for stat. */ u8 compression; u8 encryption; __le16 other_encoding; /* spare for later use */ /* are we inline data or a real extent? */ u8 type; /* * disk space consumed by the extent, checksum blocks are included * in these numbers * * At this offset in the structure, the inline extent data start. */ __le64 disk_bytenr; __le64 disk_num_bytes; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ __le64 offset; /* * the logical number of file blocks (no csums included). This * always reflects the size uncompressed and without encoding. */ __le64 num_bytes; } __attribute__ ((__packed__)); struct btrfs_csum_item { u8 csum; } __attribute__ ((__packed__)); struct btrfs_dev_stats_item { /* * grow this item struct at the end for future enhancements and keep * the existing values unchanged */ __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; } __attribute__ ((__packed__)); #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 struct btrfs_dev_replace { u64 replace_state; /* see #define above */ u64 time_started; /* seconds since 1-Jan-1970 */ u64 time_stopped; /* seconds since 1-Jan-1970 */ atomic64_t num_write_errors; atomic64_t num_uncorrectable_read_errors; u64 cursor_left; u64 committed_cursor_left; u64 cursor_left_last_write_of_item; u64 cursor_right; u64 cont_reading_from_srcdev_mode; /* see #define above */ int is_valid; int item_needs_writeback; struct btrfs_device *srcdev; struct btrfs_device *tgtdev; pid_t lock_owner; atomic_t nesting_level; struct mutex lock_finishing_cancel_unmount; struct mutex lock_management_lock; struct mutex lock; struct btrfs_scrub_progress scrub_progress; }; struct btrfs_dev_replace_item { /* * grow this item struct at the end for future enhancements and keep * the existing values unchanged */ __le64 src_devid; __le64 cursor_left; __le64 cursor_right; __le64 cont_reading_from_srcdev_mode; __le64 replace_state; __le64 time_started; __le64 time_stopped; __le64 num_write_errors; __le64 num_uncorrectable_read_errors; } __attribute__ ((__packed__)); /* different types of block groups (and chunks) */ #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ BTRFS_SPACE_INFO_GLOBAL_RSV) enum btrfs_raid_types { BTRFS_RAID_RAID10, BTRFS_RAID_RAID1, BTRFS_RAID_DUP, BTRFS_RAID_RAID0, BTRFS_RAID_SINGLE, BTRFS_RAID_RAID5, BTRFS_RAID_RAID6, BTRFS_NR_RAID_TYPES }; #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ BTRFS_BLOCK_GROUP_SYSTEM | \ BTRFS_BLOCK_GROUP_METADATA) #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ BTRFS_BLOCK_GROUP_RAID1 | \ BTRFS_BLOCK_GROUP_RAID5 | \ BTRFS_BLOCK_GROUP_RAID6 | \ BTRFS_BLOCK_GROUP_DUP | \ BTRFS_BLOCK_GROUP_RAID10) #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ BTRFS_BLOCK_GROUP_RAID6) /* * We need a bit for restriper to be able to tell when chunks of type * SINGLE are available. This "extended" profile format is used in * fs_info->avail_*_alloc_bits (in-memory) and balance item fields * (on-disk). The corresponding on-disk bit in chunk.type is reserved * to avoid remappings between two formats in future. */ #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) /* * A fake block group type that is used to communicate global block reserve * size to userspace via the SPACE_INFO ioctl. */ #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ BTRFS_AVAIL_ALLOC_BIT_SINGLE) static inline u64 chunk_to_extended(u64 flags) { if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; return flags; } static inline u64 extended_to_chunk(u64 flags) { return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; } struct btrfs_block_group_item { __le64 used; __le64 chunk_objectid; __le64 flags; } __attribute__ ((__packed__)); #define BTRFS_QGROUP_LEVEL_SHIFT 48 static inline u64 btrfs_qgroup_level(u64 qgroupid) { return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; } /* * is subvolume quota turned on? */ #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) /* * RESCAN is set during the initialization phase */ #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) /* * Some qgroup entries are known to be out of date, * either because the configuration has changed in a way that * makes a rescan necessary, or because the fs has been mounted * with a non-qgroup-aware version. * Turning qouta off and on again makes it inconsistent, too. */ #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) #define BTRFS_QGROUP_STATUS_VERSION 1 struct btrfs_qgroup_status_item { __le64 version; /* * the generation is updated during every commit. As older * versions of btrfs are not aware of qgroups, it will be * possible to detect inconsistencies by checking the * generation on mount time */ __le64 generation; /* flag definitions see above */ __le64 flags; /* * only used during scanning to record the progress * of the scan. It contains a logical address */ __le64 rescan; } __attribute__ ((__packed__)); struct btrfs_qgroup_info_item { __le64 generation; __le64 rfer; __le64 rfer_cmpr; __le64 excl; __le64 excl_cmpr; } __attribute__ ((__packed__)); /* flags definition for qgroup limits */ #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0) #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1) #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2) #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3) #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4) #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5) struct btrfs_qgroup_limit_item { /* * only updated when any of the other values change */ __le64 flags; __le64 max_rfer; __le64 max_excl; __le64 rsv_rfer; __le64 rsv_excl; } __attribute__ ((__packed__)); /* For raid type sysfs entries */ struct raid_kobject { int raid_type; struct kobject kobj; }; struct btrfs_space_info { spinlock_t lock; u64 total_bytes; /* total bytes in the space, this doesn't take mirrors into account */ u64 bytes_used; /* total bytes used, this doesn't take mirrors into account */ u64 bytes_pinned; /* total bytes pinned, will be freed when the transaction finishes */ u64 bytes_reserved; /* total bytes the allocator has reserved for current allocations */ u64 bytes_may_use; /* number of bytes that may be used for delalloc/allocations */ u64 bytes_readonly; /* total bytes that are read only */ u64 max_extent_size; /* This will hold the maximum extent size of the space info if we had an ENOSPC in the allocator. */ unsigned int full:1; /* indicates that we cannot allocate any more chunks for this space */ unsigned int chunk_alloc:1; /* set if we are allocating a chunk */ unsigned int flush:1; /* set if we are trying to make space */ unsigned int force_alloc; /* set if we need to force a chunk alloc for this space */ u64 disk_used; /* total bytes used on disk */ u64 disk_total; /* total bytes on disk, takes mirrors into account */ u64 flags; /* * bytes_pinned is kept in line with what is actually pinned, as in * we've called update_block_group and dropped the bytes_used counter * and increased the bytes_pinned counter. However this means that * bytes_pinned does not reflect the bytes that will be pinned once the * delayed refs are flushed, so this counter is inc'ed everytime we call * btrfs_free_extent so it is a realtime count of what will be freed * once the transaction is committed. It will be zero'ed everytime the * transaction commits. */ struct percpu_counter total_bytes_pinned; struct list_head list; /* Protected by the spinlock 'lock'. */ struct list_head ro_bgs; struct rw_semaphore groups_sem; /* for block groups in our same type */ struct list_head block_groups[BTRFS_NR_RAID_TYPES]; wait_queue_head_t wait; struct kobject kobj; struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES]; }; #define BTRFS_BLOCK_RSV_GLOBAL 1 #define BTRFS_BLOCK_RSV_DELALLOC 2 #define BTRFS_BLOCK_RSV_TRANS 3 #define BTRFS_BLOCK_RSV_CHUNK 4 #define BTRFS_BLOCK_RSV_DELOPS 5 #define BTRFS_BLOCK_RSV_EMPTY 6 #define BTRFS_BLOCK_RSV_TEMP 7 struct btrfs_block_rsv { u64 size; u64 reserved; struct btrfs_space_info *space_info; spinlock_t lock; unsigned short full; unsigned short type; unsigned short failfast; }; /* * free clusters are used to claim free space in relatively large chunks, * allowing us to do less seeky writes. They are used for all metadata * allocations and data allocations in ssd mode. */ struct btrfs_free_cluster { spinlock_t lock; spinlock_t refill_lock; struct rb_root root; /* largest extent in this cluster */ u64 max_size; /* first extent starting offset */ u64 window_start; struct btrfs_block_group_cache *block_group; /* * when a cluster is allocated from a block group, we put the * cluster onto a list in the block group so that it can * be freed before the block group is freed. */ struct list_head block_group_list; }; enum btrfs_caching_type { BTRFS_CACHE_NO = 0, BTRFS_CACHE_STARTED = 1, BTRFS_CACHE_FAST = 2, BTRFS_CACHE_FINISHED = 3, BTRFS_CACHE_ERROR = 4, }; enum btrfs_disk_cache_state { BTRFS_DC_WRITTEN = 0, BTRFS_DC_ERROR = 1, BTRFS_DC_CLEAR = 2, BTRFS_DC_SETUP = 3, }; struct btrfs_caching_control { struct list_head list; struct mutex mutex; wait_queue_head_t wait; struct btrfs_work work; struct btrfs_block_group_cache *block_group; u64 progress; atomic_t count; }; struct btrfs_io_ctl { void *cur, *orig; struct page *page; struct page **pages; struct btrfs_root *root; struct inode *inode; unsigned long size; int index; int num_pages; int entries; int bitmaps; unsigned check_crcs:1; }; struct btrfs_block_group_cache { struct btrfs_key key; struct btrfs_block_group_item item; struct btrfs_fs_info *fs_info; struct inode *inode; spinlock_t lock; u64 pinned; u64 reserved; u64 delalloc_bytes; u64 bytes_super; u64 flags; u64 sectorsize; u64 cache_generation; /* * It is just used for the delayed data space allocation because * only the data space allocation and the relative metadata update * can be done cross the transaction. */ struct rw_semaphore data_rwsem; /* for raid56, this is a full stripe, without parity */ unsigned long full_stripe_len; unsigned int ro; unsigned int iref:1; unsigned int has_caching_ctl:1; unsigned int removed:1; int disk_cache_state; /* cache tracking stuff */ int cached; struct btrfs_caching_control *caching_ctl; u64 last_byte_to_unpin; struct btrfs_space_info *space_info; /* free space cache stuff */ struct btrfs_free_space_ctl *free_space_ctl; /* block group cache stuff */ struct rb_node cache_node; /* for block groups in the same raid type */ struct list_head list; /* usage count */ atomic_t count; /* List of struct btrfs_free_clusters for this block group. * Today it will only have one thing on it, but that may change */ struct list_head cluster_list; /* For delayed block group creation or deletion of empty block groups */ struct list_head bg_list; /* For read-only block groups */ struct list_head ro_list; atomic_t trimming; /* For dirty block groups */ struct list_head dirty_list; struct list_head io_list; struct btrfs_io_ctl io_ctl; }; /* delayed seq elem */ struct seq_list { struct list_head list; u64 seq; }; #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 } enum btrfs_orphan_cleanup_state { ORPHAN_CLEANUP_STARTED = 1, ORPHAN_CLEANUP_DONE = 2, }; /* used by the raid56 code to lock stripes for read/modify/write */ struct btrfs_stripe_hash { struct list_head hash_list; wait_queue_head_t wait; spinlock_t lock; }; /* used by the raid56 code to lock stripes for read/modify/write */ struct btrfs_stripe_hash_table { struct list_head stripe_cache; spinlock_t cache_lock; int cache_size; struct btrfs_stripe_hash table[]; }; #define BTRFS_STRIPE_HASH_TABLE_BITS 11 void btrfs_init_async_reclaim_work(struct work_struct *work); /* fs_info */ struct reloc_control; struct btrfs_device; struct btrfs_fs_devices; struct btrfs_balance_control; struct btrfs_delayed_root; struct btrfs_fs_info { u8 fsid[BTRFS_FSID_SIZE]; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; struct btrfs_root *extent_root; struct btrfs_root *tree_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *fs_root; struct btrfs_root *csum_root; struct btrfs_root *quota_root; struct btrfs_root *uuid_root; /* the log root tree is a directory of all the other log roots */ struct btrfs_root *log_root_tree; spinlock_t fs_roots_radix_lock; struct radix_tree_root fs_roots_radix; /* block group cache stuff */ spinlock_t block_group_cache_lock; u64 first_logical_byte; struct rb_root block_group_cache_tree; /* keep track of unallocated space */ spinlock_t free_chunk_lock; u64 free_chunk_space; struct extent_io_tree freed_extents[2]; struct extent_io_tree *pinned_extents; /* logical->physical extent mapping */ struct btrfs_mapping_tree mapping_tree; /* * block reservation for extent, checksum, root tree and * delayed dir index item */ struct btrfs_block_rsv global_block_rsv; /* block reservation for delay allocation */ struct btrfs_block_rsv delalloc_block_rsv; /* block reservation for metadata operations */ struct btrfs_block_rsv trans_block_rsv; /* block reservation for chunk tree */ struct btrfs_block_rsv chunk_block_rsv; /* block reservation for delayed operations */ struct btrfs_block_rsv delayed_block_rsv; struct btrfs_block_rsv empty_block_rsv; u64 generation; u64 last_trans_committed; u64 avg_delayed_ref_runtime; /* * this is updated to the current trans every time a full commit * is required instead of the faster short fsync log commits */ u64 last_trans_log_full_commit; unsigned long mount_opt; /* * Track requests for actions that need to be done during transaction * commit (like for some mount options). */ unsigned long pending_changes; unsigned long compress_type:4; int commit_interval; /* * It is a suggestive number, the read side is safe even it gets a * wrong number because we will write out the data into a regular * extent. The write side(mount/remount) is under ->s_umount lock, * so it is also safe. */ u64 max_inline; /* * Protected by ->chunk_mutex and sb->s_umount. * * The reason that we use two lock to protect it is because only * remount and mount operations can change it and these two operations * are under sb->s_umount, but the read side (chunk allocation) can not * acquire sb->s_umount or the deadlock would happen. So we use two * locks to protect it. On the write side, we must acquire two locks, * and on the read side, we just need acquire one of them. */ u64 alloc_start; struct btrfs_transaction *running_transaction; wait_queue_head_t transaction_throttle; wait_queue_head_t transaction_wait; wait_queue_head_t transaction_blocked_wait; wait_queue_head_t async_submit_wait; /* * Used to protect the incompat_flags, compat_flags, compat_ro_flags * when they are updated. * * Because we do not clear the flags for ever, so we needn't use * the lock on the read side. * * We also needn't use the lock when we mount the fs, because * there is no other task which will update the flag. */ spinlock_t super_lock; struct btrfs_super_block *super_copy; struct btrfs_super_block *super_for_commit; struct block_device *__bdev; struct super_block *sb; struct inode *btree_inode; struct backing_dev_info bdi; struct mutex tree_log_mutex; struct mutex transaction_kthread_mutex; struct mutex cleaner_mutex; struct mutex chunk_mutex; struct mutex volume_mutex; /* * this is taken to make sure we don't set block groups ro after * the free space cache has been allocated on them */ struct mutex ro_block_group_mutex; /* this is used during read/modify/write to make sure * no two ios are trying to mod the same stripe at the same * time */ struct btrfs_stripe_hash_table *stripe_hash_table; /* * this protects the ordered operations list only while we are * processing all of the entries on it. This way we make * sure the commit code doesn't find the list temporarily empty * because another function happens to be doing non-waiting preflush * before jumping into the main commit. */ struct mutex ordered_operations_mutex; struct rw_semaphore commit_root_sem; struct rw_semaphore cleanup_work_sem; struct rw_semaphore subvol_sem; struct srcu_struct subvol_srcu; spinlock_t trans_lock; /* * the reloc mutex goes with the trans lock, it is taken * during commit to protect us from the relocation code */ struct mutex reloc_mutex; struct list_head trans_list; struct list_head dead_roots; struct list_head caching_block_groups; spinlock_t delayed_iput_lock; struct list_head delayed_iputs; struct rw_semaphore delayed_iput_sem; /* this protects tree_mod_seq_list */ spinlock_t tree_mod_seq_lock; atomic64_t tree_mod_seq; struct list_head tree_mod_seq_list; /* this protects tree_mod_log */ rwlock_t tree_mod_log_lock; struct rb_root tree_mod_log; atomic_t nr_async_submits; atomic_t async_submit_draining; atomic_t nr_async_bios; atomic_t async_delalloc_pages; atomic_t open_ioctl_trans; /* * this is used to protect the following list -- ordered_roots. */ spinlock_t ordered_root_lock; /* * all fs/file tree roots in which there are data=ordered extents * pending writeback are added into this list. * * these can span multiple transactions and basically include * every dirty data page that isn't from nodatacow */ struct list_head ordered_roots; struct mutex delalloc_root_mutex; spinlock_t delalloc_root_lock; /* all fs/file tree roots that have delalloc inodes. */ struct list_head delalloc_roots; /* * there is a pool of worker threads for checksumming during writes * and a pool for checksumming after reads. This is because readers * can run with FS locks held, and the writers may be waiting for * those locks. We don't want ordering in the pending list to cause * deadlocks, and so the two are serviced separately. * * A third pool does submit_bio to avoid deadlocking with the other * two */ struct btrfs_workqueue *workers; struct btrfs_workqueue *delalloc_workers; struct btrfs_workqueue *flush_workers; struct btrfs_workqueue *endio_workers; struct btrfs_workqueue *endio_meta_workers; struct btrfs_workqueue *endio_raid56_workers; struct btrfs_workqueue *endio_repair_workers; struct btrfs_workqueue *rmw_workers; struct btrfs_workqueue *endio_meta_write_workers; struct btrfs_workqueue *endio_write_workers; struct btrfs_workqueue *endio_freespace_worker; struct btrfs_workqueue *submit_workers; struct btrfs_workqueue *caching_workers; struct btrfs_workqueue *readahead_workers; /* * fixup workers take dirty pages that didn't properly go through * the cow mechanism and make them safe to write. It happens * for the sys_munmap function call path */ struct btrfs_workqueue *fixup_workers; struct btrfs_workqueue *delayed_workers; /* the extent workers do delayed refs on the extent allocation tree */ struct btrfs_workqueue *extent_workers; struct task_struct *transaction_kthread; struct task_struct *cleaner_kthread; int thread_pool_size; struct kobject *space_info_kobj; int do_barriers; int closing; int log_root_recovering; int open; u64 total_pinned; /* used to keep from writing metadata until there is a nice batch */ struct percpu_counter dirty_metadata_bytes; struct percpu_counter delalloc_bytes; s32 dirty_metadata_batch; s32 delalloc_batch; struct list_head dirty_cowonly_roots; struct btrfs_fs_devices *fs_devices; /* * the space_info list is almost entirely read only. It only changes * when we add a new raid type to the FS, and that happens * very rarely. RCU is used to protect it. */ struct list_head space_info; struct btrfs_space_info *data_sinfo; struct reloc_control *reloc_ctl; /* data_alloc_cluster is only used in ssd mode */ struct btrfs_free_cluster data_alloc_cluster; /* all metadata allocations go through this cluster */ struct btrfs_free_cluster meta_alloc_cluster; /* auto defrag inodes go here */ spinlock_t defrag_inodes_lock; struct rb_root defrag_inodes; atomic_t defrag_running; /* Used to protect avail_{data, metadata, system}_alloc_bits */ seqlock_t profiles_lock; /* * these three are in extended format (availability of single * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) */ u64 avail_data_alloc_bits; u64 avail_metadata_alloc_bits; u64 avail_system_alloc_bits; /* restriper state */ spinlock_t balance_lock; struct mutex balance_mutex; atomic_t balance_running; atomic_t balance_pause_req; atomic_t balance_cancel_req; struct btrfs_balance_control *balance_ctl; wait_queue_head_t balance_wait_q; unsigned data_chunk_allocations; unsigned metadata_ratio; void *bdev_holder; /* private scrub information */ struct mutex scrub_lock; atomic_t scrubs_running; atomic_t scrub_pause_req; atomic_t scrubs_paused; atomic_t scrub_cancel_req; wait_queue_head_t scrub_pause_wait; int scrub_workers_refcnt; struct btrfs_workqueue *scrub_workers; struct btrfs_workqueue *scrub_wr_completion_workers; struct btrfs_workqueue *scrub_nocow_workers; struct btrfs_workqueue *scrub_parity_workers; #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY u32 check_integrity_print_mask; #endif /* * quota information */ unsigned int quota_enabled:1; /* * quota_enabled only changes state after a commit. This holds the * next state. */ unsigned int pending_quota_state:1; /* is qgroup tracking in a consistent state? */ u64 qgroup_flags; /* holds configuration and tracking. Protected by qgroup_lock */ struct rb_root qgroup_tree; struct rb_root qgroup_op_tree; spinlock_t qgroup_lock; spinlock_t qgroup_op_lock; atomic_t qgroup_op_seq; /* * used to avoid frequently calling ulist_alloc()/ulist_free() * when doing qgroup accounting, it must be protected by qgroup_lock. */ struct ulist *qgroup_ulist; /* protect user change for quota operations */ struct mutex qgroup_ioctl_lock; /* list of dirty qgroups to be written at next commit */ struct list_head dirty_qgroups; /* used by qgroup for an efficient tree traversal */ u64 qgroup_seq; /* qgroup rescan items */ struct mutex qgroup_rescan_lock; /* protects the progress item */ struct btrfs_key qgroup_rescan_progress; struct btrfs_workqueue *qgroup_rescan_workers; struct completion qgroup_rescan_completion; struct btrfs_work qgroup_rescan_work; /* filesystem state */ unsigned long fs_state; struct btrfs_delayed_root *delayed_root; /* readahead tree */ spinlock_t reada_lock; struct radix_tree_root reada_tree; /* Extent buffer radix tree */ spinlock_t buffer_lock; struct radix_tree_root buffer_radix; /* next backup root to be overwritten */ int backup_root_index; int num_tolerated_disk_barrier_failures; /* device replace state */ struct btrfs_dev_replace dev_replace; atomic_t mutually_exclusive_operation_running; struct percpu_counter bio_counter; wait_queue_head_t replace_wait; struct semaphore uuid_tree_rescan_sem; unsigned int update_uuid_tree_gen:1; /* Used to reclaim the metadata space in the background. */ struct work_struct async_reclaim_work; spinlock_t unused_bgs_lock; struct list_head unused_bgs; struct mutex unused_bg_unpin_mutex; struct mutex delete_unused_bgs_mutex; /* For btrfs to record security options */ struct security_mnt_opts security_opts; /* * Chunks that can't be freed yet (under a trim/discard operation) * and will be latter freed. Protected by fs_info->chunk_mutex. */ struct list_head pinned_chunks; }; struct btrfs_subvolume_writers { struct percpu_counter counter; wait_queue_head_t wait; }; /* * The state of btrfs root */ /* * btrfs_record_root_in_trans is a multi-step process, * and it can race with the balancing code. But the * race is very small, and only the first time the root * is added to each transaction. So IN_TRANS_SETUP * is used to tell us when more checks are required */ #define BTRFS_ROOT_IN_TRANS_SETUP 0 #define BTRFS_ROOT_REF_COWS 1 #define BTRFS_ROOT_TRACK_DIRTY 2 #define BTRFS_ROOT_IN_RADIX 3 #define BTRFS_ROOT_DUMMY_ROOT 4 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5 #define BTRFS_ROOT_DEFRAG_RUNNING 6 #define BTRFS_ROOT_FORCE_COW 7 #define BTRFS_ROOT_MULTI_LOG_TASKS 8 #define BTRFS_ROOT_DIRTY 9 /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. */ struct btrfs_root { struct extent_buffer *node; struct extent_buffer *commit_root; struct btrfs_root *log_root; struct btrfs_root *reloc_root; unsigned long state; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; struct extent_io_tree dirty_log_pages; struct mutex objectid_mutex; spinlock_t accounting_lock; struct btrfs_block_rsv *block_rsv; /* free ino cache stuff */ struct btrfs_free_space_ctl *free_ino_ctl; enum btrfs_caching_type ino_cache_state; spinlock_t ino_cache_lock; wait_queue_head_t ino_cache_wait; struct btrfs_free_space_ctl *free_ino_pinned; u64 ino_cache_progress; struct inode *ino_cache_inode; struct mutex log_mutex; wait_queue_head_t log_writer_wait; wait_queue_head_t log_commit_wait[2]; struct list_head log_ctxs[2]; atomic_t log_writers; atomic_t log_commit[2]; atomic_t log_batch; int log_transid; /* No matter the commit succeeds or not*/ int log_transid_committed; /* Just be updated when the commit succeeds. */ int last_log_commit; pid_t log_start_pid; u64 objectid; u64 last_trans; /* data allocations are done in sectorsize units */ u32 sectorsize; /* node allocations are done in nodesize units */ u32 nodesize; u32 stripesize; u32 type; u64 highest_objectid; /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */ u64 alloc_bytenr; u64 defrag_trans_start; struct btrfs_key defrag_progress; struct btrfs_key defrag_max; char *name; /* the dirty list is only used by non-reference counted roots */ struct list_head dirty_list; struct list_head root_list; spinlock_t log_extents_lock[2]; struct list_head logged_list[2]; spinlock_t orphan_lock; atomic_t orphan_inodes; struct btrfs_block_rsv *orphan_block_rsv; int orphan_cleanup_state; spinlock_t inode_lock; /* red-black tree that keeps track of in-memory inodes */ struct rb_root inode_tree; /* * radix tree that keeps track of delayed nodes of every inode, * protected by inode_lock */ struct radix_tree_root delayed_nodes_tree; /* * right now this just gets used so that a root has its own devid * for stat. It may be used for more later */ dev_t anon_dev; spinlock_t root_item_lock; atomic_t refs; struct mutex delalloc_mutex; spinlock_t delalloc_lock; /* * all of the inodes that have delalloc bytes. It is possible for * this list to be empty even when there is still dirty data=ordered * extents waiting to finish IO. */ struct list_head delalloc_inodes; struct list_head delalloc_root; u64 nr_delalloc_inodes; struct mutex ordered_extent_mutex; /* * this is used by the balancing code to wait for all the pending * ordered extents */ spinlock_t ordered_extent_lock; /* * all of the data=ordered extents pending writeback * these can span multiple transactions and basically include * every dirty data page that isn't from nodatacow */ struct list_head ordered_extents; struct list_head ordered_root; u64 nr_ordered_extents; /* * Number of currently running SEND ioctls to prevent * manipulation with the read-only status via SUBVOL_SETFLAGS */ int send_in_progress; struct btrfs_subvolume_writers *subv_writers; atomic_t will_be_snapshoted; }; struct btrfs_ioctl_defrag_range_args { /* start of the defrag operation */ __u64 start; /* number of bytes to defrag, use (u64)-1 to say all */ __u64 len; /* * flags for the operation, which can include turning * on compression for this one defrag */ __u64 flags; /* * any extent bigger than this will be considered * already defragged. Use 0 to take the kernel default * Use 1 to say every single extent must be rewritten */ __u32 extent_thresh; /* * which compression method to use if turning on compression * for this defrag operation. If unspecified, zlib will * be used */ __u32 compress_type; /* spare for later */ __u32 unused[4]; }; /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 12 #define BTRFS_INODE_EXTREF_KEY 13 #define BTRFS_XATTR_ITEM_KEY 24 #define BTRFS_ORPHAN_ITEM_KEY 48 /* reserve 2-15 close to the inode for later flexibility */ /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_LOG_ITEM_KEY 60 #define BTRFS_DIR_LOG_INDEX_KEY 72 #define BTRFS_DIR_ITEM_KEY 84 #define BTRFS_DIR_INDEX_KEY 96 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 108 /* * extent csums are stored in a separate tree and hold csums for * an entire extent on disk. */ #define BTRFS_EXTENT_CSUM_KEY 128 /* * root items point to tree roots. They are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 132 /* * root backrefs tie subvols and snapshots to the directory entries that * reference them */ #define BTRFS_ROOT_BACKREF_KEY 144 /* * root refs make a fast index for listing all of the snapshots and * subvolumes referenced by a given root. They point directly to the * directory item in the root that references the subvol */ #define BTRFS_ROOT_REF_KEY 156 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 168 /* * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know * the length, so we save the level in key->offset instead of the length. */ #define BTRFS_METADATA_ITEM_KEY 169 #define BTRFS_TREE_BLOCK_REF_KEY 176 #define BTRFS_EXTENT_DATA_REF_KEY 178 #define BTRFS_EXTENT_REF_V0_KEY 180 #define BTRFS_SHARED_BLOCK_REF_KEY 182 #define BTRFS_SHARED_DATA_REF_KEY 184 /* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 #define BTRFS_DEV_EXTENT_KEY 204 #define BTRFS_DEV_ITEM_KEY 216 #define BTRFS_CHUNK_ITEM_KEY 228 /* * Records the overall state of the qgroups. * There's only one instance of this key present, * (0, BTRFS_QGROUP_STATUS_KEY, 0) */ #define BTRFS_QGROUP_STATUS_KEY 240 /* * Records the currently used space of the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). */ #define BTRFS_QGROUP_INFO_KEY 242 /* * Contains the user configured limits for the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). */ #define BTRFS_QGROUP_LIMIT_KEY 244 /* * Records the child-parent relationship of qgroups. For * each relation, 2 keys are present: * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) */ #define BTRFS_QGROUP_RELATION_KEY 246 #define BTRFS_BALANCE_ITEM_KEY 248 /* * Persistantly stores the io stats in the device tree. * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid). */ #define BTRFS_DEV_STATS_KEY 249 /* * Persistantly stores the device replace state in the device tree. * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). */ #define BTRFS_DEV_REPLACE_KEY 250 /* * Stores items that allow to quickly map UUIDs to something else. * These items are part of the filesystem UUID tree. * The key is built like this: * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). */ #if BTRFS_UUID_SIZE != 16 #error "UUID items require BTRFS_UUID_SIZE == 16!" #endif #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to * received subvols */ /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 /* * Flags for mount options. * * Note: don't forget to add new options to btrfs_show_options() */ #define BTRFS_MOUNT_NODATASUM (1 << 0) #define BTRFS_MOUNT_NODATACOW (1 << 1) #define BTRFS_MOUNT_NOBARRIER (1 << 2) #define BTRFS_MOUNT_SSD (1 << 3) #define BTRFS_MOUNT_DEGRADED (1 << 4) #define BTRFS_MOUNT_COMPRESS (1 << 5) #define BTRFS_MOUNT_NOTREELOG (1 << 6) #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) #define BTRFS_MOUNT_NOSSD (1 << 9) #define BTRFS_MOUNT_DISCARD (1 << 10) #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17) #define BTRFS_MOUNT_RECOVERY (1 << 18) #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) #define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24) #define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25) #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) #define BTRFS_DEFAULT_MAX_INLINE (8192) #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ BTRFS_MOUNT_##opt) #define btrfs_set_and_info(root, opt, fmt, args...) \ { \ if (!btrfs_test_opt(root, opt)) \ btrfs_info(root->fs_info, fmt, ##args); \ btrfs_set_opt(root->fs_info->mount_opt, opt); \ } #define btrfs_clear_and_info(root, opt, fmt, args...) \ { \ if (btrfs_test_opt(root, opt)) \ btrfs_info(root->fs_info, fmt, ##args); \ btrfs_clear_opt(root->fs_info->mount_opt, opt); \ } #ifdef CONFIG_BTRFS_DEBUG static inline int btrfs_should_fragment_free_space(struct btrfs_root *root, struct btrfs_block_group_cache *block_group) { return (btrfs_test_opt(root, FRAGMENT_METADATA) && block_group->flags & BTRFS_BLOCK_GROUP_METADATA) || (btrfs_test_opt(root, FRAGMENT_DATA) && block_group->flags & BTRFS_BLOCK_GROUP_DATA); } #endif /* * Requests for changes that need to be done during transaction commit. * * Internal mount options that are used for special handling of the real * mount options (eg. cannot be set during remount and have to be set during * transaction commit) */ #define BTRFS_PENDING_SET_INODE_MAP_CACHE (0) #define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1) #define BTRFS_PENDING_COMMIT (2) #define btrfs_test_pending(info, opt) \ test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) #define btrfs_set_pending(info, opt) \ set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) #define btrfs_clear_pending(info, opt) \ clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) /* * Helpers for setting pending mount option changes. * * Expects corresponding macros * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name */ #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ do { \ if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ btrfs_info((info), fmt, ##args); \ btrfs_set_pending((info), SET_##opt); \ btrfs_clear_pending((info), CLEAR_##opt); \ } \ } while(0) #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ do { \ if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ btrfs_info((info), fmt, ##args); \ btrfs_set_pending((info), CLEAR_##opt); \ btrfs_clear_pending((info), SET_##opt); \ } \ } while(0) /* * Inode flags */ #define BTRFS_INODE_NODATASUM (1 << 0) #define BTRFS_INODE_NODATACOW (1 << 1) #define BTRFS_INODE_READONLY (1 << 2) #define BTRFS_INODE_NOCOMPRESS (1 << 3) #define BTRFS_INODE_PREALLOC (1 << 4) #define BTRFS_INODE_SYNC (1 << 5) #define BTRFS_INODE_IMMUTABLE (1 << 6) #define BTRFS_INODE_APPEND (1 << 7) #define BTRFS_INODE_NODUMP (1 << 8) #define BTRFS_INODE_NOATIME (1 << 9) #define BTRFS_INODE_DIRSYNC (1 << 10) #define BTRFS_INODE_COMPRESS (1 << 11) #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) struct btrfs_map_token { struct extent_buffer *eb; char *kaddr; unsigned long offset; }; static inline void btrfs_init_map_token (struct btrfs_map_token *token) { token->kaddr = NULL; } /* some macros to generate set/get funcs for the struct fields. This * assumes there is a lefoo_to_cpu for every type, so lets make a simple * one for u8: */ #define le8_to_cpu(v) (v) #define cpu_to_le8(v) (v) #define __le8 u8 #define read_eb_member(eb, ptr, type, member, result) ( \ read_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #define write_eb_member(eb, ptr, type, member, result) ( \ write_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #define DECLARE_BTRFS_SETGET_BITS(bits) \ u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \ unsigned long off, \ struct btrfs_map_token *token); \ void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \ unsigned long off, u##bits val, \ struct btrfs_map_token *token); \ static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \ unsigned long off) \ { \ return btrfs_get_token_##bits(eb, ptr, off, NULL); \ } \ static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \ unsigned long off, u##bits val) \ { \ btrfs_set_token_##bits(eb, ptr, off, val, NULL); \ } DECLARE_BTRFS_SETGET_BITS(8) DECLARE_BTRFS_SETGET_BITS(16) DECLARE_BTRFS_SETGET_BITS(32) DECLARE_BTRFS_SETGET_BITS(64) #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \ { \ BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ return btrfs_get_##bits(eb, s, offsetof(type, member)); \ } \ static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \ u##bits val) \ { \ BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ btrfs_set_##bits(eb, s, offsetof(type, member), val); \ } \ static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \ struct btrfs_map_token *token) \ { \ BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \ } \ static inline void btrfs_set_token_##name(struct extent_buffer *eb, \ type *s, u##bits val, \ struct btrfs_map_token *token) \ { \ BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \ } #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(struct extent_buffer *eb) \ { \ type *p = page_address(eb->pages[0]); \ u##bits res = le##bits##_to_cpu(p->member); \ return res; \ } \ static inline void btrfs_set_##name(struct extent_buffer *eb, \ u##bits val) \ { \ type *p = page_address(eb->pages[0]); \ p->member = cpu_to_le##bits(val); \ } #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(type *s) \ { \ return le##bits##_to_cpu(s->member); \ } \ static inline void btrfs_set_##name(type *s, u##bits val) \ { \ s->member = cpu_to_le##bits(val); \ } BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, start_offset, 64); BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, generation, 64); static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) { return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); } static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) { return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); } BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) { return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); } BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, int nr) { unsigned long offset = (unsigned long)c; offset += offsetof(struct btrfs_chunk, stripe); offset += nr * sizeof(struct btrfs_stripe); return (struct btrfs_stripe *)offset; } static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) { return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); } static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); } static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); } /* struct btrfs_block_group_item */ BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(disk_block_group_flags, struct btrfs_block_group_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(block_group_flags, struct btrfs_block_group_item, flags, 64); /* struct btrfs_inode_ref */ BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); /* struct btrfs_inode_extref */ BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, parent_objectid, 64); BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, name_len, 16); BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); /* struct btrfs_inode_item */ BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, sequence, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, transid, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, nbytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); /* struct btrfs_dev_extent */ BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, chunk_tree, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, chunk_objectid, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, chunk_offset, 64); BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) { unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); return (unsigned long)dev + ptr; } BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, generation, 64); BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32); BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); static inline void btrfs_tree_block_key(struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } static inline void btrfs_set_tree_block_key(struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, root, 64); BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, objectid, 64); BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, offset, 64); BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, count, 32); BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, count, 32); BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, type, 8); BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, offset, 64); static inline u32 btrfs_extent_inline_ref_size(int type) { if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) return sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_SHARED_DATA_REF_KEY) return sizeof(struct btrfs_shared_data_ref) + sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_EXTENT_DATA_REF_KEY) return sizeof(struct btrfs_extent_data_ref) + offsetof(struct btrfs_extent_inline_ref, offset); BUG(); return 0; } BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, generation, 64); BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); /* struct btrfs_node */ BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, generation, 64); static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); } static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); } static inline unsigned long btrfs_node_key_ptr_offset(int nr) { return offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; } void btrfs_node_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr); static inline void btrfs_set_node_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { unsigned long ptr; ptr = btrfs_node_key_ptr_offset(nr); write_eb_member(eb, (struct btrfs_key_ptr *)ptr, struct btrfs_key_ptr, key, disk_key); } /* struct btrfs_item */ BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); static inline unsigned long btrfs_item_nr_offset(int nr) { return offsetof(struct btrfs_leaf, items) + sizeof(struct btrfs_item) * nr; } static inline struct btrfs_item *btrfs_item_nr(int nr) { return (struct btrfs_item *)btrfs_item_nr_offset(nr); } static inline u32 btrfs_item_end(struct extent_buffer *eb, struct btrfs_item *item) { return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); } static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) { return btrfs_item_end(eb, btrfs_item_nr(nr)); } static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) { return btrfs_item_offset(eb, btrfs_item_nr(nr)); } static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) { return btrfs_item_size(eb, btrfs_item_nr(nr)); } static inline void btrfs_item_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(nr); read_eb_member(eb, item, struct btrfs_item, key, disk_key); } static inline void btrfs_set_item_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(nr); write_eb_member(eb, item, struct btrfs_item, key, disk_key); } BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); /* * struct btrfs_root_ref */ BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); /* struct btrfs_dir_item */ BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, data_len, 16); BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, transid, 64); static inline void btrfs_dir_item_key(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_dir_item, location, key); } static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_dir_item, location, key); } BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, num_entries, 64); BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, num_bitmaps, 64); BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, generation, 64); static inline void btrfs_free_space_key(struct extent_buffer *eb, struct btrfs_free_space_header *h, struct btrfs_disk_key *key) { read_eb_member(eb, h, struct btrfs_free_space_header, location, key); } static inline void btrfs_set_free_space_key(struct extent_buffer *eb, struct btrfs_free_space_header *h, struct btrfs_disk_key *key) { write_eb_member(eb, h, struct btrfs_free_space_header, location, key); } /* struct btrfs_disk_key */ BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, objectid, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->type = disk->type; cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->type = cpu->type; disk->objectid = cpu_to_le64(cpu->objectid); } static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_node_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_item_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_key *key) { struct btrfs_disk_key disk_key; btrfs_dir_item_key(eb, item, &disk_key); btrfs_disk_key_to_cpu(key, &disk_key); } static inline u8 btrfs_key_type(struct btrfs_key *key) { return key->type; } static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) { key->type = val; } /* struct btrfs_header */ BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) { return (btrfs_header_flags(eb) & flag) == flag; } static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags | flag); return (flags & flag) == flag; } static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags & ~flag); return (flags & flag) == flag; } static inline int btrfs_header_backref_rev(struct extent_buffer *eb) { u64 flags = btrfs_header_flags(eb); return flags >> BTRFS_BACKREF_REV_SHIFT; } static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, int rev) { u64 flags = btrfs_header_flags(eb); flags &= ~BTRFS_BACKREF_REV_MASK; flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; btrfs_set_header_flags(eb, flags); } static inline unsigned long btrfs_header_fsid(void) { return offsetof(struct btrfs_header, fsid); } static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) { return offsetof(struct btrfs_header, chunk_tree_uuid); } static inline int btrfs_is_leaf(struct extent_buffer *eb) { return btrfs_header_level(eb) == 0; } /* struct btrfs_root_item */ BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, last_snapshot, 64); BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, generation_v2, 64); BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, ctransid, 64); BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, otransid, 64); BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, stransid, 64); BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, rtransid, 64); static inline bool btrfs_root_readonly(struct btrfs_root *root) { return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; } static inline bool btrfs_root_dead(struct btrfs_root *root) { return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; } /* struct btrfs_root_backup */ BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, tree_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, tree_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, tree_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, chunk_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, chunk_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, chunk_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, extent_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, extent_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, extent_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, fs_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, fs_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, fs_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, dev_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, dev_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, dev_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, csum_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, csum_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, csum_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, num_devices, 64); /* struct btrfs_balance_item */ BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); static inline void btrfs_balance_data(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); } static inline void btrfs_set_balance_data(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); } static inline void btrfs_balance_meta(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); } static inline void btrfs_set_balance_meta(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); } static inline void btrfs_balance_sys(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); } static inline void btrfs_set_balance_sys(struct extent_buffer *eb, struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); } static inline void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, struct btrfs_disk_balance_args *disk) { memset(cpu, 0, sizeof(*cpu)); cpu->profiles = le64_to_cpu(disk->profiles); cpu->usage = le64_to_cpu(disk->usage); cpu->devid = le64_to_cpu(disk->devid); cpu->pstart = le64_to_cpu(disk->pstart); cpu->pend = le64_to_cpu(disk->pend); cpu->vstart = le64_to_cpu(disk->vstart); cpu->vend = le64_to_cpu(disk->vend); cpu->target = le64_to_cpu(disk->target); cpu->flags = le64_to_cpu(disk->flags); cpu->limit = le64_to_cpu(disk->limit); } static inline void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, struct btrfs_balance_args *cpu) { memset(disk, 0, sizeof(*disk)); disk->profiles = cpu_to_le64(cpu->profiles); disk->usage = cpu_to_le64(cpu->usage); disk->devid = cpu_to_le64(cpu->devid); disk->pstart = cpu_to_le64(cpu->pstart); disk->pend = cpu_to_le64(cpu->pend); disk->vstart = cpu_to_le64(cpu->vstart); disk->vend = cpu_to_le64(cpu->vend); disk->target = cpu_to_le64(cpu->target); disk->flags = cpu_to_le64(cpu->flags); disk->limit = cpu_to_le64(cpu->limit); } /* struct btrfs_super_block */ BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, struct btrfs_super_block, sys_chunk_array_size, 32); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, struct btrfs_super_block, chunk_root_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, chunk_root, 64); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, chunk_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, log_root, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, log_root_transid, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, log_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, sectorsize, 32); BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, nodesize, 32); BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, stripesize, 32); BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, root_dir_objectid, 64); BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, num_devices, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, compat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, compat_ro_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, incompat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, csum_type, 16); BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, cache_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, uuid_tree_generation, 64); static inline int btrfs_super_csum_size(struct btrfs_super_block *s) { u16 t = btrfs_super_csum_type(s); /* * csum type is validated at mount time */ return btrfs_csum_sizes[t]; } static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) { return offsetof(struct btrfs_leaf, items); } /* struct btrfs_file_extent_item */ BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, struct btrfs_file_extent_item, compression, 8); static inline unsigned long btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) { return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; } static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) { return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; } BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, ram_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, compression, 8); BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, encryption, 8); BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, other_encoding, 16); /* * this returns the number of bytes used by the item on disk, minus the * size of any extent headers. If a file is compressed on disk, this is * the compressed size */ static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, struct btrfs_item *e) { return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; } /* this returns the number of file bytes represented by the inline item. * If an item is compressed, this is the uncompressed size */ static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, int slot, struct btrfs_file_extent_item *fi) { struct btrfs_map_token token; btrfs_init_map_token(&token); /* * return the space used on disk if this item isn't * compressed or encoded */ if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 && btrfs_token_file_extent_encryption(eb, fi, &token) == 0 && btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) { return btrfs_file_extent_inline_item_len(eb, btrfs_item_nr(slot)); } /* otherwise use the ram bytes field */ return btrfs_token_file_extent_ram_bytes(eb, fi, &token); } /* btrfs_dev_stats_item */ static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb, struct btrfs_dev_stats_item *ptr, int index) { u64 val; read_extent_buffer(eb, &val, offsetof(struct btrfs_dev_stats_item, values) + ((unsigned long)ptr) + (index * sizeof(u64)), sizeof(val)); return val; } static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb, struct btrfs_dev_stats_item *ptr, int index, u64 val) { write_extent_buffer(eb, &val, offsetof(struct btrfs_dev_stats_item, values) + ((unsigned long)ptr) + (index * sizeof(u64)), sizeof(val)); } /* btrfs_qgroup_status_item */ BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, generation, 64); BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, version, 64); BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, flags, 64); BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, rescan, 64); /* btrfs_qgroup_info_item */ BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, generation, 64); BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, rfer_cmpr, 64); BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, excl_cmpr, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, struct btrfs_qgroup_info_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, rfer_cmpr, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, excl_cmpr, 64); /* btrfs_qgroup_limit_item */ BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, flags, 64); BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, max_rfer, 64); BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, max_excl, 64); BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, rsv_rfer, 64); BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, rsv_excl, 64); /* btrfs_dev_replace_item */ BTRFS_SETGET_FUNCS(dev_replace_src_devid, struct btrfs_dev_replace_item, src_devid, 64); BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 64); BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, replace_state, 64); BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, time_started, 64); BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, time_stopped, 64); BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, num_write_errors, 64); BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 64); BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, cursor_left, 64); BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, cursor_right, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, struct btrfs_dev_replace_item, src_devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, struct btrfs_dev_replace_item, replace_state, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, struct btrfs_dev_replace_item, time_started, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, struct btrfs_dev_replace_item, time_stopped, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, struct btrfs_dev_replace_item, num_write_errors, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, struct btrfs_dev_replace_item, cursor_left, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, struct btrfs_dev_replace_item, cursor_right, 64); static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) { return sb->s_fs_info; } /* helper function to cast into the data area of the leaf. */ #define btrfs_item_ptr(leaf, slot, type) \ ((type *)(btrfs_leaf_data(leaf) + \ btrfs_item_offset_nr(leaf, slot))) #define btrfs_item_ptr_offset(leaf, slot) \ ((unsigned long)(btrfs_leaf_data(leaf) + \ btrfs_item_offset_nr(leaf, slot))) static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) { return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) && (space_info->flags & BTRFS_BLOCK_GROUP_DATA)); } static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) { return mapping_gfp_mask(mapping) & ~__GFP_FS; } /* extent-tree.c */ u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes); static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root, unsigned num_items) { return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 2 * num_items; } /* * Doing a truncate won't result in new nodes or leaves, just what we need for * COW. */ static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root, unsigned num_items) { return root->nodesize * BTRFS_MAX_LEVEL * num_items; } int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, struct btrfs_root *root); void btrfs_put_block_group(struct btrfs_block_group_cache *cache); int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, struct btrfs_root *root, unsigned long count); int btrfs_async_run_delayed_refs(struct btrfs_root *root, unsigned long count, int wait); int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len); int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 offset, int metadata, u64 *refs, u64 *flags); int btrfs_pin_extent(struct btrfs_root *root, u64 bytenr, u64 num, int reserved); int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, u64 bytenr, u64 num_bytes); int btrfs_exclude_logged_extents(struct btrfs_root *root, struct extent_buffer *eb); int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 offset, u64 bytenr); struct btrfs_block_group_cache *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr); void btrfs_put_block_group(struct btrfs_block_group_cache *cache); int get_block_group_index(struct btrfs_block_group_cache *cache); struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 parent, u64 root_objectid, struct btrfs_disk_key *key, int level, u64 hint, u64 empty_size); void btrfs_free_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, u64 parent, int last_ref); int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins); int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins); int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes, u64 min_alloc_size, u64 empty_size, u64 hint_byte, struct btrfs_key *ins, int is_data, int delalloc); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 flags, int level, int is_data); int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int no_quota); int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len, int delalloc); int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, u64 start, u64 len); void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int no_quota); int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); int btrfs_free_block_groups(struct btrfs_fs_info *info); int btrfs_read_block_groups(struct btrfs_root *root); int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr); int btrfs_make_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytes_used, u64 type, u64 chunk_objectid, u64 chunk_offset, u64 size); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 group_start, struct extent_map *em); void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache); void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache); void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root); u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data); void btrfs_clear_space_info_full(struct btrfs_fs_info *info); enum btrfs_reserve_flush_enum { /* If we are in the transaction, we can't flush anything.*/ BTRFS_RESERVE_NO_FLUSH, /* * Flushing delalloc may cause deadlock somewhere, in this * case, use FLUSH LIMIT */ BTRFS_RESERVE_FLUSH_LIMIT, BTRFS_RESERVE_FLUSH_ALL, }; int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes); void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes); void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, struct btrfs_root *root); void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans); int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, struct inode *inode); void btrfs_orphan_release_metadata(struct inode *inode); int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, struct btrfs_block_rsv *rsv, int nitems, u64 *qgroup_reserved, bool use_global_rsv); void btrfs_subvolume_release_metadata(struct btrfs_root *root, struct btrfs_block_rsv *rsv, u64 qgroup_reserved); int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes); void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes); int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes); void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes); void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type); struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, unsigned short type); void btrfs_free_block_rsv(struct btrfs_root *root, struct btrfs_block_rsv *rsv); void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv); int btrfs_block_rsv_add(struct btrfs_root *root, struct btrfs_block_rsv *block_rsv, u64 num_bytes, enum btrfs_reserve_flush_enum flush); int btrfs_block_rsv_check(struct btrfs_root *root, struct btrfs_block_rsv *block_rsv, int min_factor); int btrfs_block_rsv_refill(struct btrfs_root *root, struct btrfs_block_rsv *block_rsv, u64 min_reserved, enum btrfs_reserve_flush_enum flush); int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, struct btrfs_block_rsv *dst_rsv, u64 num_bytes); int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, struct btrfs_block_rsv *dest, u64 num_bytes, int min_factor); void btrfs_block_rsv_release(struct btrfs_root *root, struct btrfs_block_rsv *block_rsv, u64 num_bytes); int btrfs_inc_block_group_ro(struct btrfs_root *root, struct btrfs_block_group_cache *cache); void btrfs_dec_block_group_ro(struct btrfs_root *root, struct btrfs_block_group_cache *cache); void btrfs_put_block_group_cache(struct btrfs_fs_info *info); u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end); int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 *actual_bytes); int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 type); int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range); int btrfs_init_space_info(struct btrfs_fs_info *fs_info); int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info); int __get_raid_index(u64 flags); int btrfs_start_write_no_snapshoting(struct btrfs_root *root); void btrfs_end_write_no_snapshoting(struct btrfs_root *root); void check_system_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *root, const u64 type); /* ctree.c */ int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, int level, int *slot); int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2); int btrfs_previous_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid, int type); int btrfs_previous_extent_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid); void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_key *new_key); struct extent_buffer *btrfs_root_node(struct btrfs_root *root); struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, int lowest_level, u64 min_trans); int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, struct btrfs_path *path, u64 min_trans); enum btrfs_compare_tree_result { BTRFS_COMPARE_TREE_NEW, BTRFS_COMPARE_TREE_DELETED, BTRFS_COMPARE_TREE_CHANGED, BTRFS_COMPARE_TREE_SAME, }; typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root, struct btrfs_root *right_root, struct btrfs_path *left_path, struct btrfs_path *right_path, struct btrfs_key *key, enum btrfs_compare_tree_result result, void *ctx); int btrfs_compare_trees(struct btrfs_root *left_root, struct btrfs_root *right_root, btrfs_changed_cb_t cb, void *ctx); int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret); int btrfs_copy_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer **cow_ret, u64 new_root_objectid); int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf); void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, u32 data_size); void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, u32 new_size, int from_end); int btrfs_split_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *new_key, unsigned long split_offset); int btrfs_duplicate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *new_key); int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, u64 time_seq); int btrfs_search_slot_for_read(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int find_higher, int return_any); int btrfs_realloc_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *parent, int start_slot, u64 *last_ret, struct btrfs_key *progress); void btrfs_release_path(struct btrfs_path *p); struct btrfs_path *btrfs_alloc_path(void); void btrfs_free_path(struct btrfs_path *p); void btrfs_set_path_blocking(struct btrfs_path *p); void btrfs_clear_path_blocking(struct btrfs_path *p, struct extent_buffer *held, int held_rw); void btrfs_unlock_up_safe(struct btrfs_path *p, int level); int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int slot, int nr); static inline int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { return btrfs_del_items(trans, root, path, path->slots[0], 1); } void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 *data_size, u32 total_data, u32 total_size, int nr); int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 *data_size, int nr); static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, u32 data_size) { return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); } int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); static inline int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *p, u64 time_seq) { ++p->slots[0]; if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) return btrfs_next_old_leaf(root, p, time_seq); return 0; } static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) { return btrfs_next_old_item(root, p, 0); } int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); int __must_check btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_block_rsv *block_rsv, int update_ref, int for_reloc); int btrfs_drop_subtree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *node, struct extent_buffer *parent); static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) { /* * Get synced with close_ctree() */ smp_mb(); return fs_info->closing; } /* * If we remount the fs to be R/O or umount the fs, the cleaner needn't do * anything except sleeping. This function is used to check the status of * the fs. */ static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root) { return (root->fs_info->sb->s_flags & MS_RDONLY || btrfs_fs_closing(root->fs_info)); } static inline void free_fs_info(struct btrfs_fs_info *fs_info) { kfree(fs_info->balance_ctl); kfree(fs_info->delayed_root); kfree(fs_info->extent_root); kfree(fs_info->tree_root); kfree(fs_info->chunk_root); kfree(fs_info->dev_root); kfree(fs_info->csum_root); kfree(fs_info->quota_root); kfree(fs_info->uuid_root); kfree(fs_info->super_copy); kfree(fs_info->super_for_commit); security_free_mnt_opts(&fs_info->security_opts); kfree(fs_info); } /* tree mod log functions from ctree.c */ u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem); void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem); int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); /* root-item.c */ int btrfs_find_root_ref(struct btrfs_root *tree_root, struct btrfs_path *path, u64 root_id, u64 ref_id); int btrfs_add_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *tree_root, u64 root_id, u64 ref_id, u64 dirid, u64 sequence, const char *name, int name_len); int btrfs_del_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *tree_root, u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, const char *name, int name_len); int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, struct btrfs_path *path, struct btrfs_root_item *root_item, struct btrfs_key *root_key); int btrfs_find_orphan_roots(struct btrfs_root *tree_root); void btrfs_set_root_node(struct btrfs_root_item *item, struct extent_buffer *node); void btrfs_check_and_init_root_item(struct btrfs_root_item *item); void btrfs_update_root_times(struct btrfs_trans_handle *trans, struct btrfs_root *root); /* uuid-tree.c */ int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, struct btrfs_root *uuid_root, u8 *uuid, u8 type, u64 subid); int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans, struct btrfs_root *uuid_root, u8 *uuid, u8 type, u64 subid); int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info, int (*check_func)(struct btrfs_fs_info *, u8 *, u8, u64)); /* dir-item.c */ int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, const char *name, int name_len); int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, struct inode *dir, struct btrfs_key *location, u8 type, u64 index); struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, u64 objectid, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_search_dir_index_item(struct btrfs_root *root, struct btrfs_path *path, u64 dirid, const char *name, int name_len); int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_dir_item *di); int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, const char *name, u16 name_len, const void *data, u16 data_len); struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, u16 name_len, int mod); int verify_dir_item(struct btrfs_root *root, struct extent_buffer *leaf, struct btrfs_dir_item *dir_item); struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len); /* orphan.c */ int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); /* inode-item.c */ int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 index); int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 *index); int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid); int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *location, int mod); struct btrfs_inode_extref * btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, int ins_len, int cow); int btrfs_find_name_in_ext_backref(struct btrfs_path *path, u64 ref_objectid, const char *name, int name_len, struct btrfs_inode_extref **extref_ret); /* file-item.c */ struct btrfs_dio_private; int btrfs_del_csums(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 len); int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, struct bio *bio, u32 *dst); int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 logical_offset); int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 disk_offset, u64 disk_num_bytes, u64 num_bytes, u64 offset, u64 ram_bytes, u8 compression, u8 encryption, u16 other_encoding); int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 bytenr, int mod); int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_ordered_sum *sums); int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 file_start, int contig); int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, struct list_head *list, int search_commit); void btrfs_extent_item_to_extent_map(struct inode *inode, const struct btrfs_path *path, struct btrfs_file_extent_item *fi, const bool new_inline, struct extent_map *em); /* inode.c */ struct btrfs_delalloc_work { struct inode *inode; int wait; int delay_iput; struct completion completion; struct list_head list; struct btrfs_work work; }; struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, int wait, int delay_iput); void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work); struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, size_t pg_offset, u64 start, u64 len, int create); noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, u64 *orig_start, u64 *orig_block_len, u64 *ram_bytes); /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) #define ClearPageChecked ClearPageFsMisc #define SetPageChecked SetPageFsMisc #define PageChecked PageFsMisc #endif /* This forces readahead on a given range of bytes in an inode */ static inline void btrfs_force_ra(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t offset, unsigned long req_size) { page_cache_sync_readahead(mapping, ra, file, offset, req_size); } struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); int btrfs_set_inode_index(struct inode *dir, u64 *index); int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, struct inode *inode, const char *name, int name_len); int btrfs_add_link(struct btrfs_trans_handle *trans, struct inode *parent_inode, struct inode *inode, const char *name, int name_len, int add_backref, u64 index); int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, u64 objectid, const char *name, int name_len); int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, int front); int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 new_size, u32 min_type); int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput); int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, int nr); int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, struct extent_state **cached_state); int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, struct btrfs_root *new_root, struct btrfs_root *parent_root, u64 new_dirid); int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, size_t size, struct bio *bio, unsigned long bio_flags); int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); int btrfs_readpage(struct file *file, struct page *page); void btrfs_evict_inode(struct inode *inode); int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); struct inode *btrfs_alloc_inode(struct super_block *sb); void btrfs_destroy_inode(struct inode *inode); int btrfs_drop_inode(struct inode *inode); int btrfs_init_cachep(void); void btrfs_destroy_cachep(void); long btrfs_ioctl_trans_end(struct file *file); struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, struct btrfs_root *root, int *was_new); struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, size_t pg_offset, u64 start, u64 end, int create); int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode); int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode); int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); int btrfs_orphan_cleanup(struct btrfs_root *root); void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size); void btrfs_invalidate_inodes(struct btrfs_root *root); void btrfs_add_delayed_iput(struct inode *inode); void btrfs_run_delayed_iputs(struct btrfs_root *root); int btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_prealloc_file_range_trans(struct inode *inode, struct btrfs_trans_handle *trans, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_inode_check_errors(struct inode *inode); extern const struct dentry_operations btrfs_dentry_operations; #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS void btrfs_test_inode_set_ops(struct inode *inode); #endif /* ioctl.c */ long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); void btrfs_update_iflags(struct inode *inode); void btrfs_inherit_iflags(struct inode *inode, struct inode *dir); int btrfs_is_empty_uuid(u8 *uuid); int btrfs_defrag_file(struct inode *inode, struct file *file, struct btrfs_ioctl_defrag_range_args *range, u64 newer_than, unsigned long max_pages); void btrfs_get_block_group_info(struct list_head *groups_list, struct btrfs_ioctl_space_info *space); void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, struct btrfs_ioctl_balance_args *bargs); /* file.c */ int btrfs_auto_defrag_init(void); void btrfs_auto_defrag_exit(void); int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, struct inode *inode); int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, int skip_pinned); extern const struct file_operations btrfs_file_operations; int __btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, struct btrfs_path *path, u64 start, u64 end, u64 *drop_end, int drop_cache, int replace_extent, u32 extent_item_size, int *key_inserted); int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end, int drop_cache); int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, struct inode *inode, u64 start, u64 end); int btrfs_release_file(struct inode *inode, struct file *file); int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes, struct extent_state **cached); int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); /* tree-defrag.c */ int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, struct btrfs_root *root); /* sysfs.c */ int btrfs_init_sysfs(void); void btrfs_exit_sysfs(void); int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info); void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info); /* xattr.c */ ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); /* super.c */ int btrfs_parse_options(struct btrfs_root *root, char *options); int btrfs_sync_fs(struct super_block *sb, int wait); #ifdef CONFIG_PRINTK __printf(2, 3) void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); #else static inline __printf(2, 3) void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) { } #endif #define btrfs_emerg(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use printk_in_rcu */ #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use a ratelimited printk_in_rcu */ #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use a ratelimited printk */ #define btrfs_emerg_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) #ifdef DEBUG #define btrfs_debug(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) #else #define btrfs_debug(fs_info, fmt, args...) \ no_printk(KERN_DEBUG fmt, ##args) #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ no_printk(KERN_DEBUG fmt, ##args) #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ no_printk(KERN_DEBUG fmt, ##args) #define btrfs_debug_rl(fs_info, fmt, args...) \ no_printk(KERN_DEBUG fmt, ##args) #endif #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ do { \ rcu_read_lock(); \ btrfs_printk(fs_info, fmt, ##args); \ rcu_read_unlock(); \ } while (0) #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ if (__ratelimit(&_rs)) \ btrfs_printk(fs_info, fmt, ##args); \ } while (0) #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ do { \ rcu_read_lock(); \ btrfs_printk_ratelimited(fs_info, fmt, ##args); \ rcu_read_unlock(); \ } while (0) #ifdef CONFIG_BTRFS_ASSERT __cold static inline void assfail(char *expr, char *file, int line) { pr_err("BTRFS: assertion failed: %s, file: %s, line: %d", expr, file, line); BUG(); } #define ASSERT(expr) \ (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__)) #else #define ASSERT(expr) ((void)0) #endif #define btrfs_assert() __printf(5, 6) __cold void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...); const char *btrfs_decode_error(int errno); __cold void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *function, unsigned int line, int errno); #define btrfs_set_fs_incompat(__fs_info, opt) \ __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt) static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { spin_lock(&fs_info->super_lock); features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_incompat_flags(disk_super, features); btrfs_info(fs_info, "setting %llu feature flag", flag); } spin_unlock(&fs_info->super_lock); } } #define btrfs_fs_incompat(fs_info, opt) \ __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; disk_super = fs_info->super_copy; return !!(btrfs_super_incompat_flags(disk_super) & flag); } /* * Call btrfs_abort_transaction as early as possible when an error condition is * detected, that way the exact line number is reported. */ #define btrfs_abort_transaction(trans, root, errno) \ do { \ /* Report first abort since mount */ \ if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ &((root)->fs_info->fs_state))) { \ WARN(1, KERN_DEBUG \ "BTRFS: Transaction aborted (error %d)\n", \ (errno)); \ } \ __btrfs_abort_transaction((trans), (root), __func__, \ __LINE__, (errno)); \ } while (0) #define btrfs_std_error(fs_info, errno, fmt, args...) \ do { \ __btrfs_std_error((fs_info), __func__, __LINE__, \ (errno), fmt, ##args); \ } while (0) __printf(5, 6) __cold void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...); /* * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic * will panic(). Otherwise we BUG() here. */ #define btrfs_panic(fs_info, errno, fmt, args...) \ do { \ __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ BUG(); \ } while (0) /* acl.c */ #ifdef CONFIG_BTRFS_FS_POSIX_ACL struct posix_acl *btrfs_get_acl(struct inode *inode, int type); int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type); int btrfs_init_acl(struct btrfs_trans_handle *trans, struct inode *inode, struct inode *dir); #else #define btrfs_get_acl NULL #define btrfs_set_acl NULL static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, struct inode *inode, struct inode *dir) { return 0; } #endif /* relocation.c */ int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_recover_relocation(struct btrfs_root *root); int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow); void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, u64 *bytes_to_reserve); int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, struct btrfs_pending_snapshot *pending); /* scrub.c */ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, u64 end, struct btrfs_scrub_progress *progress, int readonly, int is_dev_replace); void btrfs_scrub_pause(struct btrfs_root *root); void btrfs_scrub_continue(struct btrfs_root *root); int btrfs_scrub_cancel(struct btrfs_fs_info *info); int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info, struct btrfs_device *dev); int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, struct btrfs_scrub_progress *progress); /* dev-replace.c */ void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) { btrfs_bio_counter_sub(fs_info, 1); } /* reada.c */ struct reada_control { struct btrfs_root *root; /* tree to prefetch */ struct btrfs_key key_start; struct btrfs_key key_end; /* exclusive */ atomic_t elems; struct kref refcnt; wait_queue_head_t wait; }; struct reada_control *btrfs_reada_add(struct btrfs_root *root, struct btrfs_key *start, struct btrfs_key *end); int btrfs_reada_wait(void *handle); void btrfs_reada_detach(void *handle); int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, u64 start, int err); static inline int is_fstree(u64 rootid) { if (rootid == BTRFS_FS_TREE_OBJECTID || ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && !btrfs_qgroup_level(rootid))) return 1; return 0; } static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) { return signal_pending(current); } /* Sanity test specific functions */ #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS void btrfs_test_destroy_inode(struct inode *inode); #endif static inline int btrfs_test_is_dummy_root(struct btrfs_root *root) { #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) return 1; #endif return 0; } #endif