/* * Copyright (C) 2007 Oracle. All rights reserved. * Copyright (C) 2014 Fujitsu. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include "async-thread.h" #define WORK_DONE_BIT 0 #define WORK_ORDER_DONE_BIT 1 #define WORK_HIGH_PRIO_BIT 2 #define NO_THRESHOLD (-1) #define DFT_THRESHOLD (32) struct __btrfs_workqueue { struct workqueue_struct *normal_wq; /* List head pointing to ordered work list */ struct list_head ordered_list; /* Spinlock for ordered_list */ spinlock_t list_lock; /* Thresholding related variants */ atomic_t pending; int max_active; int current_max; int thresh; unsigned int count; spinlock_t thres_lock; }; struct btrfs_workqueue { struct __btrfs_workqueue *normal; struct __btrfs_workqueue *high; }; static inline struct __btrfs_workqueue *__btrfs_alloc_workqueue(char *name, int flags, int max_active, int thresh) { struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_NOFS); if (unlikely(!ret)) return NULL; ret->max_active = max_active; atomic_set(&ret->pending, 0); if (thresh == 0) thresh = DFT_THRESHOLD; /* For low threshold, disabling threshold is a better choice */ if (thresh < DFT_THRESHOLD) { ret->current_max = max_active; ret->thresh = NO_THRESHOLD; } else { ret->current_max = 1; ret->thresh = thresh; } if (flags & WQ_HIGHPRI) ret->normal_wq = alloc_workqueue("%s-%s-high", flags, ret->max_active, "btrfs", name); else ret->normal_wq = alloc_workqueue("%s-%s", flags, ret->max_active, "btrfs", name); if (unlikely(!ret->normal_wq)) { kfree(ret); return NULL; } INIT_LIST_HEAD(&ret->ordered_list); spin_lock_init(&ret->list_lock); spin_lock_init(&ret->thres_lock); return ret; } static inline void __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq); struct btrfs_workqueue *btrfs_alloc_workqueue(char *name, int flags, int max_active, int thresh) { struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_NOFS); if (unlikely(!ret)) return NULL; ret->normal = __btrfs_alloc_workqueue(name, flags & ~WQ_HIGHPRI, max_active, thresh); if (unlikely(!ret->normal)) { kfree(ret); return NULL; } if (flags & WQ_HIGHPRI) { ret->high = __btrfs_alloc_workqueue(name, flags, max_active, thresh); if (unlikely(!ret->high)) { __btrfs_destroy_workqueue(ret->normal); kfree(ret); return NULL; } } return ret; } /* * Hook for threshold which will be called in btrfs_queue_work. * This hook WILL be called in IRQ handler context, * so workqueue_set_max_active MUST NOT be called in this hook */ static inline void thresh_queue_hook(struct __btrfs_workqueue *wq) { if (wq->thresh == NO_THRESHOLD) return; atomic_inc(&wq->pending); } /* * Hook for threshold which will be called before executing the work, * This hook is called in kthread content. * So workqueue_set_max_active is called here. */ static inline void thresh_exec_hook(struct __btrfs_workqueue *wq) { int new_max_active; long pending; int need_change = 0; if (wq->thresh == NO_THRESHOLD) return; atomic_dec(&wq->pending); spin_lock(&wq->thres_lock); /* * Use wq->count to limit the calling frequency of * workqueue_set_max_active. */ wq->count++; wq->count %= (wq->thresh / 4); if (!wq->count) goto out; new_max_active = wq->current_max; /* * pending may be changed later, but it's OK since we really * don't need it so accurate to calculate new_max_active. */ pending = atomic_read(&wq->pending); if (pending > wq->thresh) new_max_active++; if (pending < wq->thresh / 2) new_max_active--; new_max_active = clamp_val(new_max_active, 1, wq->max_active); if (new_max_active != wq->current_max) { need_change = 1; wq->current_max = new_max_active; } out: spin_unlock(&wq->thres_lock); if (need_change) { workqueue_set_max_active(wq->normal_wq, wq->current_max); } } static void run_ordered_work(struct __btrfs_workqueue *wq) { struct list_head *list = &wq->ordered_list; struct btrfs_work *work; spinlock_t *lock = &wq->list_lock; unsigned long flags; while (1) { spin_lock_irqsave(lock, flags); if (list_empty(list)) break; work = list_entry(list->next, struct btrfs_work, ordered_list); if (!test_bit(WORK_DONE_BIT, &work->flags)) break; /* * we are going to call the ordered done function, but * we leave the work item on the list as a barrier so * that later work items that are done don't have their * functions called before this one returns */ if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags)) break; spin_unlock_irqrestore(lock, flags); work->ordered_func(work); /* now take the lock again and drop our item from the list */ spin_lock_irqsave(lock, flags); list_del(&work->ordered_list); spin_unlock_irqrestore(lock, flags); /* * we don't want to call the ordered free functions * with the lock held though */ work->ordered_free(work); } spin_unlock_irqrestore(lock, flags); } static void normal_work_helper(struct work_struct *arg) { struct btrfs_work *work; struct __btrfs_workqueue *wq; int need_order = 0; work = container_of(arg, struct btrfs_work, normal_work); /* * We should not touch things inside work in the following cases: * 1) after work->func() if it has no ordered_free * Since the struct is freed in work->func(). * 2) after setting WORK_DONE_BIT * The work may be freed in other threads almost instantly. * So we save the needed things here. */ if (work->ordered_func) need_order = 1; wq = work->wq; thresh_exec_hook(wq); work->func(work); if (need_order) { set_bit(WORK_DONE_BIT, &work->flags); run_ordered_work(wq); } } void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func, btrfs_func_t ordered_func, btrfs_func_t ordered_free) { work->func = func; work->ordered_func = ordered_func; work->ordered_free = ordered_free; INIT_WORK(&work->normal_work, normal_work_helper); INIT_LIST_HEAD(&work->ordered_list); work->flags = 0; } static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq, struct btrfs_work *work) { unsigned long flags; work->wq = wq; thresh_queue_hook(wq); if (work->ordered_func) { spin_lock_irqsave(&wq->list_lock, flags); list_add_tail(&work->ordered_list, &wq->ordered_list); spin_unlock_irqrestore(&wq->list_lock, flags); } queue_work(wq->normal_wq, &work->normal_work); } void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work) { struct __btrfs_workqueue *dest_wq; if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high) dest_wq = wq->high; else dest_wq = wq->normal; __btrfs_queue_work(dest_wq, work); } static inline void __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq) { destroy_workqueue(wq->normal_wq); kfree(wq); } void btrfs_destroy_workqueue(struct btrfs_workqueue *wq) { if (!wq) return; if (wq->high) __btrfs_destroy_workqueue(wq->high); __btrfs_destroy_workqueue(wq->normal); } void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int max) { wq->normal->max_active = max; if (wq->high) wq->high->max_active = max; } void btrfs_set_work_high_priority(struct btrfs_work *work) { set_bit(WORK_HIGH_PRIO_BIT, &work->flags); }