/* * VFIO: IOMMU DMA mapping support for Type1 IOMMU * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com * * We arbitrarily define a Type1 IOMMU as one matching the below code. * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel * VT-d, but that makes it harder to re-use as theoretically anyone * implementing a similar IOMMU could make use of this. We expect the * IOMMU to support the IOMMU API and have few to no restrictions around * the IOVA range that can be mapped. The Type1 IOMMU is currently * optimized for relatively static mappings of a userspace process with * userpsace pages pinned into memory. We also assume devices and IOMMU * domains are PCI based as the IOMMU API is still centered around a * device/bus interface rather than a group interface. */ #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_VERSION "0.2" #define DRIVER_AUTHOR "Alex Williamson " #define DRIVER_DESC "Type1 IOMMU driver for VFIO" static bool allow_unsafe_interrupts; module_param_named(allow_unsafe_interrupts, allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(allow_unsafe_interrupts, "Enable VFIO IOMMU support for on platforms without interrupt remapping support."); static bool disable_hugepages; module_param_named(disable_hugepages, disable_hugepages, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_hugepages, "Disable VFIO IOMMU support for IOMMU hugepages."); struct vfio_iommu { struct list_head domain_list; struct mutex lock; struct rb_root dma_list; bool v2; bool nesting; }; struct vfio_domain { struct iommu_domain *domain; struct list_head next; struct list_head group_list; int prot; /* IOMMU_CACHE */ bool fgsp; /* Fine-grained super pages */ }; struct vfio_dma { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long vaddr; /* Process virtual addr */ size_t size; /* Map size (bytes) */ int prot; /* IOMMU_READ/WRITE */ }; struct vfio_group { struct iommu_group *iommu_group; struct list_head next; }; /* * This code handles mapping and unmapping of user data buffers * into DMA'ble space using the IOMMU */ static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu, dma_addr_t start, size_t size) { struct rb_node *node = iommu->dma_list.rb_node; while (node) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); if (start + size <= dma->iova) node = node->rb_left; else if (start >= dma->iova + dma->size) node = node->rb_right; else return dma; } return NULL; } static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new) { struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL; struct vfio_dma *dma; while (*link) { parent = *link; dma = rb_entry(parent, struct vfio_dma, node); if (new->iova + new->size <= dma->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &iommu->dma_list); } static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old) { rb_erase(&old->node, &iommu->dma_list); } struct vwork { struct mm_struct *mm; long npage; struct work_struct work; }; /* delayed decrement/increment for locked_vm */ static void vfio_lock_acct_bg(struct work_struct *work) { struct vwork *vwork = container_of(work, struct vwork, work); struct mm_struct *mm; mm = vwork->mm; down_write(&mm->mmap_sem); mm->locked_vm += vwork->npage; up_write(&mm->mmap_sem); mmput(mm); kfree(vwork); } static void vfio_lock_acct(long npage) { struct vwork *vwork; struct mm_struct *mm; if (!current->mm || !npage) return; /* process exited or nothing to do */ if (down_write_trylock(¤t->mm->mmap_sem)) { current->mm->locked_vm += npage; up_write(¤t->mm->mmap_sem); return; } /* * Couldn't get mmap_sem lock, so must setup to update * mm->locked_vm later. If locked_vm were atomic, we * wouldn't need this silliness */ vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL); if (!vwork) return; mm = get_task_mm(current); if (!mm) { kfree(vwork); return; } INIT_WORK(&vwork->work, vfio_lock_acct_bg); vwork->mm = mm; vwork->npage = npage; schedule_work(&vwork->work); } /* * Some mappings aren't backed by a struct page, for example an mmap'd * MMIO range for our own or another device. These use a different * pfn conversion and shouldn't be tracked as locked pages. */ static bool is_invalid_reserved_pfn(unsigned long pfn) { if (pfn_valid(pfn)) { bool reserved; struct page *tail = pfn_to_page(pfn); struct page *head = compound_head(tail); reserved = !!(PageReserved(head)); if (head != tail) { /* * "head" is not a dangling pointer * (compound_head takes care of that) * but the hugepage may have been split * from under us (and we may not hold a * reference count on the head page so it can * be reused before we run PageReferenced), so * we've to check PageTail before returning * what we just read. */ smp_rmb(); if (PageTail(tail)) return reserved; } return PageReserved(tail); } return true; } static int put_pfn(unsigned long pfn, int prot) { if (!is_invalid_reserved_pfn(pfn)) { struct page *page = pfn_to_page(pfn); if (prot & IOMMU_WRITE) SetPageDirty(page); put_page(page); return 1; } return 0; } static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn) { struct page *page[1]; struct vm_area_struct *vma; int ret = -EFAULT; if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) { *pfn = page_to_pfn(page[0]); return 0; } down_read(¤t->mm->mmap_sem); vma = find_vma_intersection(current->mm, vaddr, vaddr + 1); if (vma && vma->vm_flags & VM_PFNMAP) { *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (is_invalid_reserved_pfn(*pfn)) ret = 0; } up_read(¤t->mm->mmap_sem); return ret; } /* * Attempt to pin pages. We really don't want to track all the pfns and * the iommu can only map chunks of consecutive pfns anyway, so get the * first page and all consecutive pages with the same locking. */ static long vfio_pin_pages(unsigned long vaddr, long npage, int prot, unsigned long *pfn_base) { unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; bool lock_cap = capable(CAP_IPC_LOCK); long ret, i; bool rsvd; if (!current->mm) return -ENODEV; ret = vaddr_get_pfn(vaddr, prot, pfn_base); if (ret) return ret; rsvd = is_invalid_reserved_pfn(*pfn_base); if (!rsvd && !lock_cap && current->mm->locked_vm + 1 > limit) { put_pfn(*pfn_base, prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); return -ENOMEM; } if (unlikely(disable_hugepages)) { if (!rsvd) vfio_lock_acct(1); return 1; } /* Lock all the consecutive pages from pfn_base */ for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) { unsigned long pfn = 0; ret = vaddr_get_pfn(vaddr, prot, &pfn); if (ret) break; if (pfn != *pfn_base + i || rsvd != is_invalid_reserved_pfn(pfn)) { put_pfn(pfn, prot); break; } if (!rsvd && !lock_cap && current->mm->locked_vm + i + 1 > limit) { put_pfn(pfn, prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); break; } } if (!rsvd) vfio_lock_acct(i); return i; } static long vfio_unpin_pages(unsigned long pfn, long npage, int prot, bool do_accounting) { unsigned long unlocked = 0; long i; for (i = 0; i < npage; i++) unlocked += put_pfn(pfn++, prot); if (do_accounting) vfio_lock_acct(-unlocked); return unlocked; } static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma) { dma_addr_t iova = dma->iova, end = dma->iova + dma->size; struct vfio_domain *domain, *d; long unlocked = 0; if (!dma->size) return; /* * We use the IOMMU to track the physical addresses, otherwise we'd * need a much more complicated tracking system. Unfortunately that * means we need to use one of the iommu domains to figure out the * pfns to unpin. The rest need to be unmapped in advance so we have * no iommu translations remaining when the pages are unpinned. */ domain = d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); list_for_each_entry_continue(d, &iommu->domain_list, next) { iommu_unmap(d->domain, dma->iova, dma->size); cond_resched(); } while (iova < end) { size_t unmapped, len; phys_addr_t phys, next; phys = iommu_iova_to_phys(domain->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } /* * To optimize for fewer iommu_unmap() calls, each of which * may require hardware cache flushing, try to find the * largest contiguous physical memory chunk to unmap. */ for (len = PAGE_SIZE; !domain->fgsp && iova + len < end; len += PAGE_SIZE) { next = iommu_iova_to_phys(domain->domain, iova + len); if (next != phys + len) break; } unmapped = iommu_unmap(domain->domain, iova, len); if (WARN_ON(!unmapped)) break; unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT, unmapped >> PAGE_SHIFT, dma->prot, false); iova += unmapped; cond_resched(); } vfio_lock_acct(-unlocked); } static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma) { vfio_unmap_unpin(iommu, dma); vfio_unlink_dma(iommu, dma); kfree(dma); } static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu) { struct vfio_domain *domain; unsigned long bitmap = PAGE_MASK; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) bitmap &= domain->domain->ops->pgsize_bitmap; mutex_unlock(&iommu->lock); return bitmap; } static int vfio_dma_do_unmap(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_unmap *unmap) { uint64_t mask; struct vfio_dma *dma; size_t unmapped = 0; int ret = 0; mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1; if (unmap->iova & mask) return -EINVAL; if (!unmap->size || unmap->size & mask) return -EINVAL; WARN_ON(mask & PAGE_MASK); mutex_lock(&iommu->lock); /* * vfio-iommu-type1 (v1) - User mappings were coalesced together to * avoid tracking individual mappings. This means that the granularity * of the original mapping was lost and the user was allowed to attempt * to unmap any range. Depending on the contiguousness of physical * memory and page sizes supported by the IOMMU, arbitrary unmaps may * or may not have worked. We only guaranteed unmap granularity * matching the original mapping; even though it was untracked here, * the original mappings are reflected in IOMMU mappings. This * resulted in a couple unusual behaviors. First, if a range is not * able to be unmapped, ex. a set of 4k pages that was mapped as a * 2M hugepage into the IOMMU, the unmap ioctl returns success but with * a zero sized unmap. Also, if an unmap request overlaps the first * address of a hugepage, the IOMMU will unmap the entire hugepage. * This also returns success and the returned unmap size reflects the * actual size unmapped. * * We attempt to maintain compatibility with this "v1" interface, but * we take control out of the hands of the IOMMU. Therefore, an unmap * request offset from the beginning of the original mapping will * return success with zero sized unmap. And an unmap request covering * the first iova of mapping will unmap the entire range. * * The v2 version of this interface intends to be more deterministic. * Unmap requests must fully cover previous mappings. Multiple * mappings may still be unmaped by specifying large ranges, but there * must not be any previous mappings bisected by the range. An error * will be returned if these conditions are not met. The v2 interface * will only return success and a size of zero if there were no * mappings within the range. */ if (iommu->v2) { dma = vfio_find_dma(iommu, unmap->iova, 0); if (dma && dma->iova != unmap->iova) { ret = -EINVAL; goto unlock; } dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0); if (dma && dma->iova + dma->size != unmap->iova + unmap->size) { ret = -EINVAL; goto unlock; } } while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) { if (!iommu->v2 && unmap->iova > dma->iova) break; unmapped += dma->size; vfio_remove_dma(iommu, dma); } unlock: mutex_unlock(&iommu->lock); /* Report how much was unmapped */ unmap->size = unmapped; return ret; } /* * Turns out AMD IOMMU has a page table bug where it won't map large pages * to a region that previously mapped smaller pages. This should be fixed * soon, so this is just a temporary workaround to break mappings down into * PAGE_SIZE. Better to map smaller pages than nothing. */ static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova, unsigned long pfn, long npage, int prot) { long i; int ret; for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) { ret = iommu_map(domain->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, PAGE_SIZE, prot | domain->prot); if (ret) break; } for (; i < npage && i > 0; i--, iova -= PAGE_SIZE) iommu_unmap(domain->domain, iova, PAGE_SIZE); return ret; } static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova, unsigned long pfn, long npage, int prot) { struct vfio_domain *d; int ret; list_for_each_entry(d, &iommu->domain_list, next) { ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, npage << PAGE_SHIFT, prot | d->prot); if (ret) { if (ret != -EBUSY || map_try_harder(d, iova, pfn, npage, prot)) goto unwind; } cond_resched(); } return 0; unwind: list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) iommu_unmap(d->domain, iova, npage << PAGE_SHIFT); return ret; } static int vfio_dma_do_map(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_map *map) { dma_addr_t iova = map->iova; unsigned long vaddr = map->vaddr; size_t size = map->size; long npage; int ret = 0, prot = 0; uint64_t mask; struct vfio_dma *dma; unsigned long pfn; /* Verify that none of our __u64 fields overflow */ if (map->size != size || map->vaddr != vaddr || map->iova != iova) return -EINVAL; mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1; WARN_ON(mask & PAGE_MASK); /* READ/WRITE from device perspective */ if (map->flags & VFIO_DMA_MAP_FLAG_WRITE) prot |= IOMMU_WRITE; if (map->flags & VFIO_DMA_MAP_FLAG_READ) prot |= IOMMU_READ; if (!prot || !size || (size | iova | vaddr) & mask) return -EINVAL; /* Don't allow IOVA or virtual address wrap */ if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) return -EINVAL; mutex_lock(&iommu->lock); if (vfio_find_dma(iommu, iova, size)) { mutex_unlock(&iommu->lock); return -EEXIST; } dma = kzalloc(sizeof(*dma), GFP_KERNEL); if (!dma) { mutex_unlock(&iommu->lock); return -ENOMEM; } dma->iova = iova; dma->vaddr = vaddr; dma->prot = prot; /* Insert zero-sized and grow as we map chunks of it */ vfio_link_dma(iommu, dma); while (size) { /* Pin a contiguous chunk of memory */ npage = vfio_pin_pages(vaddr + dma->size, size >> PAGE_SHIFT, prot, &pfn); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; break; } /* Map it! */ ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot); if (ret) { vfio_unpin_pages(pfn, npage, prot, true); break; } size -= npage << PAGE_SHIFT; dma->size += npage << PAGE_SHIFT; } if (ret) vfio_remove_dma(iommu, dma); mutex_unlock(&iommu->lock); return ret; } static int vfio_bus_type(struct device *dev, void *data) { struct bus_type **bus = data; if (*bus && *bus != dev->bus) return -EINVAL; *bus = dev->bus; return 0; } static int vfio_iommu_replay(struct vfio_iommu *iommu, struct vfio_domain *domain) { struct vfio_domain *d; struct rb_node *n; int ret; /* Arbitrarily pick the first domain in the list for lookups */ d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); n = rb_first(&iommu->dma_list); /* If there's not a domain, there better not be any mappings */ if (WARN_ON(n && !d)) return -EINVAL; for (; n; n = rb_next(n)) { struct vfio_dma *dma; dma_addr_t iova; dma = rb_entry(n, struct vfio_dma, node); iova = dma->iova; while (iova < dma->iova + dma->size) { phys_addr_t phys = iommu_iova_to_phys(d->domain, iova); size_t size; if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } size = PAGE_SIZE; while (iova + size < dma->iova + dma->size && phys + size == iommu_iova_to_phys(d->domain, iova + size)) size += PAGE_SIZE; ret = iommu_map(domain->domain, iova, phys, size, dma->prot | domain->prot); if (ret) return ret; iova += size; } } return 0; } /* * We change our unmap behavior slightly depending on whether the IOMMU * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage * for practically any contiguous power-of-two mapping we give it. This means * we don't need to look for contiguous chunks ourselves to make unmapping * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when * hugetlbfs is in use. */ static void vfio_test_domain_fgsp(struct vfio_domain *domain) { struct page *pages; int ret, order = get_order(PAGE_SIZE * 2); pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); if (!pages) return; ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2, IOMMU_READ | IOMMU_WRITE | domain->prot); if (!ret) { size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE); if (unmapped == PAGE_SIZE) iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE); else domain->fgsp = true; } __free_pages(pages, order); } static int vfio_iommu_type1_attach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_group *group, *g; struct vfio_domain *domain, *d; struct bus_type *bus = NULL; int ret; mutex_lock(&iommu->lock); list_for_each_entry(d, &iommu->domain_list, next) { list_for_each_entry(g, &d->group_list, next) { if (g->iommu_group != iommu_group) continue; mutex_unlock(&iommu->lock); return -EINVAL; } } group = kzalloc(sizeof(*group), GFP_KERNEL); domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!group || !domain) { ret = -ENOMEM; goto out_free; } group->iommu_group = iommu_group; /* Determine bus_type in order to allocate a domain */ ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type); if (ret) goto out_free; domain->domain = iommu_domain_alloc(bus); if (!domain->domain) { ret = -EIO; goto out_free; } if (iommu->nesting) { int attr = 1; ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING, &attr); if (ret) goto out_domain; } ret = iommu_attach_group(domain->domain, iommu_group); if (ret) goto out_domain; INIT_LIST_HEAD(&domain->group_list); list_add(&group->next, &domain->group_list); if (!allow_unsafe_interrupts && !iommu_capable(bus, IOMMU_CAP_INTR_REMAP)) { pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n", __func__); ret = -EPERM; goto out_detach; } if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY)) domain->prot |= IOMMU_CACHE; /* * Try to match an existing compatible domain. We don't want to * preclude an IOMMU driver supporting multiple bus_types and being * able to include different bus_types in the same IOMMU domain, so * we test whether the domains use the same iommu_ops rather than * testing if they're on the same bus_type. */ list_for_each_entry(d, &iommu->domain_list, next) { if (d->domain->ops == domain->domain->ops && d->prot == domain->prot) { iommu_detach_group(domain->domain, iommu_group); if (!iommu_attach_group(d->domain, iommu_group)) { list_add(&group->next, &d->group_list); iommu_domain_free(domain->domain); kfree(domain); mutex_unlock(&iommu->lock); return 0; } ret = iommu_attach_group(domain->domain, iommu_group); if (ret) goto out_domain; } } vfio_test_domain_fgsp(domain); /* replay mappings on new domains */ ret = vfio_iommu_replay(iommu, domain); if (ret) goto out_detach; list_add(&domain->next, &iommu->domain_list); mutex_unlock(&iommu->lock); return 0; out_detach: iommu_detach_group(domain->domain, iommu_group); out_domain: iommu_domain_free(domain->domain); out_free: kfree(domain); kfree(group); mutex_unlock(&iommu->lock); return ret; } static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu) { struct rb_node *node; while ((node = rb_first(&iommu->dma_list))) vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node)); } static void vfio_iommu_type1_detach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain; struct vfio_group *group; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) { list_for_each_entry(group, &domain->group_list, next) { if (group->iommu_group != iommu_group) continue; iommu_detach_group(domain->domain, iommu_group); list_del(&group->next); kfree(group); /* * Group ownership provides privilege, if the group * list is empty, the domain goes away. If it's the * last domain, then all the mappings go away too. */ if (list_empty(&domain->group_list)) { if (list_is_singular(&iommu->domain_list)) vfio_iommu_unmap_unpin_all(iommu); iommu_domain_free(domain->domain); list_del(&domain->next); kfree(domain); } goto done; } } done: mutex_unlock(&iommu->lock); } static void *vfio_iommu_type1_open(unsigned long arg) { struct vfio_iommu *iommu; iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); if (!iommu) return ERR_PTR(-ENOMEM); switch (arg) { case VFIO_TYPE1_IOMMU: break; case VFIO_TYPE1_NESTING_IOMMU: iommu->nesting = true; case VFIO_TYPE1v2_IOMMU: iommu->v2 = true; break; default: kfree(iommu); return ERR_PTR(-EINVAL); } INIT_LIST_HEAD(&iommu->domain_list); iommu->dma_list = RB_ROOT; mutex_init(&iommu->lock); return iommu; } static void vfio_iommu_type1_release(void *iommu_data) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain, *domain_tmp; struct vfio_group *group, *group_tmp; vfio_iommu_unmap_unpin_all(iommu); list_for_each_entry_safe(domain, domain_tmp, &iommu->domain_list, next) { list_for_each_entry_safe(group, group_tmp, &domain->group_list, next) { iommu_detach_group(domain->domain, group->iommu_group); list_del(&group->next); kfree(group); } iommu_domain_free(domain->domain); list_del(&domain->next); kfree(domain); } kfree(iommu); } static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu) { struct vfio_domain *domain; int ret = 1; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) { if (!(domain->prot & IOMMU_CACHE)) { ret = 0; break; } } mutex_unlock(&iommu->lock); return ret; } static long vfio_iommu_type1_ioctl(void *iommu_data, unsigned int cmd, unsigned long arg) { struct vfio_iommu *iommu = iommu_data; unsigned long minsz; if (cmd == VFIO_CHECK_EXTENSION) { switch (arg) { case VFIO_TYPE1_IOMMU: case VFIO_TYPE1v2_IOMMU: case VFIO_TYPE1_NESTING_IOMMU: return 1; case VFIO_DMA_CC_IOMMU: if (!iommu) return 0; return vfio_domains_have_iommu_cache(iommu); default: return 0; } } else if (cmd == VFIO_IOMMU_GET_INFO) { struct vfio_iommu_type1_info info; minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = 0; info.iova_pgsizes = vfio_pgsize_bitmap(iommu); return copy_to_user((void __user *)arg, &info, minsz); } else if (cmd == VFIO_IOMMU_MAP_DMA) { struct vfio_iommu_type1_dma_map map; uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; minsz = offsetofend(struct vfio_iommu_type1_dma_map, size); if (copy_from_user(&map, (void __user *)arg, minsz)) return -EFAULT; if (map.argsz < minsz || map.flags & ~mask) return -EINVAL; return vfio_dma_do_map(iommu, &map); } else if (cmd == VFIO_IOMMU_UNMAP_DMA) { struct vfio_iommu_type1_dma_unmap unmap; long ret; minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size); if (copy_from_user(&unmap, (void __user *)arg, minsz)) return -EFAULT; if (unmap.argsz < minsz || unmap.flags) return -EINVAL; ret = vfio_dma_do_unmap(iommu, &unmap); if (ret) return ret; return copy_to_user((void __user *)arg, &unmap, minsz); } return -ENOTTY; } static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = { .name = "vfio-iommu-type1", .owner = THIS_MODULE, .open = vfio_iommu_type1_open, .release = vfio_iommu_type1_release, .ioctl = vfio_iommu_type1_ioctl, .attach_group = vfio_iommu_type1_attach_group, .detach_group = vfio_iommu_type1_detach_group, }; static int __init vfio_iommu_type1_init(void) { return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1); } static void __exit vfio_iommu_type1_cleanup(void) { vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1); } module_init(vfio_iommu_type1_init); module_exit(vfio_iommu_type1_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC);