/* * Texas Instruments AM35x "glue layer" * * Copyright (c) 2010, by Texas Instruments * * Based on the DA8xx "glue layer" code. * Copyright (c) 2008-2009, MontaVista Software, Inc. * * This file is part of the Inventra Controller Driver for Linux. * * The Inventra Controller Driver for Linux is free software; you * can redistribute it and/or modify it under the terms of the GNU * General Public License version 2 as published by the Free Software * Foundation. * * The Inventra Controller Driver for Linux is distributed in * the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with The Inventra Controller Driver for Linux ; if not, * write to the Free Software Foundation, Inc., 59 Temple Place, * Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include "musb_core.h" /* * AM35x specific definitions */ /* USB 2.0 OTG module registers */ #define USB_REVISION_REG 0x00 #define USB_CTRL_REG 0x04 #define USB_STAT_REG 0x08 #define USB_EMULATION_REG 0x0c /* 0x10 Reserved */ #define USB_AUTOREQ_REG 0x14 #define USB_SRP_FIX_TIME_REG 0x18 #define USB_TEARDOWN_REG 0x1c #define EP_INTR_SRC_REG 0x20 #define EP_INTR_SRC_SET_REG 0x24 #define EP_INTR_SRC_CLEAR_REG 0x28 #define EP_INTR_MASK_REG 0x2c #define EP_INTR_MASK_SET_REG 0x30 #define EP_INTR_MASK_CLEAR_REG 0x34 #define EP_INTR_SRC_MASKED_REG 0x38 #define CORE_INTR_SRC_REG 0x40 #define CORE_INTR_SRC_SET_REG 0x44 #define CORE_INTR_SRC_CLEAR_REG 0x48 #define CORE_INTR_MASK_REG 0x4c #define CORE_INTR_MASK_SET_REG 0x50 #define CORE_INTR_MASK_CLEAR_REG 0x54 #define CORE_INTR_SRC_MASKED_REG 0x58 /* 0x5c Reserved */ #define USB_END_OF_INTR_REG 0x60 /* Control register bits */ #define AM35X_SOFT_RESET_MASK 1 /* USB interrupt register bits */ #define AM35X_INTR_USB_SHIFT 16 #define AM35X_INTR_USB_MASK (0x1ff << AM35X_INTR_USB_SHIFT) #define AM35X_INTR_DRVVBUS 0x100 #define AM35X_INTR_RX_SHIFT 16 #define AM35X_INTR_TX_SHIFT 0 #define AM35X_TX_EP_MASK 0xffff /* EP0 + 15 Tx EPs */ #define AM35X_RX_EP_MASK 0xfffe /* 15 Rx EPs */ #define AM35X_TX_INTR_MASK (AM35X_TX_EP_MASK << AM35X_INTR_TX_SHIFT) #define AM35X_RX_INTR_MASK (AM35X_RX_EP_MASK << AM35X_INTR_RX_SHIFT) #define USB_MENTOR_CORE_OFFSET 0x400 struct am35x_glue { struct device *dev; struct platform_device *musb; struct clk *phy_clk; struct clk *clk; }; #define glue_to_musb(g) platform_get_drvdata(g->musb) /* * am35x_musb_enable - enable interrupts */ static void am35x_musb_enable(struct musb *musb) { void __iomem *reg_base = musb->ctrl_base; u32 epmask; /* Workaround: setup IRQs through both register sets. */ epmask = ((musb->epmask & AM35X_TX_EP_MASK) << AM35X_INTR_TX_SHIFT) | ((musb->epmask & AM35X_RX_EP_MASK) << AM35X_INTR_RX_SHIFT); musb_writel(reg_base, EP_INTR_MASK_SET_REG, epmask); musb_writel(reg_base, CORE_INTR_MASK_SET_REG, AM35X_INTR_USB_MASK); /* Force the DRVVBUS IRQ so we can start polling for ID change. */ if (is_otg_enabled(musb)) musb_writel(reg_base, CORE_INTR_SRC_SET_REG, AM35X_INTR_DRVVBUS << AM35X_INTR_USB_SHIFT); } /* * am35x_musb_disable - disable HDRC and flush interrupts */ static void am35x_musb_disable(struct musb *musb) { void __iomem *reg_base = musb->ctrl_base; musb_writel(reg_base, CORE_INTR_MASK_CLEAR_REG, AM35X_INTR_USB_MASK); musb_writel(reg_base, EP_INTR_MASK_CLEAR_REG, AM35X_TX_INTR_MASK | AM35X_RX_INTR_MASK); musb_writeb(musb->mregs, MUSB_DEVCTL, 0); musb_writel(reg_base, USB_END_OF_INTR_REG, 0); } #define portstate(stmt) stmt static void am35x_musb_set_vbus(struct musb *musb, int is_on) { WARN_ON(is_on && is_peripheral_active(musb)); } #define POLL_SECONDS 2 static struct timer_list otg_workaround; static void otg_timer(unsigned long _musb) { struct musb *musb = (void *)_musb; void __iomem *mregs = musb->mregs; u8 devctl; unsigned long flags; /* * We poll because AM35x's won't expose several OTG-critical * status change events (from the transceiver) otherwise. */ devctl = musb_readb(mregs, MUSB_DEVCTL); dev_dbg(musb->controller, "Poll devctl %02x (%s)\n", devctl, otg_state_string(musb->xceiv->state)); spin_lock_irqsave(&musb->lock, flags); switch (musb->xceiv->state) { case OTG_STATE_A_WAIT_BCON: devctl &= ~MUSB_DEVCTL_SESSION; musb_writeb(musb->mregs, MUSB_DEVCTL, devctl); devctl = musb_readb(musb->mregs, MUSB_DEVCTL); if (devctl & MUSB_DEVCTL_BDEVICE) { musb->xceiv->state = OTG_STATE_B_IDLE; MUSB_DEV_MODE(musb); } else { musb->xceiv->state = OTG_STATE_A_IDLE; MUSB_HST_MODE(musb); } break; case OTG_STATE_A_WAIT_VFALL: musb->xceiv->state = OTG_STATE_A_WAIT_VRISE; musb_writel(musb->ctrl_base, CORE_INTR_SRC_SET_REG, MUSB_INTR_VBUSERROR << AM35X_INTR_USB_SHIFT); break; case OTG_STATE_B_IDLE: if (!is_peripheral_enabled(musb)) break; devctl = musb_readb(mregs, MUSB_DEVCTL); if (devctl & MUSB_DEVCTL_BDEVICE) mod_timer(&otg_workaround, jiffies + POLL_SECONDS * HZ); else musb->xceiv->state = OTG_STATE_A_IDLE; break; default: break; } spin_unlock_irqrestore(&musb->lock, flags); } static void am35x_musb_try_idle(struct musb *musb, unsigned long timeout) { static unsigned long last_timer; if (!is_otg_enabled(musb)) return; if (timeout == 0) timeout = jiffies + msecs_to_jiffies(3); /* Never idle if active, or when VBUS timeout is not set as host */ if (musb->is_active || (musb->a_wait_bcon == 0 && musb->xceiv->state == OTG_STATE_A_WAIT_BCON)) { dev_dbg(musb->controller, "%s active, deleting timer\n", otg_state_string(musb->xceiv->state)); del_timer(&otg_workaround); last_timer = jiffies; return; } if (time_after(last_timer, timeout) && timer_pending(&otg_workaround)) { dev_dbg(musb->controller, "Longer idle timer already pending, ignoring...\n"); return; } last_timer = timeout; dev_dbg(musb->controller, "%s inactive, starting idle timer for %u ms\n", otg_state_string(musb->xceiv->state), jiffies_to_msecs(timeout - jiffies)); mod_timer(&otg_workaround, timeout); } static irqreturn_t am35x_musb_interrupt(int irq, void *hci) { struct musb *musb = hci; void __iomem *reg_base = musb->ctrl_base; struct device *dev = musb->controller; struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; struct usb_otg *otg = musb->xceiv->otg; unsigned long flags; irqreturn_t ret = IRQ_NONE; u32 epintr, usbintr; spin_lock_irqsave(&musb->lock, flags); /* Get endpoint interrupts */ epintr = musb_readl(reg_base, EP_INTR_SRC_MASKED_REG); if (epintr) { musb_writel(reg_base, EP_INTR_SRC_CLEAR_REG, epintr); musb->int_rx = (epintr & AM35X_RX_INTR_MASK) >> AM35X_INTR_RX_SHIFT; musb->int_tx = (epintr & AM35X_TX_INTR_MASK) >> AM35X_INTR_TX_SHIFT; } /* Get usb core interrupts */ usbintr = musb_readl(reg_base, CORE_INTR_SRC_MASKED_REG); if (!usbintr && !epintr) goto eoi; if (usbintr) { musb_writel(reg_base, CORE_INTR_SRC_CLEAR_REG, usbintr); musb->int_usb = (usbintr & AM35X_INTR_USB_MASK) >> AM35X_INTR_USB_SHIFT; } /* * DRVVBUS IRQs are the only proxy we have (a very poor one!) for * AM35x's missing ID change IRQ. We need an ID change IRQ to * switch appropriately between halves of the OTG state machine. * Managing DEVCTL.SESSION per Mentor docs requires that we know its * value but DEVCTL.BDEVICE is invalid without DEVCTL.SESSION set. * Also, DRVVBUS pulses for SRP (but not at 5V) ... */ if (usbintr & (AM35X_INTR_DRVVBUS << AM35X_INTR_USB_SHIFT)) { int drvvbus = musb_readl(reg_base, USB_STAT_REG); void __iomem *mregs = musb->mregs; u8 devctl = musb_readb(mregs, MUSB_DEVCTL); int err; err = is_host_enabled(musb) && (musb->int_usb & MUSB_INTR_VBUSERROR); if (err) { /* * The Mentor core doesn't debounce VBUS as needed * to cope with device connect current spikes. This * means it's not uncommon for bus-powered devices * to get VBUS errors during enumeration. * * This is a workaround, but newer RTL from Mentor * seems to allow a better one: "re"-starting sessions * without waiting for VBUS to stop registering in * devctl. */ musb->int_usb &= ~MUSB_INTR_VBUSERROR; musb->xceiv->state = OTG_STATE_A_WAIT_VFALL; mod_timer(&otg_workaround, jiffies + POLL_SECONDS * HZ); WARNING("VBUS error workaround (delay coming)\n"); } else if (is_host_enabled(musb) && drvvbus) { MUSB_HST_MODE(musb); otg->default_a = 1; musb->xceiv->state = OTG_STATE_A_WAIT_VRISE; portstate(musb->port1_status |= USB_PORT_STAT_POWER); del_timer(&otg_workaround); } else { musb->is_active = 0; MUSB_DEV_MODE(musb); otg->default_a = 0; musb->xceiv->state = OTG_STATE_B_IDLE; portstate(musb->port1_status &= ~USB_PORT_STAT_POWER); } /* NOTE: this must complete power-on within 100 ms. */ dev_dbg(musb->controller, "VBUS %s (%s)%s, devctl %02x\n", drvvbus ? "on" : "off", otg_state_string(musb->xceiv->state), err ? " ERROR" : "", devctl); ret = IRQ_HANDLED; } if (musb->int_tx || musb->int_rx || musb->int_usb) ret |= musb_interrupt(musb); eoi: /* EOI needs to be written for the IRQ to be re-asserted. */ if (ret == IRQ_HANDLED || epintr || usbintr) { /* clear level interrupt */ if (data->clear_irq) data->clear_irq(); /* write EOI */ musb_writel(reg_base, USB_END_OF_INTR_REG, 0); } /* Poll for ID change */ if (is_otg_enabled(musb) && musb->xceiv->state == OTG_STATE_B_IDLE) mod_timer(&otg_workaround, jiffies + POLL_SECONDS * HZ); spin_unlock_irqrestore(&musb->lock, flags); return ret; } static int am35x_musb_set_mode(struct musb *musb, u8 musb_mode) { struct device *dev = musb->controller; struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; int retval = 0; if (data->set_mode) data->set_mode(musb_mode); else retval = -EIO; return retval; } static int am35x_musb_init(struct musb *musb) { struct device *dev = musb->controller; struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; void __iomem *reg_base = musb->ctrl_base; u32 rev; musb->mregs += USB_MENTOR_CORE_OFFSET; /* Returns zero if e.g. not clocked */ rev = musb_readl(reg_base, USB_REVISION_REG); if (!rev) return -ENODEV; usb_nop_xceiv_register(); musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); if (IS_ERR_OR_NULL(musb->xceiv)) return -ENODEV; if (is_host_enabled(musb)) setup_timer(&otg_workaround, otg_timer, (unsigned long) musb); /* Reset the musb */ if (data->reset) data->reset(); /* Reset the controller */ musb_writel(reg_base, USB_CTRL_REG, AM35X_SOFT_RESET_MASK); /* Start the on-chip PHY and its PLL. */ if (data->set_phy_power) data->set_phy_power(1); msleep(5); musb->isr = am35x_musb_interrupt; /* clear level interrupt */ if (data->clear_irq) data->clear_irq(); return 0; } static int am35x_musb_exit(struct musb *musb) { struct device *dev = musb->controller; struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; if (is_host_enabled(musb)) del_timer_sync(&otg_workaround); /* Shutdown the on-chip PHY and its PLL. */ if (data->set_phy_power) data->set_phy_power(0); usb_put_phy(musb->xceiv); usb_nop_xceiv_unregister(); return 0; } /* AM35x supports only 32bit read operation */ void musb_read_fifo(struct musb_hw_ep *hw_ep, u16 len, u8 *dst) { void __iomem *fifo = hw_ep->fifo; u32 val; int i; /* Read for 32bit-aligned destination address */ if (likely((0x03 & (unsigned long) dst) == 0) && len >= 4) { readsl(fifo, dst, len >> 2); dst += len & ~0x03; len &= 0x03; } /* * Now read the remaining 1 to 3 byte or complete length if * unaligned address. */ if (len > 4) { for (i = 0; i < (len >> 2); i++) { *(u32 *) dst = musb_readl(fifo, 0); dst += 4; } len &= 0x03; } if (len > 0) { val = musb_readl(fifo, 0); memcpy(dst, &val, len); } } static const struct musb_platform_ops am35x_ops = { .init = am35x_musb_init, .exit = am35x_musb_exit, .enable = am35x_musb_enable, .disable = am35x_musb_disable, .set_mode = am35x_musb_set_mode, .try_idle = am35x_musb_try_idle, .set_vbus = am35x_musb_set_vbus, }; static u64 am35x_dmamask = DMA_BIT_MASK(32); static int __devinit am35x_probe(struct platform_device *pdev) { struct musb_hdrc_platform_data *pdata = pdev->dev.platform_data; struct platform_device *musb; struct am35x_glue *glue; struct clk *phy_clk; struct clk *clk; int ret = -ENOMEM; glue = kzalloc(sizeof(*glue), GFP_KERNEL); if (!glue) { dev_err(&pdev->dev, "failed to allocate glue context\n"); goto err0; } musb = platform_device_alloc("musb-hdrc", -1); if (!musb) { dev_err(&pdev->dev, "failed to allocate musb device\n"); goto err1; } phy_clk = clk_get(&pdev->dev, "fck"); if (IS_ERR(phy_clk)) { dev_err(&pdev->dev, "failed to get PHY clock\n"); ret = PTR_ERR(phy_clk); goto err2; } clk = clk_get(&pdev->dev, "ick"); if (IS_ERR(clk)) { dev_err(&pdev->dev, "failed to get clock\n"); ret = PTR_ERR(clk); goto err3; } ret = clk_enable(phy_clk); if (ret) { dev_err(&pdev->dev, "failed to enable PHY clock\n"); goto err4; } ret = clk_enable(clk); if (ret) { dev_err(&pdev->dev, "failed to enable clock\n"); goto err5; } musb->dev.parent = &pdev->dev; musb->dev.dma_mask = &am35x_dmamask; musb->dev.coherent_dma_mask = am35x_dmamask; glue->dev = &pdev->dev; glue->musb = musb; glue->phy_clk = phy_clk; glue->clk = clk; pdata->platform_ops = &am35x_ops; platform_set_drvdata(pdev, glue); ret = platform_device_add_resources(musb, pdev->resource, pdev->num_resources); if (ret) { dev_err(&pdev->dev, "failed to add resources\n"); goto err6; } ret = platform_device_add_data(musb, pdata, sizeof(*pdata)); if (ret) { dev_err(&pdev->dev, "failed to add platform_data\n"); goto err6; } ret = platform_device_add(musb); if (ret) { dev_err(&pdev->dev, "failed to register musb device\n"); goto err6; } return 0; err6: clk_disable(clk); err5: clk_disable(phy_clk); err4: clk_put(clk); err3: clk_put(phy_clk); err2: platform_device_put(musb); err1: kfree(glue); err0: return ret; } static int __devexit am35x_remove(struct platform_device *pdev) { struct am35x_glue *glue = platform_get_drvdata(pdev); platform_device_del(glue->musb); platform_device_put(glue->musb); clk_disable(glue->clk); clk_disable(glue->phy_clk); clk_put(glue->clk); clk_put(glue->phy_clk); kfree(glue); return 0; } #ifdef CONFIG_PM static int am35x_suspend(struct device *dev) { struct am35x_glue *glue = dev_get_drvdata(dev); struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; /* Shutdown the on-chip PHY and its PLL. */ if (data->set_phy_power) data->set_phy_power(0); clk_disable(glue->phy_clk); clk_disable(glue->clk); return 0; } static int am35x_resume(struct device *dev) { struct am35x_glue *glue = dev_get_drvdata(dev); struct musb_hdrc_platform_data *plat = dev->platform_data; struct omap_musb_board_data *data = plat->board_data; int ret; /* Start the on-chip PHY and its PLL. */ if (data->set_phy_power) data->set_phy_power(1); ret = clk_enable(glue->phy_clk); if (ret) { dev_err(dev, "failed to enable PHY clock\n"); return ret; } ret = clk_enable(glue->clk); if (ret) { dev_err(dev, "failed to enable clock\n"); return ret; } return 0; } static struct dev_pm_ops am35x_pm_ops = { .suspend = am35x_suspend, .resume = am35x_resume, }; #define DEV_PM_OPS &am35x_pm_ops #else #define DEV_PM_OPS NULL #endif static struct platform_driver am35x_driver = { .probe = am35x_probe, .remove = __devexit_p(am35x_remove), .driver = { .name = "musb-am35x", .pm = DEV_PM_OPS, }, }; MODULE_DESCRIPTION("AM35x MUSB Glue Layer"); MODULE_AUTHOR("Ajay Kumar Gupta "); MODULE_LICENSE("GPL v2"); static int __init am35x_init(void) { return platform_driver_register(&am35x_driver); } module_init(am35x_init); static void __exit am35x_exit(void) { platform_driver_unregister(&am35x_driver); } module_exit(am35x_exit);