/* * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> * * This code is *strongly* based on EHCI-HCD code by David Brownell since * the chip is a quasi-EHCI compatible. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/dmapool.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/timer.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/reboot.h> #include <linux/usb.h> #include <linux/moduleparam.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include "../core/hcd.h" #include <asm/irq.h> #include <asm/system.h> #include <asm/unaligned.h> #include <linux/irq.h> #include <linux/platform_device.h> #include "oxu210hp.h" #define DRIVER_VERSION "0.0.50" /* * Main defines */ #define oxu_dbg(oxu, fmt, args...) \ dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) #define oxu_err(oxu, fmt, args...) \ dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) #define oxu_info(oxu, fmt, args...) \ dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) { return container_of((void *) oxu, struct usb_hcd, hcd_priv); } static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) { return (struct oxu_hcd *) (hcd->hcd_priv); } /* * Debug stuff */ #undef OXU_URB_TRACE #undef OXU_VERBOSE_DEBUG #ifdef OXU_VERBOSE_DEBUG #define oxu_vdbg oxu_dbg #else #define oxu_vdbg(oxu, fmt, args...) /* Nop */ #endif #ifdef DEBUG static int __attribute__((__unused__)) dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) { return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", label, label[0] ? " " : "", status, (status & STS_ASS) ? " Async" : "", (status & STS_PSS) ? " Periodic" : "", (status & STS_RECL) ? " Recl" : "", (status & STS_HALT) ? " Halt" : "", (status & STS_IAA) ? " IAA" : "", (status & STS_FATAL) ? " FATAL" : "", (status & STS_FLR) ? " FLR" : "", (status & STS_PCD) ? " PCD" : "", (status & STS_ERR) ? " ERR" : "", (status & STS_INT) ? " INT" : "" ); } static int __attribute__((__unused__)) dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) { return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", label, label[0] ? " " : "", enable, (enable & STS_IAA) ? " IAA" : "", (enable & STS_FATAL) ? " FATAL" : "", (enable & STS_FLR) ? " FLR" : "", (enable & STS_PCD) ? " PCD" : "", (enable & STS_ERR) ? " ERR" : "", (enable & STS_INT) ? " INT" : "" ); } static const char *const fls_strings[] = { "1024", "512", "256", "??" }; static int dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) { return scnprintf(buf, len, "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", label, label[0] ? " " : "", command, (command & CMD_PARK) ? "park" : "(park)", CMD_PARK_CNT(command), (command >> 16) & 0x3f, (command & CMD_LRESET) ? " LReset" : "", (command & CMD_IAAD) ? " IAAD" : "", (command & CMD_ASE) ? " Async" : "", (command & CMD_PSE) ? " Periodic" : "", fls_strings[(command >> 2) & 0x3], (command & CMD_RESET) ? " Reset" : "", (command & CMD_RUN) ? "RUN" : "HALT" ); } static int dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) { char *sig; /* signaling state */ switch (status & (3 << 10)) { case 0 << 10: sig = "se0"; break; case 1 << 10: sig = "k"; /* low speed */ break; case 2 << 10: sig = "j"; break; default: sig = "?"; break; } return scnprintf(buf, len, "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", label, label[0] ? " " : "", port, status, (status & PORT_POWER) ? " POWER" : "", (status & PORT_OWNER) ? " OWNER" : "", sig, (status & PORT_RESET) ? " RESET" : "", (status & PORT_SUSPEND) ? " SUSPEND" : "", (status & PORT_RESUME) ? " RESUME" : "", (status & PORT_OCC) ? " OCC" : "", (status & PORT_OC) ? " OC" : "", (status & PORT_PEC) ? " PEC" : "", (status & PORT_PE) ? " PE" : "", (status & PORT_CSC) ? " CSC" : "", (status & PORT_CONNECT) ? " CONNECT" : "" ); } #else static inline int __attribute__((__unused__)) dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) { return 0; } static inline int __attribute__((__unused__)) dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) { return 0; } static inline int __attribute__((__unused__)) dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) { return 0; } static inline int __attribute__((__unused__)) dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) { return 0; } #endif /* DEBUG */ /* functions have the "wrong" filename when they're output... */ #define dbg_status(oxu, label, status) { \ char _buf[80]; \ dbg_status_buf(_buf, sizeof _buf, label, status); \ oxu_dbg(oxu, "%s\n", _buf); \ } #define dbg_cmd(oxu, label, command) { \ char _buf[80]; \ dbg_command_buf(_buf, sizeof _buf, label, command); \ oxu_dbg(oxu, "%s\n", _buf); \ } #define dbg_port(oxu, label, port, status) { \ char _buf[80]; \ dbg_port_buf(_buf, sizeof _buf, label, port, status); \ oxu_dbg(oxu, "%s\n", _buf); \ } /* * Module parameters */ /* Initial IRQ latency: faster than hw default */ static int log2_irq_thresh; /* 0 to 6 */ module_param(log2_irq_thresh, int, S_IRUGO); MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); /* Initial park setting: slower than hw default */ static unsigned park; module_param(park, uint, S_IRUGO); MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); /* For flakey hardware, ignore overcurrent indicators */ static int ignore_oc; module_param(ignore_oc, bool, S_IRUGO); MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); static void ehci_work(struct oxu_hcd *oxu); static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); /* * Local functions */ /* Low level read/write registers functions */ static inline u32 oxu_readl(void *base, u32 reg) { return readl(base + reg); } static inline void oxu_writel(void *base, u32 reg, u32 val) { writel(val, base + reg); } static inline void timer_action_done(struct oxu_hcd *oxu, enum ehci_timer_action action) { clear_bit(action, &oxu->actions); } static inline void timer_action(struct oxu_hcd *oxu, enum ehci_timer_action action) { if (!test_and_set_bit(action, &oxu->actions)) { unsigned long t; switch (action) { case TIMER_IAA_WATCHDOG: t = EHCI_IAA_JIFFIES; break; case TIMER_IO_WATCHDOG: t = EHCI_IO_JIFFIES; break; case TIMER_ASYNC_OFF: t = EHCI_ASYNC_JIFFIES; break; case TIMER_ASYNC_SHRINK: default: t = EHCI_SHRINK_JIFFIES; break; } t += jiffies; /* all timings except IAA watchdog can be overridden. * async queue SHRINK often precedes IAA. while it's ready * to go OFF neither can matter, and afterwards the IO * watchdog stops unless there's still periodic traffic. */ if (action != TIMER_IAA_WATCHDOG && t > oxu->watchdog.expires && timer_pending(&oxu->watchdog)) return; mod_timer(&oxu->watchdog, t); } } /* * handshake - spin reading hc until handshake completes or fails * @ptr: address of hc register to be read * @mask: bits to look at in result of read * @done: value of those bits when handshake succeeds * @usec: timeout in microseconds * * Returns negative errno, or zero on success * * Success happens when the "mask" bits have the specified value (hardware * handshake done). There are two failure modes: "usec" have passed (major * hardware flakeout), or the register reads as all-ones (hardware removed). * * That last failure should_only happen in cases like physical cardbus eject * before driver shutdown. But it also seems to be caused by bugs in cardbus * bridge shutdown: shutting down the bridge before the devices using it. */ static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, u32 mask, u32 done, int usec) { u32 result; do { result = readl(ptr); if (result == ~(u32)0) /* card removed */ return -ENODEV; result &= mask; if (result == done) return 0; udelay(1); usec--; } while (usec > 0); return -ETIMEDOUT; } /* Force HC to halt state from unknown (EHCI spec section 2.3) */ static int ehci_halt(struct oxu_hcd *oxu) { u32 temp = readl(&oxu->regs->status); /* disable any irqs left enabled by previous code */ writel(0, &oxu->regs->intr_enable); if ((temp & STS_HALT) != 0) return 0; temp = readl(&oxu->regs->command); temp &= ~CMD_RUN; writel(temp, &oxu->regs->command); return handshake(oxu, &oxu->regs->status, STS_HALT, STS_HALT, 16 * 125); } /* Put TDI/ARC silicon into EHCI mode */ static void tdi_reset(struct oxu_hcd *oxu) { u32 __iomem *reg_ptr; u32 tmp; reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); tmp = readl(reg_ptr); tmp |= 0x3; writel(tmp, reg_ptr); } /* Reset a non-running (STS_HALT == 1) controller */ static int ehci_reset(struct oxu_hcd *oxu) { int retval; u32 command = readl(&oxu->regs->command); command |= CMD_RESET; dbg_cmd(oxu, "reset", command); writel(command, &oxu->regs->command); oxu_to_hcd(oxu)->state = HC_STATE_HALT; oxu->next_statechange = jiffies; retval = handshake(oxu, &oxu->regs->command, CMD_RESET, 0, 250 * 1000); if (retval) return retval; tdi_reset(oxu); return retval; } /* Idle the controller (from running) */ static void ehci_quiesce(struct oxu_hcd *oxu) { u32 temp; #ifdef DEBUG if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) BUG(); #endif /* wait for any schedule enables/disables to take effect */ temp = readl(&oxu->regs->command) << 10; temp &= STS_ASS | STS_PSS; if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, temp, 16 * 125) != 0) { oxu_to_hcd(oxu)->state = HC_STATE_HALT; return; } /* then disable anything that's still active */ temp = readl(&oxu->regs->command); temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); writel(temp, &oxu->regs->command); /* hardware can take 16 microframes to turn off ... */ if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 0, 16 * 125) != 0) { oxu_to_hcd(oxu)->state = HC_STATE_HALT; return; } } static int check_reset_complete(struct oxu_hcd *oxu, int index, u32 __iomem *status_reg, int port_status) { if (!(port_status & PORT_CONNECT)) { oxu->reset_done[index] = 0; return port_status; } /* if reset finished and it's still not enabled -- handoff */ if (!(port_status & PORT_PE)) { oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", index+1); return port_status; } else oxu_dbg(oxu, "port %d high speed\n", index + 1); return port_status; } static void ehci_hub_descriptor(struct oxu_hcd *oxu, struct usb_hub_descriptor *desc) { int ports = HCS_N_PORTS(oxu->hcs_params); u16 temp; desc->bDescriptorType = 0x29; desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ desc->bHubContrCurrent = 0; desc->bNbrPorts = ports; temp = 1 + (ports / 8); desc->bDescLength = 7 + 2 * temp; /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ memset(&desc->bitmap[0], 0, temp); memset(&desc->bitmap[temp], 0xff, temp); temp = 0x0008; /* per-port overcurrent reporting */ if (HCS_PPC(oxu->hcs_params)) temp |= 0x0001; /* per-port power control */ else temp |= 0x0002; /* no power switching */ desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); } /* Allocate an OXU210HP on-chip memory data buffer * * An on-chip memory data buffer is required for each OXU210HP USB transfer. * Each transfer descriptor has one or more on-chip memory data buffers. * * Data buffers are allocated from a fix sized pool of data blocks. * To minimise fragmentation and give reasonable memory utlisation, * data buffers are allocated with sizes the power of 2 multiples of * the block size, starting on an address a multiple of the allocated size. * * FIXME: callers of this function require a buffer to be allocated for * len=0. This is a waste of on-chip memory and should be fix. Then this * function should be changed to not allocate a buffer for len=0. */ static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) { int n_blocks; /* minium blocks needed to hold len */ int a_blocks; /* blocks allocated */ int i, j; /* Don't allocte bigger than supported */ if (len > BUFFER_SIZE * BUFFER_NUM) { oxu_err(oxu, "buffer too big (%d)\n", len); return -ENOMEM; } spin_lock(&oxu->mem_lock); /* Number of blocks needed to hold len */ n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; /* Round the number of blocks up to the power of 2 */ for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) ; /* Find a suitable available data buffer */ for (i = 0; i < BUFFER_NUM; i += max(a_blocks, (int)oxu->db_used[i])) { /* Check all the required blocks are available */ for (j = 0; j < a_blocks; j++) if (oxu->db_used[i + j]) break; if (j != a_blocks) continue; /* Allocate blocks found! */ qtd->buffer = (void *) &oxu->mem->db_pool[i]; qtd->buffer_dma = virt_to_phys(qtd->buffer); qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; oxu->db_used[i] = a_blocks; spin_unlock(&oxu->mem_lock); return 0; } /* Failed */ spin_unlock(&oxu->mem_lock); return -ENOMEM; } static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) { int index; spin_lock(&oxu->mem_lock); index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) / BUFFER_SIZE; oxu->db_used[index] = 0; qtd->qtd_buffer_len = 0; qtd->buffer_dma = 0; qtd->buffer = NULL; spin_unlock(&oxu->mem_lock); return; } static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) { memset(qtd, 0, sizeof *qtd); qtd->qtd_dma = dma; qtd->hw_token = cpu_to_le32(QTD_STS_HALT); qtd->hw_next = EHCI_LIST_END; qtd->hw_alt_next = EHCI_LIST_END; INIT_LIST_HEAD(&qtd->qtd_list); } static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) { int index; if (qtd->buffer) oxu_buf_free(oxu, qtd); spin_lock(&oxu->mem_lock); index = qtd - &oxu->mem->qtd_pool[0]; oxu->qtd_used[index] = 0; spin_unlock(&oxu->mem_lock); return; } static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) { int i; struct ehci_qtd *qtd = NULL; spin_lock(&oxu->mem_lock); for (i = 0; i < QTD_NUM; i++) if (!oxu->qtd_used[i]) break; if (i < QTD_NUM) { qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; memset(qtd, 0, sizeof *qtd); qtd->hw_token = cpu_to_le32(QTD_STS_HALT); qtd->hw_next = EHCI_LIST_END; qtd->hw_alt_next = EHCI_LIST_END; INIT_LIST_HEAD(&qtd->qtd_list); qtd->qtd_dma = virt_to_phys(qtd); oxu->qtd_used[i] = 1; } spin_unlock(&oxu->mem_lock); return qtd; } static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) { int index; spin_lock(&oxu->mem_lock); index = qh - &oxu->mem->qh_pool[0]; oxu->qh_used[index] = 0; spin_unlock(&oxu->mem_lock); return; } static void qh_destroy(struct kref *kref) { struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); struct oxu_hcd *oxu = qh->oxu; /* clean qtds first, and know this is not linked */ if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { oxu_dbg(oxu, "unused qh not empty!\n"); BUG(); } if (qh->dummy) oxu_qtd_free(oxu, qh->dummy); oxu_qh_free(oxu, qh); } static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) { int i; struct ehci_qh *qh = NULL; spin_lock(&oxu->mem_lock); for (i = 0; i < QHEAD_NUM; i++) if (!oxu->qh_used[i]) break; if (i < QHEAD_NUM) { qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; memset(qh, 0, sizeof *qh); kref_init(&qh->kref); qh->oxu = oxu; qh->qh_dma = virt_to_phys(qh); INIT_LIST_HEAD(&qh->qtd_list); /* dummy td enables safe urb queuing */ qh->dummy = ehci_qtd_alloc(oxu); if (qh->dummy == NULL) { oxu_dbg(oxu, "no dummy td\n"); oxu->qh_used[i] = 0; return NULL; } oxu->qh_used[i] = 1; } spin_unlock(&oxu->mem_lock); return qh; } /* to share a qh (cpu threads, or hc) */ static inline struct ehci_qh *qh_get(struct ehci_qh *qh) { kref_get(&qh->kref); return qh; } static inline void qh_put(struct ehci_qh *qh) { kref_put(&qh->kref, qh_destroy); } static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) { int index; spin_lock(&oxu->mem_lock); index = murb - &oxu->murb_pool[0]; oxu->murb_used[index] = 0; spin_unlock(&oxu->mem_lock); return; } static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) { int i; struct oxu_murb *murb = NULL; spin_lock(&oxu->mem_lock); for (i = 0; i < MURB_NUM; i++) if (!oxu->murb_used[i]) break; if (i < MURB_NUM) { murb = &(oxu->murb_pool)[i]; oxu->murb_used[i] = 1; } spin_unlock(&oxu->mem_lock); return murb; } /* The queue heads and transfer descriptors are managed from pools tied * to each of the "per device" structures. * This is the initialisation and cleanup code. */ static void ehci_mem_cleanup(struct oxu_hcd *oxu) { kfree(oxu->murb_pool); oxu->murb_pool = NULL; if (oxu->async) qh_put(oxu->async); oxu->async = NULL; del_timer(&oxu->urb_timer); oxu->periodic = NULL; /* shadow periodic table */ kfree(oxu->pshadow); oxu->pshadow = NULL; } /* Remember to add cleanup code (above) if you add anything here. */ static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) { int i; for (i = 0; i < oxu->periodic_size; i++) oxu->mem->frame_list[i] = EHCI_LIST_END; for (i = 0; i < QHEAD_NUM; i++) oxu->qh_used[i] = 0; for (i = 0; i < QTD_NUM; i++) oxu->qtd_used[i] = 0; oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); if (!oxu->murb_pool) goto fail; for (i = 0; i < MURB_NUM; i++) oxu->murb_used[i] = 0; oxu->async = oxu_qh_alloc(oxu); if (!oxu->async) goto fail; oxu->periodic = (__le32 *) &oxu->mem->frame_list; oxu->periodic_dma = virt_to_phys(oxu->periodic); for (i = 0; i < oxu->periodic_size; i++) oxu->periodic[i] = EHCI_LIST_END; /* software shadow of hardware table */ oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); if (oxu->pshadow != NULL) return 0; fail: oxu_dbg(oxu, "couldn't init memory\n"); ehci_mem_cleanup(oxu); return -ENOMEM; } /* Fill a qtd, returning how much of the buffer we were able to queue up. */ static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, int token, int maxpacket) { int i, count; u64 addr = buf; /* one buffer entry per 4K ... first might be short or unaligned */ qtd->hw_buf[0] = cpu_to_le32((u32)addr); qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); count = 0x1000 - (buf & 0x0fff); /* rest of that page */ if (likely(len < count)) /* ... iff needed */ count = len; else { buf += 0x1000; buf &= ~0x0fff; /* per-qtd limit: from 16K to 20K (best alignment) */ for (i = 1; count < len && i < 5; i++) { addr = buf; qtd->hw_buf[i] = cpu_to_le32((u32)addr); qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); buf += 0x1000; if ((count + 0x1000) < len) count += 0x1000; else count = len; } /* short packets may only terminate transfers */ if (count != len) count -= (count % maxpacket); } qtd->hw_token = cpu_to_le32((count << 16) | token); qtd->length = count; return count; } static inline void qh_update(struct oxu_hcd *oxu, struct ehci_qh *qh, struct ehci_qtd *qtd) { /* writes to an active overlay are unsafe */ BUG_ON(qh->qh_state != QH_STATE_IDLE); qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); qh->hw_alt_next = EHCI_LIST_END; /* Except for control endpoints, we make hardware maintain data * toggle (like OHCI) ... here (re)initialize the toggle in the QH, * and set the pseudo-toggle in udev. Only usb_clear_halt() will * ever clear it. */ if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { unsigned is_out, epnum; is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); usb_settoggle(qh->dev, epnum, is_out, 1); } } /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ wmb(); qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); } /* If it weren't for a common silicon quirk (writing the dummy into the qh * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault * recovery (including urb dequeue) would need software changes to a QH... */ static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) { struct ehci_qtd *qtd; if (list_empty(&qh->qtd_list)) qtd = qh->dummy; else { qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); /* first qtd may already be partially processed */ if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) qtd = NULL; } if (qtd) qh_update(oxu, qh, qtd); } static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, size_t length, u32 token) { /* count IN/OUT bytes, not SETUP (even short packets) */ if (likely(QTD_PID(token) != 2)) urb->actual_length += length - QTD_LENGTH(token); /* don't modify error codes */ if (unlikely(urb->status != -EINPROGRESS)) return; /* force cleanup after short read; not always an error */ if (unlikely(IS_SHORT_READ(token))) urb->status = -EREMOTEIO; /* serious "can't proceed" faults reported by the hardware */ if (token & QTD_STS_HALT) { if (token & QTD_STS_BABBLE) { /* FIXME "must" disable babbling device's port too */ urb->status = -EOVERFLOW; } else if (token & QTD_STS_MMF) { /* fs/ls interrupt xfer missed the complete-split */ urb->status = -EPROTO; } else if (token & QTD_STS_DBE) { urb->status = (QTD_PID(token) == 1) /* IN ? */ ? -ENOSR /* hc couldn't read data */ : -ECOMM; /* hc couldn't write data */ } else if (token & QTD_STS_XACT) { /* timeout, bad crc, wrong PID, etc; retried */ if (QTD_CERR(token)) urb->status = -EPIPE; else { oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", urb->dev->devpath, usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out"); urb->status = -EPROTO; } /* CERR nonzero + no errors + halt --> stall */ } else if (QTD_CERR(token)) urb->status = -EPIPE; else /* unknown */ urb->status = -EPROTO; oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", token, urb->status); } } static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) __releases(oxu->lock) __acquires(oxu->lock) { if (likely(urb->hcpriv != NULL)) { struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; /* S-mask in a QH means it's an interrupt urb */ if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { /* ... update hc-wide periodic stats (for usbfs) */ oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; } qh_put(qh); } urb->hcpriv = NULL; switch (urb->status) { case -EINPROGRESS: /* success */ urb->status = 0; default: /* fault */ break; case -EREMOTEIO: /* fault or normal */ if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) urb->status = 0; break; case -ECONNRESET: /* canceled */ case -ENOENT: break; } #ifdef OXU_URB_TRACE oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", __func__, urb->dev->devpath, urb, usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", urb->status, urb->actual_length, urb->transfer_buffer_length); #endif /* complete() can reenter this HCD */ spin_unlock(&oxu->lock); usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); spin_lock(&oxu->lock); } static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); #define HALT_BIT cpu_to_le32(QTD_STS_HALT) /* Process and free completed qtds for a qh, returning URBs to drivers. * Chases up to qh->hw_current. Returns number of completions called, * indicating how much "real" work we did. */ static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) { struct ehci_qtd *last = NULL, *end = qh->dummy; struct list_head *entry, *tmp; int stopped; unsigned count = 0; int do_status = 0; u8 state; struct oxu_murb *murb = NULL; if (unlikely(list_empty(&qh->qtd_list))) return count; /* completions (or tasks on other cpus) must never clobber HALT * till we've gone through and cleaned everything up, even when * they add urbs to this qh's queue or mark them for unlinking. * * NOTE: unlinking expects to be done in queue order. */ state = qh->qh_state; qh->qh_state = QH_STATE_COMPLETING; stopped = (state == QH_STATE_IDLE); /* remove de-activated QTDs from front of queue. * after faults (including short reads), cleanup this urb * then let the queue advance. * if queue is stopped, handles unlinks. */ list_for_each_safe(entry, tmp, &qh->qtd_list) { struct ehci_qtd *qtd; struct urb *urb; u32 token = 0; qtd = list_entry(entry, struct ehci_qtd, qtd_list); urb = qtd->urb; /* Clean up any state from previous QTD ...*/ if (last) { if (likely(last->urb != urb)) { if (last->urb->complete == NULL) { murb = (struct oxu_murb *) last->urb; last->urb = murb->main; if (murb->last) { ehci_urb_done(oxu, last->urb); count++; } oxu_murb_free(oxu, murb); } else { ehci_urb_done(oxu, last->urb); count++; } } oxu_qtd_free(oxu, last); last = NULL; } /* ignore urbs submitted during completions we reported */ if (qtd == end) break; /* hardware copies qtd out of qh overlay */ rmb(); token = le32_to_cpu(qtd->hw_token); /* always clean up qtds the hc de-activated */ if ((token & QTD_STS_ACTIVE) == 0) { if ((token & QTD_STS_HALT) != 0) { stopped = 1; /* magic dummy for some short reads; qh won't advance. * that silicon quirk can kick in with this dummy too. */ } else if (IS_SHORT_READ(token) && !(qtd->hw_alt_next & EHCI_LIST_END)) { stopped = 1; goto halt; } /* stop scanning when we reach qtds the hc is using */ } else if (likely(!stopped && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { break; } else { stopped = 1; if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) urb->status = -ESHUTDOWN; /* ignore active urbs unless some previous qtd * for the urb faulted (including short read) or * its urb was canceled. we may patch qh or qtds. */ if (likely(urb->status == -EINPROGRESS)) continue; /* issue status after short control reads */ if (unlikely(do_status != 0) && QTD_PID(token) == 0 /* OUT */) { do_status = 0; continue; } /* token in overlay may be most current */ if (state == QH_STATE_IDLE && cpu_to_le32(qtd->qtd_dma) == qh->hw_current) token = le32_to_cpu(qh->hw_token); /* force halt for unlinked or blocked qh, so we'll * patch the qh later and so that completions can't * activate it while we "know" it's stopped. */ if ((HALT_BIT & qh->hw_token) == 0) { halt: qh->hw_token |= HALT_BIT; wmb(); } } /* Remove it from the queue */ qtd_copy_status(oxu, urb->complete ? urb : ((struct oxu_murb *) urb)->main, qtd->length, token); if ((usb_pipein(qtd->urb->pipe)) && (NULL != qtd->transfer_buffer)) memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); do_status = (urb->status == -EREMOTEIO) && usb_pipecontrol(urb->pipe); if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { last = list_entry(qtd->qtd_list.prev, struct ehci_qtd, qtd_list); last->hw_next = qtd->hw_next; } list_del(&qtd->qtd_list); last = qtd; } /* last urb's completion might still need calling */ if (likely(last != NULL)) { if (last->urb->complete == NULL) { murb = (struct oxu_murb *) last->urb; last->urb = murb->main; if (murb->last) { ehci_urb_done(oxu, last->urb); count++; } oxu_murb_free(oxu, murb); } else { ehci_urb_done(oxu, last->urb); count++; } oxu_qtd_free(oxu, last); } /* restore original state; caller must unlink or relink */ qh->qh_state = state; /* be sure the hardware's done with the qh before refreshing * it after fault cleanup, or recovering from silicon wrongly * overlaying the dummy qtd (which reduces DMA chatter). */ if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { switch (state) { case QH_STATE_IDLE: qh_refresh(oxu, qh); break; case QH_STATE_LINKED: /* should be rare for periodic transfers, * except maybe high bandwidth ... */ if ((cpu_to_le32(QH_SMASK) & qh->hw_info2) != 0) { intr_deschedule(oxu, qh); (void) qh_schedule(oxu, qh); } else unlink_async(oxu, qh); break; /* otherwise, unlink already started */ } } return count; } /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) /* ... and packet size, for any kind of endpoint descriptor */ #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) /* Reverse of qh_urb_transaction: free a list of TDs. * used for cleanup after errors, before HC sees an URB's TDs. */ static void qtd_list_free(struct oxu_hcd *oxu, struct urb *urb, struct list_head *qtd_list) { struct list_head *entry, *temp; list_for_each_safe(entry, temp, qtd_list) { struct ehci_qtd *qtd; qtd = list_entry(entry, struct ehci_qtd, qtd_list); list_del(&qtd->qtd_list); oxu_qtd_free(oxu, qtd); } } /* Create a list of filled qtds for this URB; won't link into qh. */ static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, struct urb *urb, struct list_head *head, gfp_t flags) { struct ehci_qtd *qtd, *qtd_prev; dma_addr_t buf; int len, maxpacket; int is_input; u32 token; void *transfer_buf = NULL; int ret; /* * URBs map to sequences of QTDs: one logical transaction */ qtd = ehci_qtd_alloc(oxu); if (unlikely(!qtd)) return NULL; list_add_tail(&qtd->qtd_list, head); qtd->urb = urb; token = QTD_STS_ACTIVE; token |= (EHCI_TUNE_CERR << 10); /* for split transactions, SplitXState initialized to zero */ len = urb->transfer_buffer_length; is_input = usb_pipein(urb->pipe); if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) urb->transfer_buffer = phys_to_virt(urb->transfer_dma); if (usb_pipecontrol(urb->pipe)) { /* SETUP pid */ ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); if (ret) goto cleanup; qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), token | (2 /* "setup" */ << 8), 8); memcpy(qtd->buffer, qtd->urb->setup_packet, sizeof(struct usb_ctrlrequest)); /* ... and always at least one more pid */ token ^= QTD_TOGGLE; qtd_prev = qtd; qtd = ehci_qtd_alloc(oxu); if (unlikely(!qtd)) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); /* for zero length DATA stages, STATUS is always IN */ if (len == 0) token |= (1 /* "in" */ << 8); } /* * Data transfer stage: buffer setup */ ret = oxu_buf_alloc(oxu, qtd, len); if (ret) goto cleanup; buf = qtd->buffer_dma; transfer_buf = urb->transfer_buffer; if (!is_input) memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); if (is_input) token |= (1 /* "in" */ << 8); /* else it's already initted to "out" pid (0 << 8) */ maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); /* * buffer gets wrapped in one or more qtds; * last one may be "short" (including zero len) * and may serve as a control status ack */ for (;;) { int this_qtd_len; this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); qtd->transfer_buffer = transfer_buf; len -= this_qtd_len; buf += this_qtd_len; transfer_buf += this_qtd_len; if (is_input) qtd->hw_alt_next = oxu->async->hw_alt_next; /* qh makes control packets use qtd toggle; maybe switch it */ if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) token ^= QTD_TOGGLE; if (likely(len <= 0)) break; qtd_prev = qtd; qtd = ehci_qtd_alloc(oxu); if (unlikely(!qtd)) goto cleanup; if (likely(len > 0)) { ret = oxu_buf_alloc(oxu, qtd, len); if (ret) goto cleanup; } qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); } /* unless the bulk/interrupt caller wants a chance to clean * up after short reads, hc should advance qh past this urb */ if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || usb_pipecontrol(urb->pipe))) qtd->hw_alt_next = EHCI_LIST_END; /* * control requests may need a terminating data "status" ack; * bulk ones may need a terminating short packet (zero length). */ if (likely(urb->transfer_buffer_length != 0)) { int one_more = 0; if (usb_pipecontrol(urb->pipe)) { one_more = 1; token ^= 0x0100; /* "in" <--> "out" */ token |= QTD_TOGGLE; /* force DATA1 */ } else if (usb_pipebulk(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) && !(urb->transfer_buffer_length % maxpacket)) { one_more = 1; } if (one_more) { qtd_prev = qtd; qtd = ehci_qtd_alloc(oxu); if (unlikely(!qtd)) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); /* never any data in such packets */ qtd_fill(qtd, 0, 0, token, 0); } } /* by default, enable interrupt on urb completion */ qtd->hw_token |= cpu_to_le32(QTD_IOC); return head; cleanup: qtd_list_free(oxu, urb, head); return NULL; } /* Each QH holds a qtd list; a QH is used for everything except iso. * * For interrupt urbs, the scheduler must set the microframe scheduling * mask(s) each time the QH gets scheduled. For highspeed, that's * just one microframe in the s-mask. For split interrupt transactions * there are additional complications: c-mask, maybe FSTNs. */ static struct ehci_qh *qh_make(struct oxu_hcd *oxu, struct urb *urb, gfp_t flags) { struct ehci_qh *qh = oxu_qh_alloc(oxu); u32 info1 = 0, info2 = 0; int is_input, type; int maxp = 0; if (!qh) return qh; /* * init endpoint/device data for this QH */ info1 |= usb_pipeendpoint(urb->pipe) << 8; info1 |= usb_pipedevice(urb->pipe) << 0; is_input = usb_pipein(urb->pipe); type = usb_pipetype(urb->pipe); maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); /* Compute interrupt scheduling parameters just once, and save. * - allowing for high bandwidth, how many nsec/uframe are used? * - split transactions need a second CSPLIT uframe; same question * - splits also need a schedule gap (for full/low speed I/O) * - qh has a polling interval * * For control/bulk requests, the HC or TT handles these. */ if (type == PIPE_INTERRUPT) { qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, is_input, 0, hb_mult(maxp) * max_packet(maxp))); qh->start = NO_FRAME; if (urb->dev->speed == USB_SPEED_HIGH) { qh->c_usecs = 0; qh->gap_uf = 0; qh->period = urb->interval >> 3; if (qh->period == 0 && urb->interval != 1) { /* NOTE interval 2 or 4 uframes could work. * But interval 1 scheduling is simpler, and * includes high bandwidth. */ dbg("intr period %d uframes, NYET!", urb->interval); goto done; } } else { struct usb_tt *tt = urb->dev->tt; int think_time; /* gap is f(FS/LS transfer times) */ qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, is_input, 0, maxp) / (125 * 1000); /* FIXME this just approximates SPLIT/CSPLIT times */ if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ qh->c_usecs = qh->usecs + HS_USECS(0); qh->usecs = HS_USECS(1); } else { /* SPLIT+DATA, gap, CSPLIT */ qh->usecs += HS_USECS(1); qh->c_usecs = HS_USECS(0); } think_time = tt ? tt->think_time : 0; qh->tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(urb->dev->speed, is_input, 0, max_packet(maxp))); qh->period = urb->interval; } } /* support for tt scheduling, and access to toggles */ qh->dev = urb->dev; /* using TT? */ switch (urb->dev->speed) { case USB_SPEED_LOW: info1 |= (1 << 12); /* EPS "low" */ /* FALL THROUGH */ case USB_SPEED_FULL: /* EPS 0 means "full" */ if (type != PIPE_INTERRUPT) info1 |= (EHCI_TUNE_RL_TT << 28); if (type == PIPE_CONTROL) { info1 |= (1 << 27); /* for TT */ info1 |= 1 << 14; /* toggle from qtd */ } info1 |= maxp << 16; info2 |= (EHCI_TUNE_MULT_TT << 30); info2 |= urb->dev->ttport << 23; /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ break; case USB_SPEED_HIGH: /* no TT involved */ info1 |= (2 << 12); /* EPS "high" */ if (type == PIPE_CONTROL) { info1 |= (EHCI_TUNE_RL_HS << 28); info1 |= 64 << 16; /* usb2 fixed maxpacket */ info1 |= 1 << 14; /* toggle from qtd */ info2 |= (EHCI_TUNE_MULT_HS << 30); } else if (type == PIPE_BULK) { info1 |= (EHCI_TUNE_RL_HS << 28); info1 |= 512 << 16; /* usb2 fixed maxpacket */ info2 |= (EHCI_TUNE_MULT_HS << 30); } else { /* PIPE_INTERRUPT */ info1 |= max_packet(maxp) << 16; info2 |= hb_mult(maxp) << 30; } break; default: dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed); done: qh_put(qh); return NULL; } /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ /* init as live, toggle clear, advance to dummy */ qh->qh_state = QH_STATE_IDLE; qh->hw_info1 = cpu_to_le32(info1); qh->hw_info2 = cpu_to_le32(info2); usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); qh_refresh(oxu, qh); return qh; } /* Move qh (and its qtds) onto async queue; maybe enable queue. */ static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) { __le32 dma = QH_NEXT(qh->qh_dma); struct ehci_qh *head; /* (re)start the async schedule? */ head = oxu->async; timer_action_done(oxu, TIMER_ASYNC_OFF); if (!head->qh_next.qh) { u32 cmd = readl(&oxu->regs->command); if (!(cmd & CMD_ASE)) { /* in case a clear of CMD_ASE didn't take yet */ (void)handshake(oxu, &oxu->regs->status, STS_ASS, 0, 150); cmd |= CMD_ASE | CMD_RUN; writel(cmd, &oxu->regs->command); oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; /* posted write need not be known to HC yet ... */ } } /* clear halt and/or toggle; and maybe recover from silicon quirk */ if (qh->qh_state == QH_STATE_IDLE) qh_refresh(oxu, qh); /* splice right after start */ qh->qh_next = head->qh_next; qh->hw_next = head->hw_next; wmb(); head->qh_next.qh = qh; head->hw_next = dma; qh->qh_state = QH_STATE_LINKED; /* qtd completions reported later by interrupt */ } #define QH_ADDR_MASK cpu_to_le32(0x7f) /* * For control/bulk/interrupt, return QH with these TDs appended. * Allocates and initializes the QH if necessary. * Returns null if it can't allocate a QH it needs to. * If the QH has TDs (urbs) already, that's great. */ static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, struct urb *urb, struct list_head *qtd_list, int epnum, void **ptr) { struct ehci_qh *qh = NULL; qh = (struct ehci_qh *) *ptr; if (unlikely(qh == NULL)) { /* can't sleep here, we have oxu->lock... */ qh = qh_make(oxu, urb, GFP_ATOMIC); *ptr = qh; } if (likely(qh != NULL)) { struct ehci_qtd *qtd; if (unlikely(list_empty(qtd_list))) qtd = NULL; else qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); /* control qh may need patching ... */ if (unlikely(epnum == 0)) { /* usb_reset_device() briefly reverts to address 0 */ if (usb_pipedevice(urb->pipe) == 0) qh->hw_info1 &= ~QH_ADDR_MASK; } /* just one way to queue requests: swap with the dummy qtd. * only hc or qh_refresh() ever modify the overlay. */ if (likely(qtd != NULL)) { struct ehci_qtd *dummy; dma_addr_t dma; __le32 token; /* to avoid racing the HC, use the dummy td instead of * the first td of our list (becomes new dummy). both * tds stay deactivated until we're done, when the * HC is allowed to fetch the old dummy (4.10.2). */ token = qtd->hw_token; qtd->hw_token = HALT_BIT; wmb(); dummy = qh->dummy; dma = dummy->qtd_dma; *dummy = *qtd; dummy->qtd_dma = dma; list_del(&qtd->qtd_list); list_add(&dummy->qtd_list, qtd_list); list_splice(qtd_list, qh->qtd_list.prev); ehci_qtd_init(qtd, qtd->qtd_dma); qh->dummy = qtd; /* hc must see the new dummy at list end */ dma = qtd->qtd_dma; qtd = list_entry(qh->qtd_list.prev, struct ehci_qtd, qtd_list); qtd->hw_next = QTD_NEXT(dma); /* let the hc process these next qtds */ dummy->hw_token = (token & ~(0x80)); wmb(); dummy->hw_token = token; urb->hcpriv = qh_get(qh); } } return qh; } static int submit_async(struct oxu_hcd *oxu, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags) { struct ehci_qtd *qtd; int epnum; unsigned long flags; struct ehci_qh *qh = NULL; int rc = 0; qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); epnum = urb->ep->desc.bEndpointAddress; #ifdef OXU_URB_TRACE oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", __func__, urb->dev->devpath, urb, epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", urb->transfer_buffer_length, qtd, urb->ep->hcpriv); #endif spin_lock_irqsave(&oxu->lock, flags); if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, &oxu_to_hcd(oxu)->flags))) { rc = -ESHUTDOWN; goto done; } qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); if (unlikely(qh == NULL)) { rc = -ENOMEM; goto done; } /* Control/bulk operations through TTs don't need scheduling, * the HC and TT handle it when the TT has a buffer ready. */ if (likely(qh->qh_state == QH_STATE_IDLE)) qh_link_async(oxu, qh_get(qh)); done: spin_unlock_irqrestore(&oxu->lock, flags); if (unlikely(qh == NULL)) qtd_list_free(oxu, urb, qtd_list); return rc; } /* The async qh for the qtds being reclaimed are now unlinked from the HC */ static void end_unlink_async(struct oxu_hcd *oxu) { struct ehci_qh *qh = oxu->reclaim; struct ehci_qh *next; timer_action_done(oxu, TIMER_IAA_WATCHDOG); qh->qh_state = QH_STATE_IDLE; qh->qh_next.qh = NULL; qh_put(qh); /* refcount from reclaim */ /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ next = qh->reclaim; oxu->reclaim = next; oxu->reclaim_ready = 0; qh->reclaim = NULL; qh_completions(oxu, qh); if (!list_empty(&qh->qtd_list) && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) qh_link_async(oxu, qh); else { qh_put(qh); /* refcount from async list */ /* it's not free to turn the async schedule on/off; leave it * active but idle for a while once it empties. */ if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->async->qh_next.qh == NULL) timer_action(oxu, TIMER_ASYNC_OFF); } if (next) { oxu->reclaim = NULL; start_unlink_async(oxu, next); } } /* makes sure the async qh will become idle */ /* caller must own oxu->lock */ static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) { int cmd = readl(&oxu->regs->command); struct ehci_qh *prev; #ifdef DEBUG assert_spin_locked(&oxu->lock); if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED && qh->qh_state != QH_STATE_UNLINK_WAIT)) BUG(); #endif /* stop async schedule right now? */ if (unlikely(qh == oxu->async)) { /* can't get here without STS_ASS set */ if (oxu_to_hcd(oxu)->state != HC_STATE_HALT && !oxu->reclaim) { /* ... and CMD_IAAD clear */ writel(cmd & ~CMD_ASE, &oxu->regs->command); wmb(); /* handshake later, if we need to */ timer_action_done(oxu, TIMER_ASYNC_OFF); } return; } qh->qh_state = QH_STATE_UNLINK; oxu->reclaim = qh = qh_get(qh); prev = oxu->async; while (prev->qh_next.qh != qh) prev = prev->qh_next.qh; prev->hw_next = qh->hw_next; prev->qh_next = qh->qh_next; wmb(); if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { /* if (unlikely(qh->reclaim != 0)) * this will recurse, probably not much */ end_unlink_async(oxu); return; } oxu->reclaim_ready = 0; cmd |= CMD_IAAD; writel(cmd, &oxu->regs->command); (void) readl(&oxu->regs->command); timer_action(oxu, TIMER_IAA_WATCHDOG); } static void scan_async(struct oxu_hcd *oxu) { struct ehci_qh *qh; enum ehci_timer_action action = TIMER_IO_WATCHDOG; if (!++(oxu->stamp)) oxu->stamp++; timer_action_done(oxu, TIMER_ASYNC_SHRINK); rescan: qh = oxu->async->qh_next.qh; if (likely(qh != NULL)) { do { /* clean any finished work for this qh */ if (!list_empty(&qh->qtd_list) && qh->stamp != oxu->stamp) { int temp; /* unlinks could happen here; completion * reporting drops the lock. rescan using * the latest schedule, but don't rescan * qhs we already finished (no looping). */ qh = qh_get(qh); qh->stamp = oxu->stamp; temp = qh_completions(oxu, qh); qh_put(qh); if (temp != 0) goto rescan; } /* unlink idle entries, reducing HC PCI usage as well * as HCD schedule-scanning costs. delay for any qh * we just scanned, there's a not-unusual case that it * doesn't stay idle for long. * (plus, avoids some kind of re-activation race.) */ if (list_empty(&qh->qtd_list)) { if (qh->stamp == oxu->stamp) action = TIMER_ASYNC_SHRINK; else if (!oxu->reclaim && qh->qh_state == QH_STATE_LINKED) start_unlink_async(oxu, qh); } qh = qh->qh_next.qh; } while (qh); } if (action == TIMER_ASYNC_SHRINK) timer_action(oxu, TIMER_ASYNC_SHRINK); } /* * periodic_next_shadow - return "next" pointer on shadow list * @periodic: host pointer to qh/itd/sitd * @tag: hardware tag for type of this record */ static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, __le32 tag) { switch (tag) { default: case Q_TYPE_QH: return &periodic->qh->qh_next; } } /* caller must hold oxu->lock */ static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) { union ehci_shadow *prev_p = &oxu->pshadow[frame]; __le32 *hw_p = &oxu->periodic[frame]; union ehci_shadow here = *prev_p; /* find predecessor of "ptr"; hw and shadow lists are in sync */ while (here.ptr && here.ptr != ptr) { prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); hw_p = here.hw_next; here = *prev_p; } /* an interrupt entry (at list end) could have been shared */ if (!here.ptr) return; /* update shadow and hardware lists ... the old "next" pointers * from ptr may still be in use, the caller updates them. */ *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); *hw_p = *here.hw_next; } /* how many of the uframe's 125 usecs are allocated? */ static unsigned short periodic_usecs(struct oxu_hcd *oxu, unsigned frame, unsigned uframe) { __le32 *hw_p = &oxu->periodic[frame]; union ehci_shadow *q = &oxu->pshadow[frame]; unsigned usecs = 0; while (q->ptr) { switch (Q_NEXT_TYPE(*hw_p)) { case Q_TYPE_QH: default: /* is it in the S-mask? */ if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) usecs += q->qh->usecs; /* ... or C-mask? */ if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) usecs += q->qh->c_usecs; hw_p = &q->qh->hw_next; q = &q->qh->qh_next; break; } } #ifdef DEBUG if (usecs > 100) oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", frame * 8 + uframe, usecs); #endif return usecs; } static int enable_periodic(struct oxu_hcd *oxu) { u32 cmd; int status; /* did clearing PSE did take effect yet? * takes effect only at frame boundaries... */ status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); if (status != 0) { oxu_to_hcd(oxu)->state = HC_STATE_HALT; return status; } cmd = readl(&oxu->regs->command) | CMD_PSE; writel(cmd, &oxu->regs->command); /* posted write ... PSS happens later */ oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; /* make sure ehci_work scans these */ oxu->next_uframe = readl(&oxu->regs->frame_index) % (oxu->periodic_size << 3); return 0; } static int disable_periodic(struct oxu_hcd *oxu) { u32 cmd; int status; /* did setting PSE not take effect yet? * takes effect only at frame boundaries... */ status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); if (status != 0) { oxu_to_hcd(oxu)->state = HC_STATE_HALT; return status; } cmd = readl(&oxu->regs->command) & ~CMD_PSE; writel(cmd, &oxu->regs->command); /* posted write ... */ oxu->next_uframe = -1; return 0; } /* periodic schedule slots have iso tds (normal or split) first, then a * sparse tree for active interrupt transfers. * * this just links in a qh; caller guarantees uframe masks are set right. * no FSTN support (yet; oxu 0.96+) */ static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) { unsigned i; unsigned period = qh->period; dev_dbg(&qh->dev->dev, "link qh%d-%04x/%p start %d [%d/%d us]\n", period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* high bandwidth, or otherwise every microframe */ if (period == 0) period = 1; for (i = qh->start; i < oxu->periodic_size; i += period) { union ehci_shadow *prev = &oxu->pshadow[i]; __le32 *hw_p = &oxu->periodic[i]; union ehci_shadow here = *prev; __le32 type = 0; /* skip the iso nodes at list head */ while (here.ptr) { type = Q_NEXT_TYPE(*hw_p); if (type == Q_TYPE_QH) break; prev = periodic_next_shadow(prev, type); hw_p = &here.qh->hw_next; here = *prev; } /* sorting each branch by period (slow-->fast) * enables sharing interior tree nodes */ while (here.ptr && qh != here.qh) { if (qh->period > here.qh->period) break; prev = &here.qh->qh_next; hw_p = &here.qh->hw_next; here = *prev; } /* link in this qh, unless some earlier pass did that */ if (qh != here.qh) { qh->qh_next = here; if (here.qh) qh->hw_next = *hw_p; wmb(); prev->qh = qh; *hw_p = QH_NEXT(qh->qh_dma); } } qh->qh_state = QH_STATE_LINKED; qh_get(qh); /* update per-qh bandwidth for usbfs */ oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); /* maybe enable periodic schedule processing */ if (!oxu->periodic_sched++) return enable_periodic(oxu); return 0; } static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) { unsigned i; unsigned period; /* FIXME: * IF this isn't high speed * and this qh is active in the current uframe * (and overlay token SplitXstate is false?) * THEN * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); */ /* high bandwidth, or otherwise part of every microframe */ period = qh->period; if (period == 0) period = 1; for (i = qh->start; i < oxu->periodic_size; i += period) periodic_unlink(oxu, i, qh); /* update per-qh bandwidth for usbfs */ oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); dev_dbg(&qh->dev->dev, "unlink qh%d-%04x/%p start %d [%d/%d us]\n", qh->period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* qh->qh_next still "live" to HC */ qh->qh_state = QH_STATE_UNLINK; qh->qh_next.ptr = NULL; qh_put(qh); /* maybe turn off periodic schedule */ oxu->periodic_sched--; if (!oxu->periodic_sched) (void) disable_periodic(oxu); } static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) { unsigned wait; qh_unlink_periodic(oxu, qh); /* simple/paranoid: always delay, expecting the HC needs to read * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and * expect khubd to clean up after any CSPLITs we won't issue. * active high speed queues may need bigger delays... */ if (list_empty(&qh->qtd_list) || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) wait = 2; else wait = 55; /* worst case: 3 * 1024 */ udelay(wait); qh->qh_state = QH_STATE_IDLE; qh->hw_next = EHCI_LIST_END; wmb(); } static int check_period(struct oxu_hcd *oxu, unsigned frame, unsigned uframe, unsigned period, unsigned usecs) { int claimed; /* complete split running into next frame? * given FSTN support, we could sometimes check... */ if (uframe >= 8) return 0; /* * 80% periodic == 100 usec/uframe available * convert "usecs we need" to "max already claimed" */ usecs = 100 - usecs; /* we "know" 2 and 4 uframe intervals were rejected; so * for period 0, check _every_ microframe in the schedule. */ if (unlikely(period == 0)) { do { for (uframe = 0; uframe < 7; uframe++) { claimed = periodic_usecs(oxu, frame, uframe); if (claimed > usecs) return 0; } } while ((frame += 1) < oxu->periodic_size); /* just check the specified uframe, at that period */ } else { do { claimed = periodic_usecs(oxu, frame, uframe); if (claimed > usecs) return 0; } while ((frame += period) < oxu->periodic_size); } return 1; } static int check_intr_schedule(struct oxu_hcd *oxu, unsigned frame, unsigned uframe, const struct ehci_qh *qh, __le32 *c_maskp) { int retval = -ENOSPC; if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ goto done; if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) goto done; if (!qh->c_usecs) { retval = 0; *c_maskp = 0; goto done; } done: return retval; } /* "first fit" scheduling policy used the first time through, * or when the previous schedule slot can't be re-used. */ static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) { int status; unsigned uframe; __le32 c_mask; unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ qh_refresh(oxu, qh); qh->hw_next = EHCI_LIST_END; frame = qh->start; /* reuse the previous schedule slots, if we can */ if (frame < qh->period) { uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); status = check_intr_schedule(oxu, frame, --uframe, qh, &c_mask); } else { uframe = 0; c_mask = 0; status = -ENOSPC; } /* else scan the schedule to find a group of slots such that all * uframes have enough periodic bandwidth available. */ if (status) { /* "normal" case, uframing flexible except with splits */ if (qh->period) { frame = qh->period - 1; do { for (uframe = 0; uframe < 8; uframe++) { status = check_intr_schedule(oxu, frame, uframe, qh, &c_mask); if (status == 0) break; } } while (status && frame--); /* qh->period == 0 means every uframe */ } else { frame = 0; status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); } if (status) goto done; qh->start = frame; /* reset S-frame and (maybe) C-frame masks */ qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); qh->hw_info2 |= qh->period ? cpu_to_le32(1 << uframe) : cpu_to_le32(QH_SMASK); qh->hw_info2 |= c_mask; } else oxu_dbg(oxu, "reused qh %p schedule\n", qh); /* stuff into the periodic schedule */ status = qh_link_periodic(oxu, qh); done: return status; } static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags) { unsigned epnum; unsigned long flags; struct ehci_qh *qh; int status = 0; struct list_head empty; /* get endpoint and transfer/schedule data */ epnum = urb->ep->desc.bEndpointAddress; spin_lock_irqsave(&oxu->lock, flags); if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, &oxu_to_hcd(oxu)->flags))) { status = -ESHUTDOWN; goto done; } /* get qh and force any scheduling errors */ INIT_LIST_HEAD(&empty); qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); if (qh == NULL) { status = -ENOMEM; goto done; } if (qh->qh_state == QH_STATE_IDLE) { status = qh_schedule(oxu, qh); if (status != 0) goto done; } /* then queue the urb's tds to the qh */ qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); BUG_ON(qh == NULL); /* ... update usbfs periodic stats */ oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; done: spin_unlock_irqrestore(&oxu->lock, flags); if (status) qtd_list_free(oxu, urb, qtd_list); return status; } static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, gfp_t mem_flags) { oxu_dbg(oxu, "iso support is missing!\n"); return -ENOSYS; } static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, gfp_t mem_flags) { oxu_dbg(oxu, "split iso support is missing!\n"); return -ENOSYS; } static void scan_periodic(struct oxu_hcd *oxu) { unsigned frame, clock, now_uframe, mod; unsigned modified; mod = oxu->periodic_size << 3; /* * When running, scan from last scan point up to "now" * else clean up by scanning everything that's left. * Touches as few pages as possible: cache-friendly. */ now_uframe = oxu->next_uframe; if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) clock = readl(&oxu->regs->frame_index); else clock = now_uframe + mod - 1; clock %= mod; for (;;) { union ehci_shadow q, *q_p; __le32 type, *hw_p; unsigned uframes; /* don't scan past the live uframe */ frame = now_uframe >> 3; if (frame == (clock >> 3)) uframes = now_uframe & 0x07; else { /* safe to scan the whole frame at once */ now_uframe |= 0x07; uframes = 8; } restart: /* scan each element in frame's queue for completions */ q_p = &oxu->pshadow[frame]; hw_p = &oxu->periodic[frame]; q.ptr = q_p->ptr; type = Q_NEXT_TYPE(*hw_p); modified = 0; while (q.ptr != NULL) { union ehci_shadow temp; int live; live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state); switch (type) { case Q_TYPE_QH: /* handle any completions */ temp.qh = qh_get(q.qh); type = Q_NEXT_TYPE(q.qh->hw_next); q = q.qh->qh_next; modified = qh_completions(oxu, temp.qh); if (unlikely(list_empty(&temp.qh->qtd_list))) intr_deschedule(oxu, temp.qh); qh_put(temp.qh); break; default: dbg("corrupt type %d frame %d shadow %p", type, frame, q.ptr); q.ptr = NULL; } /* assume completion callbacks modify the queue */ if (unlikely(modified)) goto restart; } /* Stop when we catch up to the HC */ /* FIXME: this assumes we won't get lapped when * latencies climb; that should be rare, but... * detect it, and just go all the way around. * FLR might help detect this case, so long as latencies * don't exceed periodic_size msec (default 1.024 sec). */ /* FIXME: likewise assumes HC doesn't halt mid-scan */ if (now_uframe == clock) { unsigned now; if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) break; oxu->next_uframe = now_uframe; now = readl(&oxu->regs->frame_index) % mod; if (now_uframe == now) break; /* rescan the rest of this frame, then ... */ clock = now; } else { now_uframe++; now_uframe %= mod; } } } /* On some systems, leaving remote wakeup enabled prevents system shutdown. * The firmware seems to think that powering off is a wakeup event! * This routine turns off remote wakeup and everything else, on all ports. */ static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) { int port = HCS_N_PORTS(oxu->hcs_params); while (port--) writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); } static void ehci_port_power(struct oxu_hcd *oxu, int is_on) { unsigned port; if (!HCS_PPC(oxu->hcs_params)) return; oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) (void) oxu_hub_control(oxu_to_hcd(oxu), is_on ? SetPortFeature : ClearPortFeature, USB_PORT_FEAT_POWER, port--, NULL, 0); msleep(20); } /* Called from some interrupts, timers, and so on. * It calls driver completion functions, after dropping oxu->lock. */ static void ehci_work(struct oxu_hcd *oxu) { timer_action_done(oxu, TIMER_IO_WATCHDOG); if (oxu->reclaim_ready) end_unlink_async(oxu); /* another CPU may drop oxu->lock during a schedule scan while * it reports urb completions. this flag guards against bogus * attempts at re-entrant schedule scanning. */ if (oxu->scanning) return; oxu->scanning = 1; scan_async(oxu); if (oxu->next_uframe != -1) scan_periodic(oxu); oxu->scanning = 0; /* the IO watchdog guards against hardware or driver bugs that * misplace IRQs, and should let us run completely without IRQs. * such lossage has been observed on both VT6202 and VT8235. */ if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && (oxu->async->qh_next.ptr != NULL || oxu->periodic_sched != 0)) timer_action(oxu, TIMER_IO_WATCHDOG); } static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) { /* if we need to use IAA and it's busy, defer */ if (qh->qh_state == QH_STATE_LINKED && oxu->reclaim && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { struct ehci_qh *last; for (last = oxu->reclaim; last->reclaim; last = last->reclaim) continue; qh->qh_state = QH_STATE_UNLINK_WAIT; last->reclaim = qh; /* bypass IAA if the hc can't care */ } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) end_unlink_async(oxu); /* something else might have unlinked the qh by now */ if (qh->qh_state == QH_STATE_LINKED) start_unlink_async(oxu, qh); } /* * USB host controller methods */ static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); u32 status, pcd_status = 0; int bh; spin_lock(&oxu->lock); status = readl(&oxu->regs->status); /* e.g. cardbus physical eject */ if (status == ~(u32) 0) { oxu_dbg(oxu, "device removed\n"); goto dead; } status &= INTR_MASK; if (!status) { /* irq sharing? */ spin_unlock(&oxu->lock); return IRQ_NONE; } /* clear (just) interrupts */ writel(status, &oxu->regs->status); readl(&oxu->regs->command); /* unblock posted write */ bh = 0; #ifdef OXU_VERBOSE_DEBUG /* unrequested/ignored: Frame List Rollover */ dbg_status(oxu, "irq", status); #endif /* INT, ERR, and IAA interrupt rates can be throttled */ /* normal [4.15.1.2] or error [4.15.1.1] completion */ if (likely((status & (STS_INT|STS_ERR)) != 0)) bh = 1; /* complete the unlinking of some qh [4.15.2.3] */ if (status & STS_IAA) { oxu->reclaim_ready = 1; bh = 1; } /* remote wakeup [4.3.1] */ if (status & STS_PCD) { unsigned i = HCS_N_PORTS(oxu->hcs_params); pcd_status = status; /* resume root hub? */ if (!(readl(&oxu->regs->command) & CMD_RUN)) usb_hcd_resume_root_hub(hcd); while (i--) { int pstatus = readl(&oxu->regs->port_status[i]); if (pstatus & PORT_OWNER) continue; if (!(pstatus & PORT_RESUME) || oxu->reset_done[i] != 0) continue; /* start 20 msec resume signaling from this port, * and make khubd collect PORT_STAT_C_SUSPEND to * stop that signaling. */ oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); mod_timer(&hcd->rh_timer, oxu->reset_done[i]); } } /* PCI errors [4.15.2.4] */ if (unlikely((status & STS_FATAL) != 0)) { /* bogus "fatal" IRQs appear on some chips... why? */ status = readl(&oxu->regs->status); dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); dbg_status(oxu, "fatal", status); if (status & STS_HALT) { oxu_err(oxu, "fatal error\n"); dead: ehci_reset(oxu); writel(0, &oxu->regs->configured_flag); /* generic layer kills/unlinks all urbs, then * uses oxu_stop to clean up the rest */ bh = 1; } } if (bh) ehci_work(oxu); spin_unlock(&oxu->lock); if (pcd_status & STS_PCD) usb_hcd_poll_rh_status(hcd); return IRQ_HANDLED; } static irqreturn_t oxu_irq(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int ret = IRQ_HANDLED; u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); /* Disable all interrupt */ oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); if ((oxu->is_otg && (status & OXU_USBOTGI)) || (!oxu->is_otg && (status & OXU_USBSPHI))) oxu210_hcd_irq(hcd); else ret = IRQ_NONE; /* Enable all interrupt back */ oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); return ret; } static void oxu_watchdog(unsigned long param) { struct oxu_hcd *oxu = (struct oxu_hcd *) param; unsigned long flags; spin_lock_irqsave(&oxu->lock, flags); /* lost IAA irqs wedge things badly; seen with a vt8235 */ if (oxu->reclaim) { u32 status = readl(&oxu->regs->status); if (status & STS_IAA) { oxu_vdbg(oxu, "lost IAA\n"); writel(STS_IAA, &oxu->regs->status); oxu->reclaim_ready = 1; } } /* stop async processing after it's idled a bit */ if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) start_unlink_async(oxu, oxu->async); /* oxu could run by timer, without IRQs ... */ ehci_work(oxu); spin_unlock_irqrestore(&oxu->lock, flags); } /* One-time init, only for memory state. */ static int oxu_hcd_init(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); u32 temp; int retval; u32 hcc_params; spin_lock_init(&oxu->lock); init_timer(&oxu->watchdog); oxu->watchdog.function = oxu_watchdog; oxu->watchdog.data = (unsigned long) oxu; /* * hw default: 1K periodic list heads, one per frame. * periodic_size can shrink by USBCMD update if hcc_params allows. */ oxu->periodic_size = DEFAULT_I_TDPS; retval = ehci_mem_init(oxu, GFP_KERNEL); if (retval < 0) return retval; /* controllers may cache some of the periodic schedule ... */ hcc_params = readl(&oxu->caps->hcc_params); if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ oxu->i_thresh = 8; else /* N microframes cached */ oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); oxu->reclaim = NULL; oxu->reclaim_ready = 0; oxu->next_uframe = -1; /* * dedicate a qh for the async ring head, since we couldn't unlink * a 'real' qh without stopping the async schedule [4.8]. use it * as the 'reclamation list head' too. * its dummy is used in hw_alt_next of many tds, to prevent the qh * from automatically advancing to the next td after short reads. */ oxu->async->qh_next.qh = NULL; oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); oxu->async->hw_qtd_next = EHCI_LIST_END; oxu->async->qh_state = QH_STATE_LINKED; oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); /* clear interrupt enables, set irq latency */ if (log2_irq_thresh < 0 || log2_irq_thresh > 6) log2_irq_thresh = 0; temp = 1 << (16 + log2_irq_thresh); if (HCC_CANPARK(hcc_params)) { /* HW default park == 3, on hardware that supports it (like * NVidia and ALI silicon), maximizes throughput on the async * schedule by avoiding QH fetches between transfers. * * With fast usb storage devices and NForce2, "park" seems to * make problems: throughput reduction (!), data errors... */ if (park) { park = min(park, (unsigned) 3); temp |= CMD_PARK; temp |= park << 8; } oxu_dbg(oxu, "park %d\n", park); } if (HCC_PGM_FRAMELISTLEN(hcc_params)) { /* periodic schedule size can be smaller than default */ temp &= ~(3 << 2); temp |= (EHCI_TUNE_FLS << 2); } oxu->command = temp; return 0; } /* Called during probe() after chip reset completes. */ static int oxu_reset(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int ret; spin_lock_init(&oxu->mem_lock); INIT_LIST_HEAD(&oxu->urb_list); oxu->urb_len = 0; /* FIMXE */ hcd->self.controller->dma_mask = NULL; if (oxu->is_otg) { oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ HC_LENGTH(readl(&oxu->caps->hc_capbase)); oxu->mem = hcd->regs + OXU_SPH_MEM; } else { oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ HC_LENGTH(readl(&oxu->caps->hc_capbase)); oxu->mem = hcd->regs + OXU_OTG_MEM; } oxu->hcs_params = readl(&oxu->caps->hcs_params); oxu->sbrn = 0x20; ret = oxu_hcd_init(hcd); if (ret) return ret; return 0; } static int oxu_run(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int retval; u32 temp, hcc_params; hcd->uses_new_polling = 1; hcd->poll_rh = 0; /* EHCI spec section 4.1 */ retval = ehci_reset(oxu); if (retval != 0) { ehci_mem_cleanup(oxu); return retval; } writel(oxu->periodic_dma, &oxu->regs->frame_list); writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); /* hcc_params controls whether oxu->regs->segment must (!!!) * be used; it constrains QH/ITD/SITD and QTD locations. * pci_pool consistent memory always uses segment zero. * streaming mappings for I/O buffers, like pci_map_single(), * can return segments above 4GB, if the device allows. * * NOTE: the dma mask is visible through dma_supported(), so * drivers can pass this info along ... like NETIF_F_HIGHDMA, * Scsi_Host.highmem_io, and so forth. It's readonly to all * host side drivers though. */ hcc_params = readl(&oxu->caps->hcc_params); if (HCC_64BIT_ADDR(hcc_params)) writel(0, &oxu->regs->segment); oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | CMD_ASE | CMD_RESET); oxu->command |= CMD_RUN; writel(oxu->command, &oxu->regs->command); dbg_cmd(oxu, "init", oxu->command); /* * Start, enabling full USB 2.0 functionality ... usb 1.1 devices * are explicitly handed to companion controller(s), so no TT is * involved with the root hub. (Except where one is integrated, * and there's no companion controller unless maybe for USB OTG.) */ hcd->state = HC_STATE_RUNNING; writel(FLAG_CF, &oxu->regs->configured_flag); readl(&oxu->regs->command); /* unblock posted writes */ temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), temp >> 8, temp & 0xff, DRIVER_VERSION, ignore_oc ? ", overcurrent ignored" : ""); writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ return 0; } static void oxu_stop(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); /* Turn off port power on all root hub ports. */ ehci_port_power(oxu, 0); /* no more interrupts ... */ del_timer_sync(&oxu->watchdog); spin_lock_irq(&oxu->lock); if (HC_IS_RUNNING(hcd->state)) ehci_quiesce(oxu); ehci_reset(oxu); writel(0, &oxu->regs->intr_enable); spin_unlock_irq(&oxu->lock); /* let companion controllers work when we aren't */ writel(0, &oxu->regs->configured_flag); /* root hub is shut down separately (first, when possible) */ spin_lock_irq(&oxu->lock); if (oxu->async) ehci_work(oxu); spin_unlock_irq(&oxu->lock); ehci_mem_cleanup(oxu); dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); } /* Kick in for silicon on any bus (not just pci, etc). * This forcibly disables dma and IRQs, helping kexec and other cases * where the next system software may expect clean state. */ static void oxu_shutdown(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); (void) ehci_halt(oxu); ehci_turn_off_all_ports(oxu); /* make BIOS/etc use companion controller during reboot */ writel(0, &oxu->regs->configured_flag); /* unblock posted writes */ readl(&oxu->regs->configured_flag); } /* Non-error returns are a promise to giveback() the urb later * we drop ownership so next owner (or urb unlink) can get it * * urb + dev is in hcd.self.controller.urb_list * we're queueing TDs onto software and hardware lists * * hcd-specific init for hcpriv hasn't been done yet * * NOTE: control, bulk, and interrupt share the same code to append TDs * to a (possibly active) QH, and the same QH scanning code. */ static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); struct list_head qtd_list; INIT_LIST_HEAD(&qtd_list); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: case PIPE_BULK: default: if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) return -ENOMEM; return submit_async(oxu, urb, &qtd_list, mem_flags); case PIPE_INTERRUPT: if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) return -ENOMEM; return intr_submit(oxu, urb, &qtd_list, mem_flags); case PIPE_ISOCHRONOUS: if (urb->dev->speed == USB_SPEED_HIGH) return itd_submit(oxu, urb, mem_flags); else return sitd_submit(oxu, urb, mem_flags); } } /* This function is responsible for breaking URBs with big data size * into smaller size and processing small urbs in sequence. */ static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int num, rem; int transfer_buffer_length; void *transfer_buffer; struct urb *murb; int i, ret; /* If not bulk pipe just enqueue the URB */ if (!usb_pipebulk(urb->pipe)) return __oxu_urb_enqueue(hcd, urb, mem_flags); /* Otherwise we should verify the USB transfer buffer size! */ transfer_buffer = urb->transfer_buffer; transfer_buffer_length = urb->transfer_buffer_length; num = urb->transfer_buffer_length / 4096; rem = urb->transfer_buffer_length % 4096; if (rem != 0) num++; /* If URB is smaller than 4096 bytes just enqueue it! */ if (num == 1) return __oxu_urb_enqueue(hcd, urb, mem_flags); /* Ok, we have more job to do! :) */ for (i = 0; i < num - 1; i++) { /* Get free micro URB poll till a free urb is recieved */ do { murb = (struct urb *) oxu_murb_alloc(oxu); if (!murb) schedule(); } while (!murb); /* Coping the urb */ memcpy(murb, urb, sizeof(struct urb)); murb->transfer_buffer_length = 4096; murb->transfer_buffer = transfer_buffer + i * 4096; /* Null pointer for the encodes that this is a micro urb */ murb->complete = NULL; ((struct oxu_murb *) murb)->main = urb; ((struct oxu_murb *) murb)->last = 0; /* This loop is to guarantee urb to be processed when there's * not enough resources at a particular time by retrying. */ do { ret = __oxu_urb_enqueue(hcd, murb, mem_flags); if (ret) schedule(); } while (ret); } /* Last urb requires special handling */ /* Get free micro URB poll till a free urb is recieved */ do { murb = (struct urb *) oxu_murb_alloc(oxu); if (!murb) schedule(); } while (!murb); /* Coping the urb */ memcpy(murb, urb, sizeof(struct urb)); murb->transfer_buffer_length = rem > 0 ? rem : 4096; murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; /* Null pointer for the encodes that this is a micro urb */ murb->complete = NULL; ((struct oxu_murb *) murb)->main = urb; ((struct oxu_murb *) murb)->last = 1; do { ret = __oxu_urb_enqueue(hcd, murb, mem_flags); if (ret) schedule(); } while (ret); return ret; } /* Remove from hardware lists. * Completions normally happen asynchronously */ static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); struct ehci_qh *qh; unsigned long flags; spin_lock_irqsave(&oxu->lock, flags); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: case PIPE_BULK: default: qh = (struct ehci_qh *) urb->hcpriv; if (!qh) break; unlink_async(oxu, qh); break; case PIPE_INTERRUPT: qh = (struct ehci_qh *) urb->hcpriv; if (!qh) break; switch (qh->qh_state) { case QH_STATE_LINKED: intr_deschedule(oxu, qh); /* FALL THROUGH */ case QH_STATE_IDLE: qh_completions(oxu, qh); break; default: oxu_dbg(oxu, "bogus qh %p state %d\n", qh, qh->qh_state); goto done; } /* reschedule QH iff another request is queued */ if (!list_empty(&qh->qtd_list) && HC_IS_RUNNING(hcd->state)) { int status; status = qh_schedule(oxu, qh); spin_unlock_irqrestore(&oxu->lock, flags); if (status != 0) { /* shouldn't happen often, but ... * FIXME kill those tds' urbs */ err("can't reschedule qh %p, err %d", qh, status); } return status; } break; } done: spin_unlock_irqrestore(&oxu->lock, flags); return 0; } /* Bulk qh holds the data toggle */ static void oxu_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); unsigned long flags; struct ehci_qh *qh, *tmp; /* ASSERT: any requests/urbs are being unlinked */ /* ASSERT: nobody can be submitting urbs for this any more */ rescan: spin_lock_irqsave(&oxu->lock, flags); qh = ep->hcpriv; if (!qh) goto done; /* endpoints can be iso streams. for now, we don't * accelerate iso completions ... so spin a while. */ if (qh->hw_info1 == 0) { oxu_vdbg(oxu, "iso delay\n"); goto idle_timeout; } if (!HC_IS_RUNNING(hcd->state)) qh->qh_state = QH_STATE_IDLE; switch (qh->qh_state) { case QH_STATE_LINKED: for (tmp = oxu->async->qh_next.qh; tmp && tmp != qh; tmp = tmp->qh_next.qh) continue; /* periodic qh self-unlinks on empty */ if (!tmp) goto nogood; unlink_async(oxu, qh); /* FALL THROUGH */ case QH_STATE_UNLINK: /* wait for hw to finish? */ idle_timeout: spin_unlock_irqrestore(&oxu->lock, flags); schedule_timeout_uninterruptible(1); goto rescan; case QH_STATE_IDLE: /* fully unlinked */ if (list_empty(&qh->qtd_list)) { qh_put(qh); break; } /* else FALL THROUGH */ default: nogood: /* caller was supposed to have unlinked any requests; * that's not our job. just leak this memory. */ oxu_err(oxu, "qh %p (#%02x) state %d%s\n", qh, ep->desc.bEndpointAddress, qh->qh_state, list_empty(&qh->qtd_list) ? "" : "(has tds)"); break; } ep->hcpriv = NULL; done: spin_unlock_irqrestore(&oxu->lock, flags); return; } static int oxu_get_frame(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); return (readl(&oxu->regs->frame_index) >> 3) % oxu->periodic_size; } /* Build "status change" packet (one or two bytes) from HC registers */ static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); u32 temp, mask, status = 0; int ports, i, retval = 1; unsigned long flags; /* if !USB_SUSPEND, root hub timers won't get shut down ... */ if (!HC_IS_RUNNING(hcd->state)) return 0; /* init status to no-changes */ buf[0] = 0; ports = HCS_N_PORTS(oxu->hcs_params); if (ports > 7) { buf[1] = 0; retval++; } /* Some boards (mostly VIA?) report bogus overcurrent indications, * causing massive log spam unless we completely ignore them. It * may be relevant that VIA VT8235 controlers, where PORT_POWER is * always set, seem to clear PORT_OCC and PORT_CSC when writing to * PORT_POWER; that's surprising, but maybe within-spec. */ if (!ignore_oc) mask = PORT_CSC | PORT_PEC | PORT_OCC; else mask = PORT_CSC | PORT_PEC; /* no hub change reports (bit 0) for now (power, ...) */ /* port N changes (bit N)? */ spin_lock_irqsave(&oxu->lock, flags); for (i = 0; i < ports; i++) { temp = readl(&oxu->regs->port_status[i]); /* * Return status information even for ports with OWNER set. * Otherwise khubd wouldn't see the disconnect event when a * high-speed device is switched over to the companion * controller by the user. */ if (!(temp & PORT_CONNECT)) oxu->reset_done[i] = 0; if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && time_after_eq(jiffies, oxu->reset_done[i]))) { if (i < 7) buf[0] |= 1 << (i + 1); else buf[1] |= 1 << (i - 7); status = STS_PCD; } } /* FIXME autosuspend idle root hubs */ spin_unlock_irqrestore(&oxu->lock, flags); return status ? retval : 0; } /* Returns the speed of a device attached to a port on the root hub. */ static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, unsigned int portsc) { switch ((portsc >> 26) & 3) { case 0: return 0; case 1: return 1 << USB_PORT_FEAT_LOWSPEED; case 2: default: return 1 << USB_PORT_FEAT_HIGHSPEED; } } #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int ports = HCS_N_PORTS(oxu->hcs_params); u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; u32 temp, status; unsigned long flags; int retval = 0; unsigned selector; /* * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. * HCS_INDICATOR may say we can change LEDs to off/amber/green. * (track current state ourselves) ... blink for diagnostics, * power, "this is the one", etc. EHCI spec supports this. */ spin_lock_irqsave(&oxu->lock, flags); switch (typeReq) { case ClearHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case ClearPortFeature: if (!wIndex || wIndex > ports) goto error; wIndex--; temp = readl(status_reg); /* * Even if OWNER is set, so the port is owned by the * companion controller, khubd needs to be able to clear * the port-change status bits (especially * USB_PORT_FEAT_C_CONNECTION). */ switch (wValue) { case USB_PORT_FEAT_ENABLE: writel(temp & ~PORT_PE, status_reg); break; case USB_PORT_FEAT_C_ENABLE: writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); break; case USB_PORT_FEAT_SUSPEND: if (temp & PORT_RESET) goto error; if (temp & PORT_SUSPEND) { if ((temp & PORT_PE) == 0) goto error; /* resume signaling for 20 msec */ temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); writel(temp | PORT_RESUME, status_reg); oxu->reset_done[wIndex] = jiffies + msecs_to_jiffies(20); } break; case USB_PORT_FEAT_C_SUSPEND: /* we auto-clear this feature */ break; case USB_PORT_FEAT_POWER: if (HCS_PPC(oxu->hcs_params)) writel(temp & ~(PORT_RWC_BITS | PORT_POWER), status_reg); break; case USB_PORT_FEAT_C_CONNECTION: writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); break; case USB_PORT_FEAT_C_OVER_CURRENT: writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); break; case USB_PORT_FEAT_C_RESET: /* GetPortStatus clears reset */ break; default: goto error; } readl(&oxu->regs->command); /* unblock posted write */ break; case GetHubDescriptor: ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) buf); break; case GetHubStatus: /* no hub-wide feature/status flags */ memset(buf, 0, 4); break; case GetPortStatus: if (!wIndex || wIndex > ports) goto error; wIndex--; status = 0; temp = readl(status_reg); /* wPortChange bits */ if (temp & PORT_CSC) status |= 1 << USB_PORT_FEAT_C_CONNECTION; if (temp & PORT_PEC) status |= 1 << USB_PORT_FEAT_C_ENABLE; if ((temp & PORT_OCC) && !ignore_oc) status |= 1 << USB_PORT_FEAT_C_OVER_CURRENT; /* whoever resumes must GetPortStatus to complete it!! */ if (temp & PORT_RESUME) { /* Remote Wakeup received? */ if (!oxu->reset_done[wIndex]) { /* resume signaling for 20 msec */ oxu->reset_done[wIndex] = jiffies + msecs_to_jiffies(20); /* check the port again */ mod_timer(&oxu_to_hcd(oxu)->rh_timer, oxu->reset_done[wIndex]); } /* resume completed? */ else if (time_after_eq(jiffies, oxu->reset_done[wIndex])) { status |= 1 << USB_PORT_FEAT_C_SUSPEND; oxu->reset_done[wIndex] = 0; /* stop resume signaling */ temp = readl(status_reg); writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), status_reg); retval = handshake(oxu, status_reg, PORT_RESUME, 0, 2000 /* 2msec */); if (retval != 0) { oxu_err(oxu, "port %d resume error %d\n", wIndex + 1, retval); goto error; } temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); } } /* whoever resets must GetPortStatus to complete it!! */ if ((temp & PORT_RESET) && time_after_eq(jiffies, oxu->reset_done[wIndex])) { status |= 1 << USB_PORT_FEAT_C_RESET; oxu->reset_done[wIndex] = 0; /* force reset to complete */ writel(temp & ~(PORT_RWC_BITS | PORT_RESET), status_reg); /* REVISIT: some hardware needs 550+ usec to clear * this bit; seems too long to spin routinely... */ retval = handshake(oxu, status_reg, PORT_RESET, 0, 750); if (retval != 0) { oxu_err(oxu, "port %d reset error %d\n", wIndex + 1, retval); goto error; } /* see what we found out */ temp = check_reset_complete(oxu, wIndex, status_reg, readl(status_reg)); } /* transfer dedicated ports to the companion hc */ if ((temp & PORT_CONNECT) && test_bit(wIndex, &oxu->companion_ports)) { temp &= ~PORT_RWC_BITS; temp |= PORT_OWNER; writel(temp, status_reg); oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); temp = readl(status_reg); } /* * Even if OWNER is set, there's no harm letting khubd * see the wPortStatus values (they should all be 0 except * for PORT_POWER anyway). */ if (temp & PORT_CONNECT) { status |= 1 << USB_PORT_FEAT_CONNECTION; /* status may be from integrated TT */ status |= oxu_port_speed(oxu, temp); } if (temp & PORT_PE) status |= 1 << USB_PORT_FEAT_ENABLE; if (temp & (PORT_SUSPEND|PORT_RESUME)) status |= 1 << USB_PORT_FEAT_SUSPEND; if (temp & PORT_OC) status |= 1 << USB_PORT_FEAT_OVER_CURRENT; if (temp & PORT_RESET) status |= 1 << USB_PORT_FEAT_RESET; if (temp & PORT_POWER) status |= 1 << USB_PORT_FEAT_POWER; #ifndef OXU_VERBOSE_DEBUG if (status & ~0xffff) /* only if wPortChange is interesting */ #endif dbg_port(oxu, "GetStatus", wIndex + 1, temp); put_unaligned(cpu_to_le32(status), (__le32 *) buf); break; case SetHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case SetPortFeature: selector = wIndex >> 8; wIndex &= 0xff; if (!wIndex || wIndex > ports) goto error; wIndex--; temp = readl(status_reg); if (temp & PORT_OWNER) break; temp &= ~PORT_RWC_BITS; switch (wValue) { case USB_PORT_FEAT_SUSPEND: if ((temp & PORT_PE) == 0 || (temp & PORT_RESET) != 0) goto error; if (device_may_wakeup(&hcd->self.root_hub->dev)) temp |= PORT_WAKE_BITS; writel(temp | PORT_SUSPEND, status_reg); break; case USB_PORT_FEAT_POWER: if (HCS_PPC(oxu->hcs_params)) writel(temp | PORT_POWER, status_reg); break; case USB_PORT_FEAT_RESET: if (temp & PORT_RESUME) goto error; /* line status bits may report this as low speed, * which can be fine if this root hub has a * transaction translator built in. */ oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); temp |= PORT_RESET; temp &= ~PORT_PE; /* * caller must wait, then call GetPortStatus * usb 2.0 spec says 50 ms resets on root */ oxu->reset_done[wIndex] = jiffies + msecs_to_jiffies(50); writel(temp, status_reg); break; /* For downstream facing ports (these): one hub port is put * into test mode according to USB2 11.24.2.13, then the hub * must be reset (which for root hub now means rmmod+modprobe, * or else system reboot). See EHCI 2.3.9 and 4.14 for info * about the EHCI-specific stuff. */ case USB_PORT_FEAT_TEST: if (!selector || selector > 5) goto error; ehci_quiesce(oxu); ehci_halt(oxu); temp |= selector << 16; writel(temp, status_reg); break; default: goto error; } readl(&oxu->regs->command); /* unblock posted writes */ break; default: error: /* "stall" on error */ retval = -EPIPE; } spin_unlock_irqrestore(&oxu->lock, flags); return retval; } #ifdef CONFIG_PM static int oxu_bus_suspend(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); int port; int mask; oxu_dbg(oxu, "suspend root hub\n"); if (time_before(jiffies, oxu->next_statechange)) msleep(5); port = HCS_N_PORTS(oxu->hcs_params); spin_lock_irq(&oxu->lock); /* stop schedules, clean any completed work */ if (HC_IS_RUNNING(hcd->state)) { ehci_quiesce(oxu); hcd->state = HC_STATE_QUIESCING; } oxu->command = readl(&oxu->regs->command); if (oxu->reclaim) oxu->reclaim_ready = 1; ehci_work(oxu); /* Unlike other USB host controller types, EHCI doesn't have * any notion of "global" or bus-wide suspend. The driver has * to manually suspend all the active unsuspended ports, and * then manually resume them in the bus_resume() routine. */ oxu->bus_suspended = 0; while (port--) { u32 __iomem *reg = &oxu->regs->port_status[port]; u32 t1 = readl(reg) & ~PORT_RWC_BITS; u32 t2 = t1; /* keep track of which ports we suspend */ if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && !(t1 & PORT_SUSPEND)) { t2 |= PORT_SUSPEND; set_bit(port, &oxu->bus_suspended); } /* enable remote wakeup on all ports */ if (device_may_wakeup(&hcd->self.root_hub->dev)) t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; else t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); if (t1 != t2) { oxu_vdbg(oxu, "port %d, %08x -> %08x\n", port + 1, t1, t2); writel(t2, reg); } } /* turn off now-idle HC */ del_timer_sync(&oxu->watchdog); ehci_halt(oxu); hcd->state = HC_STATE_SUSPENDED; /* allow remote wakeup */ mask = INTR_MASK; if (!device_may_wakeup(&hcd->self.root_hub->dev)) mask &= ~STS_PCD; writel(mask, &oxu->regs->intr_enable); readl(&oxu->regs->intr_enable); oxu->next_statechange = jiffies + msecs_to_jiffies(10); spin_unlock_irq(&oxu->lock); return 0; } /* Caller has locked the root hub, and should reset/reinit on error */ static int oxu_bus_resume(struct usb_hcd *hcd) { struct oxu_hcd *oxu = hcd_to_oxu(hcd); u32 temp; int i; if (time_before(jiffies, oxu->next_statechange)) msleep(5); spin_lock_irq(&oxu->lock); /* Ideally and we've got a real resume here, and no port's power * was lost. (For PCI, that means Vaux was maintained.) But we * could instead be restoring a swsusp snapshot -- so that BIOS was * the last user of the controller, not reset/pm hardware keeping * state we gave to it. */ temp = readl(&oxu->regs->intr_enable); oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); /* at least some APM implementations will try to deliver * IRQs right away, so delay them until we're ready. */ writel(0, &oxu->regs->intr_enable); /* re-init operational registers */ writel(0, &oxu->regs->segment); writel(oxu->periodic_dma, &oxu->regs->frame_list); writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); /* restore CMD_RUN, framelist size, and irq threshold */ writel(oxu->command, &oxu->regs->command); /* Some controller/firmware combinations need a delay during which * they set up the port statuses. See Bugzilla #8190. */ mdelay(8); /* manually resume the ports we suspended during bus_suspend() */ i = HCS_N_PORTS(oxu->hcs_params); while (i--) { temp = readl(&oxu->regs->port_status[i]); temp &= ~(PORT_RWC_BITS | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); temp |= PORT_RESUME; } writel(temp, &oxu->regs->port_status[i]); } i = HCS_N_PORTS(oxu->hcs_params); mdelay(20); while (i--) { temp = readl(&oxu->regs->port_status[i]); if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { temp &= ~(PORT_RWC_BITS | PORT_RESUME); writel(temp, &oxu->regs->port_status[i]); oxu_vdbg(oxu, "resumed port %d\n", i + 1); } } (void) readl(&oxu->regs->command); /* maybe re-activate the schedule(s) */ temp = 0; if (oxu->async->qh_next.qh) temp |= CMD_ASE; if (oxu->periodic_sched) temp |= CMD_PSE; if (temp) { oxu->command |= temp; writel(oxu->command, &oxu->regs->command); } oxu->next_statechange = jiffies + msecs_to_jiffies(5); hcd->state = HC_STATE_RUNNING; /* Now we can safely re-enable irqs */ writel(INTR_MASK, &oxu->regs->intr_enable); spin_unlock_irq(&oxu->lock); return 0; } #else static int oxu_bus_suspend(struct usb_hcd *hcd) { return 0; } static int oxu_bus_resume(struct usb_hcd *hcd) { return 0; } #endif /* CONFIG_PM */ static const struct hc_driver oxu_hc_driver = { .description = "oxu210hp_hcd", .product_desc = "oxu210hp HCD", .hcd_priv_size = sizeof(struct oxu_hcd), /* * Generic hardware linkage */ .irq = oxu_irq, .flags = HCD_MEMORY | HCD_USB2, /* * Basic lifecycle operations */ .reset = oxu_reset, .start = oxu_run, .stop = oxu_stop, .shutdown = oxu_shutdown, /* * Managing i/o requests and associated device resources */ .urb_enqueue = oxu_urb_enqueue, .urb_dequeue = oxu_urb_dequeue, .endpoint_disable = oxu_endpoint_disable, /* * Scheduling support */ .get_frame_number = oxu_get_frame, /* * Root hub support */ .hub_status_data = oxu_hub_status_data, .hub_control = oxu_hub_control, .bus_suspend = oxu_bus_suspend, .bus_resume = oxu_bus_resume, }; /* * Module stuff */ static void oxu_configuration(struct platform_device *pdev, void *base) { u32 tmp; /* Initialize top level registers. * First write ever */ oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | OXU_COMPARATOR | OXU_ASO_OP); tmp = oxu_readl(base, OXU_CLKCTRL_SET); oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); /* Clear all top interrupt enable */ oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); /* Clear all top interrupt status */ oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); /* Enable all needed top interrupt except OTG SPH core */ oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); } static int oxu_verify_id(struct platform_device *pdev, void *base) { u32 id; char *bo[] = { "reserved", "128-pin LQFP", "84-pin TFBGA", "reserved", }; /* Read controller signature register to find a match */ id = oxu_readl(base, OXU_DEVICEID); dev_info(&pdev->dev, "device ID %x\n", id); if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) return -1; dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", id >> OXU_REV_SHIFT, bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); return 0; } static const struct hc_driver oxu_hc_driver; static struct usb_hcd *oxu_create(struct platform_device *pdev, unsigned long memstart, unsigned long memlen, void *base, int irq, int otg) { struct device *dev = &pdev->dev; struct usb_hcd *hcd; struct oxu_hcd *oxu; int ret; /* Set endian mode and host mode */ oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), OXU_USBMODE, OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); hcd = usb_create_hcd(&oxu_hc_driver, dev, otg ? "oxu210hp_otg" : "oxu210hp_sph"); if (!hcd) return ERR_PTR(-ENOMEM); hcd->rsrc_start = memstart; hcd->rsrc_len = memlen; hcd->regs = base; hcd->irq = irq; hcd->state = HC_STATE_HALT; oxu = hcd_to_oxu(hcd); oxu->is_otg = otg; ret = usb_add_hcd(hcd, irq, IRQF_SHARED); if (ret < 0) return ERR_PTR(ret); return hcd; } static int oxu_init(struct platform_device *pdev, unsigned long memstart, unsigned long memlen, void *base, int irq) { struct oxu_info *info = platform_get_drvdata(pdev); struct usb_hcd *hcd; int ret; /* First time configuration at start up */ oxu_configuration(pdev, base); ret = oxu_verify_id(pdev, base); if (ret) { dev_err(&pdev->dev, "no devices found!\n"); return -ENODEV; } /* Create the OTG controller */ hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); if (IS_ERR(hcd)) { dev_err(&pdev->dev, "cannot create OTG controller!\n"); ret = PTR_ERR(hcd); goto error_create_otg; } info->hcd[0] = hcd; /* Create the SPH host controller */ hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); if (IS_ERR(hcd)) { dev_err(&pdev->dev, "cannot create SPH controller!\n"); ret = PTR_ERR(hcd); goto error_create_sph; } info->hcd[1] = hcd; oxu_writel(base, OXU_CHIPIRQEN_SET, oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); return 0; error_create_sph: usb_remove_hcd(info->hcd[0]); usb_put_hcd(info->hcd[0]); error_create_otg: return ret; } static int oxu_drv_probe(struct platform_device *pdev) { struct resource *res; void *base; unsigned long memstart, memlen; int irq, ret; struct oxu_info *info; if (usb_disabled()) return -ENODEV; /* * Get the platform resources */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(&pdev->dev, "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); return -ENODEV; } irq = res->start; dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "no registers address! Check %s setup!\n", dev_name(&pdev->dev)); return -ENODEV; } memstart = res->start; memlen = res->end - res->start + 1; dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen); if (!request_mem_region(memstart, memlen, oxu_hc_driver.description)) { dev_dbg(&pdev->dev, "memory area already in use\n"); return -EBUSY; } ret = set_irq_type(irq, IRQF_TRIGGER_FALLING); if (ret) { dev_err(&pdev->dev, "error setting irq type\n"); ret = -EFAULT; goto error_set_irq_type; } base = ioremap(memstart, memlen); if (!base) { dev_dbg(&pdev->dev, "error mapping memory\n"); ret = -EFAULT; goto error_ioremap; } /* Allocate a driver data struct to hold useful info for both * SPH & OTG devices */ info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL); if (!info) { dev_dbg(&pdev->dev, "error allocating memory\n"); ret = -EFAULT; goto error_alloc; } platform_set_drvdata(pdev, info); ret = oxu_init(pdev, memstart, memlen, base, irq); if (ret < 0) { dev_dbg(&pdev->dev, "cannot init USB devices\n"); goto error_init; } dev_info(&pdev->dev, "devices enabled and running\n"); platform_set_drvdata(pdev, info); return 0; error_init: kfree(info); platform_set_drvdata(pdev, NULL); error_alloc: iounmap(base); error_set_irq_type: error_ioremap: release_mem_region(memstart, memlen); dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); return ret; } static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) { usb_remove_hcd(hcd); usb_put_hcd(hcd); } static int oxu_drv_remove(struct platform_device *pdev) { struct oxu_info *info = platform_get_drvdata(pdev); unsigned long memstart = info->hcd[0]->rsrc_start, memlen = info->hcd[0]->rsrc_len; void *base = info->hcd[0]->regs; oxu_remove(pdev, info->hcd[0]); oxu_remove(pdev, info->hcd[1]); iounmap(base); release_mem_region(memstart, memlen); kfree(info); platform_set_drvdata(pdev, NULL); return 0; } static void oxu_drv_shutdown(struct platform_device *pdev) { oxu_drv_remove(pdev); } #if 0 /* FIXME: TODO */ static int oxu_drv_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct usb_hcd *hcd = dev_get_drvdata(dev); return 0; } static int oxu_drv_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct usb_hcd *hcd = dev_get_drvdata(dev); return 0; } #else #define oxu_drv_suspend NULL #define oxu_drv_resume NULL #endif static struct platform_driver oxu_driver = { .probe = oxu_drv_probe, .remove = oxu_drv_remove, .shutdown = oxu_drv_shutdown, .suspend = oxu_drv_suspend, .resume = oxu_drv_resume, .driver = { .name = "oxu210hp-hcd", .bus = &platform_bus_type } }; static int __init oxu_module_init(void) { int retval = 0; retval = platform_driver_register(&oxu_driver); if (retval < 0) return retval; return retval; } static void __exit oxu_module_cleanup(void) { platform_driver_unregister(&oxu_driver); } module_init(oxu_module_init); module_exit(oxu_module_cleanup); MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); MODULE_LICENSE("GPL");