/* * composite.c - infrastructure for Composite USB Gadgets * * Copyright (C) 2006-2008 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* #define VERBOSE_DEBUG */ #include #include #include #include #include #include #include /* * The code in this file is utility code, used to build a gadget driver * from one or more "function" drivers, one or more "configuration" * objects, and a "usb_composite_driver" by gluing them together along * with the relevant device-wide data. */ /* big enough to hold our biggest descriptor */ #define USB_BUFSIZ 1024 static struct usb_composite_driver *composite; static int (*composite_gadget_bind)(struct usb_composite_dev *cdev); /* Some systems will need runtime overrides for the product identifiers * published in the device descriptor, either numbers or strings or both. * String parameters are in UTF-8 (superset of ASCII's 7 bit characters). */ static ushort idVendor; module_param(idVendor, ushort, 0); MODULE_PARM_DESC(idVendor, "USB Vendor ID"); static ushort idProduct; module_param(idProduct, ushort, 0); MODULE_PARM_DESC(idProduct, "USB Product ID"); static ushort bcdDevice; module_param(bcdDevice, ushort, 0); MODULE_PARM_DESC(bcdDevice, "USB Device version (BCD)"); static char *iManufacturer; module_param(iManufacturer, charp, 0); MODULE_PARM_DESC(iManufacturer, "USB Manufacturer string"); static char *iProduct; module_param(iProduct, charp, 0); MODULE_PARM_DESC(iProduct, "USB Product string"); static char *iSerialNumber; module_param(iSerialNumber, charp, 0); MODULE_PARM_DESC(iSerialNumber, "SerialNumber string"); static char composite_manufacturer[50]; /*-------------------------------------------------------------------------*/ /** * next_ep_desc() - advance to the next EP descriptor * @t: currect pointer within descriptor array * * Return: next EP descriptor or NULL * * Iterate over @t until either EP descriptor found or * NULL (that indicates end of list) encountered */ static struct usb_descriptor_header** next_ep_desc(struct usb_descriptor_header **t) { for (; *t; t++) { if ((*t)->bDescriptorType == USB_DT_ENDPOINT) return t; } return NULL; } /* * for_each_ep_desc()- iterate over endpoint descriptors in the * descriptors list * @start: pointer within descriptor array. * @ep_desc: endpoint descriptor to use as the loop cursor */ #define for_each_ep_desc(start, ep_desc) \ for (ep_desc = next_ep_desc(start); \ ep_desc; ep_desc = next_ep_desc(ep_desc+1)) /** * config_ep_by_speed() - configures the given endpoint * according to gadget speed. * @g: pointer to the gadget * @f: usb function * @_ep: the endpoint to configure * * Return: error code, 0 on success * * This function chooses the right descriptors for a given * endpoint according to gadget speed and saves it in the * endpoint desc field. If the endpoint already has a descriptor * assigned to it - overwrites it with currently corresponding * descriptor. The endpoint maxpacket field is updated according * to the chosen descriptor. * Note: the supplied function should hold all the descriptors * for supported speeds */ int config_ep_by_speed(struct usb_gadget *g, struct usb_function *f, struct usb_ep *_ep) { struct usb_endpoint_descriptor *chosen_desc = NULL; struct usb_descriptor_header **speed_desc = NULL; struct usb_ss_ep_comp_descriptor *comp_desc = NULL; int want_comp_desc = 0; struct usb_descriptor_header **d_spd; /* cursor for speed desc */ if (!g || !f || !_ep) return -EIO; /* select desired speed */ switch (g->speed) { case USB_SPEED_SUPER: if (gadget_is_superspeed(g)) { speed_desc = f->ss_descriptors; want_comp_desc = 1; break; } /* else: Fall trough */ case USB_SPEED_HIGH: if (gadget_is_dualspeed(g)) { speed_desc = f->hs_descriptors; break; } /* else: fall through */ default: speed_desc = f->descriptors; } /* find descriptors */ for_each_ep_desc(speed_desc, d_spd) { chosen_desc = (struct usb_endpoint_descriptor *)*d_spd; if (chosen_desc->bEndpointAddress == _ep->address) goto ep_found; } return -EIO; ep_found: /* commit results */ _ep->maxpacket = usb_endpoint_maxp(chosen_desc); _ep->desc = chosen_desc; _ep->comp_desc = NULL; _ep->maxburst = 0; _ep->mult = 0; if (!want_comp_desc) return 0; /* * Companion descriptor should follow EP descriptor * USB 3.0 spec, #9.6.7 */ comp_desc = (struct usb_ss_ep_comp_descriptor *)*(++d_spd); if (!comp_desc || (comp_desc->bDescriptorType != USB_DT_SS_ENDPOINT_COMP)) return -EIO; _ep->comp_desc = comp_desc; if (g->speed == USB_SPEED_SUPER) { switch (usb_endpoint_type(_ep->desc)) { case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: _ep->maxburst = comp_desc->bMaxBurst; break; case USB_ENDPOINT_XFER_ISOC: /* mult: bits 1:0 of bmAttributes */ _ep->mult = comp_desc->bmAttributes & 0x3; break; default: /* Do nothing for control endpoints */ break; } } return 0; } /** * usb_add_function() - add a function to a configuration * @config: the configuration * @function: the function being added * Context: single threaded during gadget setup * * After initialization, each configuration must have one or more * functions added to it. Adding a function involves calling its @bind() * method to allocate resources such as interface and string identifiers * and endpoints. * * This function returns the value of the function's bind(), which is * zero for success else a negative errno value. */ int usb_add_function(struct usb_configuration *config, struct usb_function *function) { int value = -EINVAL; DBG(config->cdev, "adding '%s'/%p to config '%s'/%p\n", function->name, function, config->label, config); if (!function->set_alt || !function->disable) goto done; function->config = config; list_add_tail(&function->list, &config->functions); /* REVISIT *require* function->bind? */ if (function->bind) { value = function->bind(config, function); if (value < 0) { list_del(&function->list); function->config = NULL; } } else value = 0; /* We allow configurations that don't work at both speeds. * If we run into a lowspeed Linux system, treat it the same * as full speed ... it's the function drivers that will need * to avoid bulk and ISO transfers. */ if (!config->fullspeed && function->descriptors) config->fullspeed = true; if (!config->highspeed && function->hs_descriptors) config->highspeed = true; if (!config->superspeed && function->ss_descriptors) config->superspeed = true; done: if (value) DBG(config->cdev, "adding '%s'/%p --> %d\n", function->name, function, value); return value; } /** * usb_function_deactivate - prevent function and gadget enumeration * @function: the function that isn't yet ready to respond * * Blocks response of the gadget driver to host enumeration by * preventing the data line pullup from being activated. This is * normally called during @bind() processing to change from the * initial "ready to respond" state, or when a required resource * becomes available. * * For example, drivers that serve as a passthrough to a userspace * daemon can block enumeration unless that daemon (such as an OBEX, * MTP, or print server) is ready to handle host requests. * * Not all systems support software control of their USB peripheral * data pullups. * * Returns zero on success, else negative errno. */ int usb_function_deactivate(struct usb_function *function) { struct usb_composite_dev *cdev = function->config->cdev; unsigned long flags; int status = 0; spin_lock_irqsave(&cdev->lock, flags); if (cdev->deactivations == 0) status = usb_gadget_disconnect(cdev->gadget); if (status == 0) cdev->deactivations++; spin_unlock_irqrestore(&cdev->lock, flags); return status; } /** * usb_function_activate - allow function and gadget enumeration * @function: function on which usb_function_activate() was called * * Reverses effect of usb_function_deactivate(). If no more functions * are delaying their activation, the gadget driver will respond to * host enumeration procedures. * * Returns zero on success, else negative errno. */ int usb_function_activate(struct usb_function *function) { struct usb_composite_dev *cdev = function->config->cdev; int status = 0; spin_lock(&cdev->lock); if (WARN_ON(cdev->deactivations == 0)) status = -EINVAL; else { cdev->deactivations--; if (cdev->deactivations == 0) status = usb_gadget_connect(cdev->gadget); } spin_unlock(&cdev->lock); return status; } /** * usb_interface_id() - allocate an unused interface ID * @config: configuration associated with the interface * @function: function handling the interface * Context: single threaded during gadget setup * * usb_interface_id() is called from usb_function.bind() callbacks to * allocate new interface IDs. The function driver will then store that * ID in interface, association, CDC union, and other descriptors. It * will also handle any control requests targeted at that interface, * particularly changing its altsetting via set_alt(). There may * also be class-specific or vendor-specific requests to handle. * * All interface identifier should be allocated using this routine, to * ensure that for example different functions don't wrongly assign * different meanings to the same identifier. Note that since interface * identifiers are configuration-specific, functions used in more than * one configuration (or more than once in a given configuration) need * multiple versions of the relevant descriptors. * * Returns the interface ID which was allocated; or -ENODEV if no * more interface IDs can be allocated. */ int usb_interface_id(struct usb_configuration *config, struct usb_function *function) { unsigned id = config->next_interface_id; if (id < MAX_CONFIG_INTERFACES) { config->interface[id] = function; config->next_interface_id = id + 1; return id; } return -ENODEV; } static int config_buf(struct usb_configuration *config, enum usb_device_speed speed, void *buf, u8 type) { struct usb_config_descriptor *c = buf; void *next = buf + USB_DT_CONFIG_SIZE; int len = USB_BUFSIZ - USB_DT_CONFIG_SIZE; struct usb_function *f; int status; /* write the config descriptor */ c = buf; c->bLength = USB_DT_CONFIG_SIZE; c->bDescriptorType = type; /* wTotalLength is written later */ c->bNumInterfaces = config->next_interface_id; c->bConfigurationValue = config->bConfigurationValue; c->iConfiguration = config->iConfiguration; c->bmAttributes = USB_CONFIG_ATT_ONE | config->bmAttributes; c->bMaxPower = config->bMaxPower ? : (CONFIG_USB_GADGET_VBUS_DRAW / 2); /* There may be e.g. OTG descriptors */ if (config->descriptors) { status = usb_descriptor_fillbuf(next, len, config->descriptors); if (status < 0) return status; len -= status; next += status; } /* add each function's descriptors */ list_for_each_entry(f, &config->functions, list) { struct usb_descriptor_header **descriptors; switch (speed) { case USB_SPEED_SUPER: descriptors = f->ss_descriptors; break; case USB_SPEED_HIGH: descriptors = f->hs_descriptors; break; default: descriptors = f->descriptors; } if (!descriptors) continue; status = usb_descriptor_fillbuf(next, len, (const struct usb_descriptor_header **) descriptors); if (status < 0) return status; len -= status; next += status; } len = next - buf; c->wTotalLength = cpu_to_le16(len); return len; } static int config_desc(struct usb_composite_dev *cdev, unsigned w_value) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c; u8 type = w_value >> 8; enum usb_device_speed speed = USB_SPEED_UNKNOWN; if (gadget->speed == USB_SPEED_SUPER) speed = gadget->speed; else if (gadget_is_dualspeed(gadget)) { int hs = 0; if (gadget->speed == USB_SPEED_HIGH) hs = 1; if (type == USB_DT_OTHER_SPEED_CONFIG) hs = !hs; if (hs) speed = USB_SPEED_HIGH; } /* This is a lookup by config *INDEX* */ w_value &= 0xff; list_for_each_entry(c, &cdev->configs, list) { /* ignore configs that won't work at this speed */ switch (speed) { case USB_SPEED_SUPER: if (!c->superspeed) continue; break; case USB_SPEED_HIGH: if (!c->highspeed) continue; break; default: if (!c->fullspeed) continue; } if (w_value == 0) return config_buf(c, speed, cdev->req->buf, type); w_value--; } return -EINVAL; } static int count_configs(struct usb_composite_dev *cdev, unsigned type) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c; unsigned count = 0; int hs = 0; int ss = 0; if (gadget_is_dualspeed(gadget)) { if (gadget->speed == USB_SPEED_HIGH) hs = 1; if (gadget->speed == USB_SPEED_SUPER) ss = 1; if (type == USB_DT_DEVICE_QUALIFIER) hs = !hs; } list_for_each_entry(c, &cdev->configs, list) { /* ignore configs that won't work at this speed */ if (ss) { if (!c->superspeed) continue; } else if (hs) { if (!c->highspeed) continue; } else { if (!c->fullspeed) continue; } count++; } return count; } /** * bos_desc() - prepares the BOS descriptor. * @cdev: pointer to usb_composite device to generate the bos * descriptor for * * This function generates the BOS (Binary Device Object) * descriptor and its device capabilities descriptors. The BOS * descriptor should be supported by a SuperSpeed device. */ static int bos_desc(struct usb_composite_dev *cdev) { struct usb_ext_cap_descriptor *usb_ext; struct usb_ss_cap_descriptor *ss_cap; struct usb_dcd_config_params dcd_config_params; struct usb_bos_descriptor *bos = cdev->req->buf; bos->bLength = USB_DT_BOS_SIZE; bos->bDescriptorType = USB_DT_BOS; bos->wTotalLength = cpu_to_le16(USB_DT_BOS_SIZE); bos->bNumDeviceCaps = 0; /* * A SuperSpeed device shall include the USB2.0 extension descriptor * and shall support LPM when operating in USB2.0 HS mode. */ usb_ext = cdev->req->buf + le16_to_cpu(bos->wTotalLength); bos->bNumDeviceCaps++; le16_add_cpu(&bos->wTotalLength, USB_DT_USB_EXT_CAP_SIZE); usb_ext->bLength = USB_DT_USB_EXT_CAP_SIZE; usb_ext->bDescriptorType = USB_DT_DEVICE_CAPABILITY; usb_ext->bDevCapabilityType = USB_CAP_TYPE_EXT; usb_ext->bmAttributes = cpu_to_le32(USB_LPM_SUPPORT); /* * The Superspeed USB Capability descriptor shall be implemented by all * SuperSpeed devices. */ ss_cap = cdev->req->buf + le16_to_cpu(bos->wTotalLength); bos->bNumDeviceCaps++; le16_add_cpu(&bos->wTotalLength, USB_DT_USB_SS_CAP_SIZE); ss_cap->bLength = USB_DT_USB_SS_CAP_SIZE; ss_cap->bDescriptorType = USB_DT_DEVICE_CAPABILITY; ss_cap->bDevCapabilityType = USB_SS_CAP_TYPE; ss_cap->bmAttributes = 0; /* LTM is not supported yet */ ss_cap->wSpeedSupported = cpu_to_le16(USB_LOW_SPEED_OPERATION | USB_FULL_SPEED_OPERATION | USB_HIGH_SPEED_OPERATION | USB_5GBPS_OPERATION); ss_cap->bFunctionalitySupport = USB_LOW_SPEED_OPERATION; /* Get Controller configuration */ if (cdev->gadget->ops->get_config_params) cdev->gadget->ops->get_config_params(&dcd_config_params); else { dcd_config_params.bU1devExitLat = USB_DEFULT_U1_DEV_EXIT_LAT; dcd_config_params.bU2DevExitLat = cpu_to_le16(USB_DEFULT_U2_DEV_EXIT_LAT); } ss_cap->bU1devExitLat = dcd_config_params.bU1devExitLat; ss_cap->bU2DevExitLat = dcd_config_params.bU2DevExitLat; return le16_to_cpu(bos->wTotalLength); } static void device_qual(struct usb_composite_dev *cdev) { struct usb_qualifier_descriptor *qual = cdev->req->buf; qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; /* POLICY: same bcdUSB and device type info at both speeds */ qual->bcdUSB = cdev->desc.bcdUSB; qual->bDeviceClass = cdev->desc.bDeviceClass; qual->bDeviceSubClass = cdev->desc.bDeviceSubClass; qual->bDeviceProtocol = cdev->desc.bDeviceProtocol; /* ASSUME same EP0 fifo size at both speeds */ qual->bMaxPacketSize0 = cdev->gadget->ep0->maxpacket; qual->bNumConfigurations = count_configs(cdev, USB_DT_DEVICE_QUALIFIER); qual->bRESERVED = 0; } /*-------------------------------------------------------------------------*/ static void reset_config(struct usb_composite_dev *cdev) { struct usb_function *f; DBG(cdev, "reset config\n"); list_for_each_entry(f, &cdev->config->functions, list) { if (f->disable) f->disable(f); bitmap_zero(f->endpoints, 32); } cdev->config = NULL; } static int set_config(struct usb_composite_dev *cdev, const struct usb_ctrlrequest *ctrl, unsigned number) { struct usb_gadget *gadget = cdev->gadget; struct usb_configuration *c = NULL; int result = -EINVAL; unsigned power = gadget_is_otg(gadget) ? 8 : 100; int tmp; if (number) { list_for_each_entry(c, &cdev->configs, list) { if (c->bConfigurationValue == number) { /* * We disable the FDs of the previous * configuration only if the new configuration * is a valid one */ if (cdev->config) reset_config(cdev); result = 0; break; } } if (result < 0) goto done; } else { /* Zero configuration value - need to reset the config */ if (cdev->config) reset_config(cdev); result = 0; } INFO(cdev, "%s config #%d: %s\n", usb_speed_string(gadget->speed), number, c ? c->label : "unconfigured"); if (!c) goto done; cdev->config = c; /* Initialize all interfaces by setting them to altsetting zero. */ for (tmp = 0; tmp < MAX_CONFIG_INTERFACES; tmp++) { struct usb_function *f = c->interface[tmp]; struct usb_descriptor_header **descriptors; if (!f) break; /* * Record which endpoints are used by the function. This is used * to dispatch control requests targeted at that endpoint to the * function's setup callback instead of the current * configuration's setup callback. */ switch (gadget->speed) { case USB_SPEED_SUPER: descriptors = f->ss_descriptors; break; case USB_SPEED_HIGH: descriptors = f->hs_descriptors; break; default: descriptors = f->descriptors; } for (; *descriptors; ++descriptors) { struct usb_endpoint_descriptor *ep; int addr; if ((*descriptors)->bDescriptorType != USB_DT_ENDPOINT) continue; ep = (struct usb_endpoint_descriptor *)*descriptors; addr = ((ep->bEndpointAddress & 0x80) >> 3) | (ep->bEndpointAddress & 0x0f); set_bit(addr, f->endpoints); } result = f->set_alt(f, tmp, 0); if (result < 0) { DBG(cdev, "interface %d (%s/%p) alt 0 --> %d\n", tmp, f->name, f, result); reset_config(cdev); goto done; } if (result == USB_GADGET_DELAYED_STATUS) { DBG(cdev, "%s: interface %d (%s) requested delayed status\n", __func__, tmp, f->name); cdev->delayed_status++; DBG(cdev, "delayed_status count %d\n", cdev->delayed_status); } } /* when we return, be sure our power usage is valid */ power = c->bMaxPower ? (2 * c->bMaxPower) : CONFIG_USB_GADGET_VBUS_DRAW; done: usb_gadget_vbus_draw(gadget, power); if (result >= 0 && cdev->delayed_status) result = USB_GADGET_DELAYED_STATUS; return result; } /** * usb_add_config() - add a configuration to a device. * @cdev: wraps the USB gadget * @config: the configuration, with bConfigurationValue assigned * @bind: the configuration's bind function * Context: single threaded during gadget setup * * One of the main tasks of a composite @bind() routine is to * add each of the configurations it supports, using this routine. * * This function returns the value of the configuration's @bind(), which * is zero for success else a negative errno value. Binding configurations * assigns global resources including string IDs, and per-configuration * resources such as interface IDs and endpoints. */ int usb_add_config(struct usb_composite_dev *cdev, struct usb_configuration *config, int (*bind)(struct usb_configuration *)) { int status = -EINVAL; struct usb_configuration *c; DBG(cdev, "adding config #%u '%s'/%p\n", config->bConfigurationValue, config->label, config); if (!config->bConfigurationValue || !bind) goto done; /* Prevent duplicate configuration identifiers */ list_for_each_entry(c, &cdev->configs, list) { if (c->bConfigurationValue == config->bConfigurationValue) { status = -EBUSY; goto done; } } config->cdev = cdev; list_add_tail(&config->list, &cdev->configs); INIT_LIST_HEAD(&config->functions); config->next_interface_id = 0; status = bind(config); if (status < 0) { list_del(&config->list); config->cdev = NULL; } else { unsigned i; DBG(cdev, "cfg %d/%p speeds:%s%s%s\n", config->bConfigurationValue, config, config->superspeed ? " super" : "", config->highspeed ? " high" : "", config->fullspeed ? (gadget_is_dualspeed(cdev->gadget) ? " full" : " full/low") : ""); for (i = 0; i < MAX_CONFIG_INTERFACES; i++) { struct usb_function *f = config->interface[i]; if (!f) continue; DBG(cdev, " interface %d = %s/%p\n", i, f->name, f); } } /* set_alt(), or next bind(), sets up * ep->driver_data as needed. */ usb_ep_autoconfig_reset(cdev->gadget); done: if (status) DBG(cdev, "added config '%s'/%u --> %d\n", config->label, config->bConfigurationValue, status); return status; } /*-------------------------------------------------------------------------*/ /* We support strings in multiple languages ... string descriptor zero * says which languages are supported. The typical case will be that * only one language (probably English) is used, with I18N handled on * the host side. */ static void collect_langs(struct usb_gadget_strings **sp, __le16 *buf) { const struct usb_gadget_strings *s; u16 language; __le16 *tmp; while (*sp) { s = *sp; language = cpu_to_le16(s->language); for (tmp = buf; *tmp && tmp < &buf[126]; tmp++) { if (*tmp == language) goto repeat; } *tmp++ = language; repeat: sp++; } } static int lookup_string( struct usb_gadget_strings **sp, void *buf, u16 language, int id ) { struct usb_gadget_strings *s; int value; while (*sp) { s = *sp++; if (s->language != language) continue; value = usb_gadget_get_string(s, id, buf); if (value > 0) return value; } return -EINVAL; } static int get_string(struct usb_composite_dev *cdev, void *buf, u16 language, int id) { struct usb_configuration *c; struct usb_function *f; int len; const char *str; /* Yes, not only is USB's I18N support probably more than most * folk will ever care about ... also, it's all supported here. * (Except for UTF8 support for Unicode's "Astral Planes".) */ /* 0 == report all available language codes */ if (id == 0) { struct usb_string_descriptor *s = buf; struct usb_gadget_strings **sp; memset(s, 0, 256); s->bDescriptorType = USB_DT_STRING; sp = composite->strings; if (sp) collect_langs(sp, s->wData); list_for_each_entry(c, &cdev->configs, list) { sp = c->strings; if (sp) collect_langs(sp, s->wData); list_for_each_entry(f, &c->functions, list) { sp = f->strings; if (sp) collect_langs(sp, s->wData); } } for (len = 0; len <= 126 && s->wData[len]; len++) continue; if (!len) return -EINVAL; s->bLength = 2 * (len + 1); return s->bLength; } /* Otherwise, look up and return a specified string. First * check if the string has not been overridden. */ if (cdev->manufacturer_override == id) str = iManufacturer ?: composite->iManufacturer ?: composite_manufacturer; else if (cdev->product_override == id) str = iProduct ?: composite->iProduct; else if (cdev->serial_override == id) str = iSerialNumber; else str = NULL; if (str) { struct usb_gadget_strings strings = { .language = language, .strings = &(struct usb_string) { 0xff, str } }; return usb_gadget_get_string(&strings, 0xff, buf); } /* String IDs are device-scoped, so we look up each string * table we're told about. These lookups are infrequent; * simpler-is-better here. */ if (composite->strings) { len = lookup_string(composite->strings, buf, language, id); if (len > 0) return len; } list_for_each_entry(c, &cdev->configs, list) { if (c->strings) { len = lookup_string(c->strings, buf, language, id); if (len > 0) return len; } list_for_each_entry(f, &c->functions, list) { if (!f->strings) continue; len = lookup_string(f->strings, buf, language, id); if (len > 0) return len; } } return -EINVAL; } /** * usb_string_id() - allocate an unused string ID * @cdev: the device whose string descriptor IDs are being allocated * Context: single threaded during gadget setup * * @usb_string_id() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then store that ID in the appropriate descriptors and string table. * * All string identifier should be allocated using this, * @usb_string_ids_tab() or @usb_string_ids_n() routine, to ensure * that for example different functions don't wrongly assign different * meanings to the same identifier. */ int usb_string_id(struct usb_composite_dev *cdev) { if (cdev->next_string_id < 254) { /* string id 0 is reserved by USB spec for list of * supported languages */ /* 255 reserved as well? -- mina86 */ cdev->next_string_id++; return cdev->next_string_id; } return -ENODEV; } /** * usb_string_ids() - allocate unused string IDs in batch * @cdev: the device whose string descriptor IDs are being allocated * @str: an array of usb_string objects to assign numbers to * Context: single threaded during gadget setup * * @usb_string_ids() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then copy IDs from the string table to the appropriate descriptors * and string table for other languages. * * All string identifier should be allocated using this, * @usb_string_id() or @usb_string_ids_n() routine, to ensure that for * example different functions don't wrongly assign different meanings * to the same identifier. */ int usb_string_ids_tab(struct usb_composite_dev *cdev, struct usb_string *str) { int next = cdev->next_string_id; for (; str->s; ++str) { if (unlikely(next >= 254)) return -ENODEV; str->id = ++next; } cdev->next_string_id = next; return 0; } /** * usb_string_ids_n() - allocate unused string IDs in batch * @c: the device whose string descriptor IDs are being allocated * @n: number of string IDs to allocate * Context: single threaded during gadget setup * * Returns the first requested ID. This ID and next @n-1 IDs are now * valid IDs. At least provided that @n is non-zero because if it * is, returns last requested ID which is now very useful information. * * @usb_string_ids_n() is called from bind() callbacks to allocate * string IDs. Drivers for functions, configurations, or gadgets will * then store that ID in the appropriate descriptors and string table. * * All string identifier should be allocated using this, * @usb_string_id() or @usb_string_ids_n() routine, to ensure that for * example different functions don't wrongly assign different meanings * to the same identifier. */ int usb_string_ids_n(struct usb_composite_dev *c, unsigned n) { unsigned next = c->next_string_id; if (unlikely(n > 254 || (unsigned)next + n > 254)) return -ENODEV; c->next_string_id += n; return next + 1; } /*-------------------------------------------------------------------------*/ static void composite_setup_complete(struct usb_ep *ep, struct usb_request *req) { if (req->status || req->actual != req->length) DBG((struct usb_composite_dev *) ep->driver_data, "setup complete --> %d, %d/%d\n", req->status, req->actual, req->length); } /* * The setup() callback implements all the ep0 functionality that's * not handled lower down, in hardware or the hardware driver(like * device and endpoint feature flags, and their status). It's all * housekeeping for the gadget function we're implementing. Most of * the work is in config and function specific setup. */ static int composite_setup(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; int status = 0; u16 w_index = le16_to_cpu(ctrl->wIndex); u8 intf = w_index & 0xFF; u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); struct usb_function *f = NULL; u8 endp; /* partial re-init of the response message; the function or the * gadget might need to intercept e.g. a control-OUT completion * when we delegate to it. */ req->zero = 0; req->complete = composite_setup_complete; req->length = 0; gadget->ep0->driver_data = cdev; switch (ctrl->bRequest) { /* we handle all standard USB descriptors */ case USB_REQ_GET_DESCRIPTOR: if (ctrl->bRequestType != USB_DIR_IN) goto unknown; switch (w_value >> 8) { case USB_DT_DEVICE: cdev->desc.bNumConfigurations = count_configs(cdev, USB_DT_DEVICE); cdev->desc.bMaxPacketSize0 = cdev->gadget->ep0->maxpacket; if (gadget_is_superspeed(gadget)) { if (gadget->speed >= USB_SPEED_SUPER) { cdev->desc.bcdUSB = cpu_to_le16(0x0300); cdev->desc.bMaxPacketSize0 = 9; } else { cdev->desc.bcdUSB = cpu_to_le16(0x0210); } } value = min(w_length, (u16) sizeof cdev->desc); memcpy(req->buf, &cdev->desc, value); break; case USB_DT_DEVICE_QUALIFIER: if (!gadget_is_dualspeed(gadget) || gadget->speed >= USB_SPEED_SUPER) break; device_qual(cdev); value = min_t(int, w_length, sizeof(struct usb_qualifier_descriptor)); break; case USB_DT_OTHER_SPEED_CONFIG: if (!gadget_is_dualspeed(gadget) || gadget->speed >= USB_SPEED_SUPER) break; /* FALLTHROUGH */ case USB_DT_CONFIG: value = config_desc(cdev, w_value); if (value >= 0) value = min(w_length, (u16) value); break; case USB_DT_STRING: value = get_string(cdev, req->buf, w_index, w_value & 0xff); if (value >= 0) value = min(w_length, (u16) value); break; case USB_DT_BOS: if (gadget_is_superspeed(gadget)) { value = bos_desc(cdev); value = min(w_length, (u16) value); } break; } break; /* any number of configs can work */ case USB_REQ_SET_CONFIGURATION: if (ctrl->bRequestType != 0) goto unknown; if (gadget_is_otg(gadget)) { if (gadget->a_hnp_support) DBG(cdev, "HNP available\n"); else if (gadget->a_alt_hnp_support) DBG(cdev, "HNP on another port\n"); else VDBG(cdev, "HNP inactive\n"); } spin_lock(&cdev->lock); value = set_config(cdev, ctrl, w_value); spin_unlock(&cdev->lock); break; case USB_REQ_GET_CONFIGURATION: if (ctrl->bRequestType != USB_DIR_IN) goto unknown; if (cdev->config) *(u8 *)req->buf = cdev->config->bConfigurationValue; else *(u8 *)req->buf = 0; value = min(w_length, (u16) 1); break; /* function drivers must handle get/set altsetting; if there's * no get() method, we know only altsetting zero works. */ case USB_REQ_SET_INTERFACE: if (ctrl->bRequestType != USB_RECIP_INTERFACE) goto unknown; if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; if (w_value && !f->set_alt) break; value = f->set_alt(f, w_index, w_value); if (value == USB_GADGET_DELAYED_STATUS) { DBG(cdev, "%s: interface %d (%s) requested delayed status\n", __func__, intf, f->name); cdev->delayed_status++; DBG(cdev, "delayed_status count %d\n", cdev->delayed_status); } break; case USB_REQ_GET_INTERFACE: if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto unknown; if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; /* lots of interfaces only need altsetting zero... */ value = f->get_alt ? f->get_alt(f, w_index) : 0; if (value < 0) break; *((u8 *)req->buf) = value; value = min(w_length, (u16) 1); break; /* * USB 3.0 additions: * Function driver should handle get_status request. If such cb * wasn't supplied we respond with default value = 0 * Note: function driver should supply such cb only for the first * interface of the function */ case USB_REQ_GET_STATUS: if (!gadget_is_superspeed(gadget)) goto unknown; if (ctrl->bRequestType != (USB_DIR_IN | USB_RECIP_INTERFACE)) goto unknown; value = 2; /* This is the length of the get_status reply */ put_unaligned_le16(0, req->buf); if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; status = f->get_status ? f->get_status(f) : 0; if (status < 0) break; put_unaligned_le16(status & 0x0000ffff, req->buf); break; /* * Function drivers should handle SetFeature/ClearFeature * (FUNCTION_SUSPEND) request. function_suspend cb should be supplied * only for the first interface of the function */ case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: if (!gadget_is_superspeed(gadget)) goto unknown; if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_INTERFACE)) goto unknown; switch (w_value) { case USB_INTRF_FUNC_SUSPEND: if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; if (!f) break; value = 0; if (f->func_suspend) value = f->func_suspend(f, w_index >> 8); if (value < 0) { ERROR(cdev, "func_suspend() returned error %d\n", value); value = 0; } break; } break; default: unknown: VDBG(cdev, "non-core control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); /* functions always handle their interfaces and endpoints... * punt other recipients (other, WUSB, ...) to the current * configuration code. * * REVISIT it could make sense to let the composite device * take such requests too, if that's ever needed: to work * in config 0, etc. */ switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_INTERFACE: if (!cdev->config || intf >= MAX_CONFIG_INTERFACES) break; f = cdev->config->interface[intf]; break; case USB_RECIP_ENDPOINT: endp = ((w_index & 0x80) >> 3) | (w_index & 0x0f); list_for_each_entry(f, &cdev->config->functions, list) { if (test_bit(endp, f->endpoints)) break; } if (&f->list == &cdev->config->functions) f = NULL; break; } if (f && f->setup) value = f->setup(f, ctrl); else { struct usb_configuration *c; c = cdev->config; if (c && c->setup) value = c->setup(c, ctrl); } goto done; } /* respond with data transfer before status phase? */ if (value >= 0 && value != USB_GADGET_DELAYED_STATUS) { req->length = value; req->zero = value < w_length; value = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC); if (value < 0) { DBG(cdev, "ep_queue --> %d\n", value); req->status = 0; composite_setup_complete(gadget->ep0, req); } } else if (value == USB_GADGET_DELAYED_STATUS && w_length != 0) { WARN(cdev, "%s: Delayed status not supported for w_length != 0", __func__); } done: /* device either stalls (value < 0) or reports success */ return value; } static void composite_disconnect(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); unsigned long flags; /* REVISIT: should we have config and device level * disconnect callbacks? */ spin_lock_irqsave(&cdev->lock, flags); if (cdev->config) reset_config(cdev); if (composite->disconnect) composite->disconnect(cdev); spin_unlock_irqrestore(&cdev->lock, flags); } /*-------------------------------------------------------------------------*/ static ssize_t composite_show_suspended(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_gadget *gadget = dev_to_usb_gadget(dev); struct usb_composite_dev *cdev = get_gadget_data(gadget); return sprintf(buf, "%d\n", cdev->suspended); } static DEVICE_ATTR(suspended, 0444, composite_show_suspended, NULL); static void composite_unbind(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); /* composite_disconnect() must already have been called * by the underlying peripheral controller driver! * so there's no i/o concurrency that could affect the * state protected by cdev->lock. */ WARN_ON(cdev->config); while (!list_empty(&cdev->configs)) { struct usb_configuration *c; c = list_first_entry(&cdev->configs, struct usb_configuration, list); while (!list_empty(&c->functions)) { struct usb_function *f; f = list_first_entry(&c->functions, struct usb_function, list); list_del(&f->list); if (f->unbind) { DBG(cdev, "unbind function '%s'/%p\n", f->name, f); f->unbind(c, f); /* may free memory for "f" */ } } list_del(&c->list); if (c->unbind) { DBG(cdev, "unbind config '%s'/%p\n", c->label, c); c->unbind(c); /* may free memory for "c" */ } } if (composite->unbind) composite->unbind(cdev); if (cdev->req) { kfree(cdev->req->buf); usb_ep_free_request(gadget->ep0, cdev->req); } device_remove_file(&gadget->dev, &dev_attr_suspended); kfree(cdev); set_gadget_data(gadget, NULL); composite = NULL; } static u8 override_id(struct usb_composite_dev *cdev, u8 *desc) { if (!*desc) { int ret = usb_string_id(cdev); if (unlikely(ret < 0)) WARNING(cdev, "failed to override string ID\n"); else *desc = ret; } return *desc; } static int composite_bind(struct usb_gadget *gadget) { struct usb_composite_dev *cdev; int status = -ENOMEM; cdev = kzalloc(sizeof *cdev, GFP_KERNEL); if (!cdev) return status; spin_lock_init(&cdev->lock); cdev->gadget = gadget; set_gadget_data(gadget, cdev); INIT_LIST_HEAD(&cdev->configs); /* preallocate control response and buffer */ cdev->req = usb_ep_alloc_request(gadget->ep0, GFP_KERNEL); if (!cdev->req) goto fail; cdev->req->buf = kmalloc(USB_BUFSIZ, GFP_KERNEL); if (!cdev->req->buf) goto fail; cdev->req->complete = composite_setup_complete; gadget->ep0->driver_data = cdev; cdev->bufsiz = USB_BUFSIZ; cdev->driver = composite; /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. */ if (CONFIG_USB_GADGET_VBUS_DRAW <= USB_SELF_POWER_VBUS_MAX_DRAW) usb_gadget_set_selfpowered(gadget); /* interface and string IDs start at zero via kzalloc. * we force endpoints to start unassigned; few controller * drivers will zero ep->driver_data. */ usb_ep_autoconfig_reset(cdev->gadget); /* composite gadget needs to assign strings for whole device (like * serial number), register function drivers, potentially update * power state and consumption, etc */ status = composite_gadget_bind(cdev); if (status < 0) goto fail; cdev->desc = *composite->dev; /* standardized runtime overrides for device ID data */ if (idVendor) cdev->desc.idVendor = cpu_to_le16(idVendor); if (idProduct) cdev->desc.idProduct = cpu_to_le16(idProduct); if (bcdDevice) cdev->desc.bcdDevice = cpu_to_le16(bcdDevice); /* string overrides */ if (iManufacturer || !cdev->desc.iManufacturer) { if (!iManufacturer && !composite->iManufacturer && !*composite_manufacturer) snprintf(composite_manufacturer, sizeof composite_manufacturer, "%s %s with %s", init_utsname()->sysname, init_utsname()->release, gadget->name); cdev->manufacturer_override = override_id(cdev, &cdev->desc.iManufacturer); } if (iProduct || (!cdev->desc.iProduct && composite->iProduct)) cdev->product_override = override_id(cdev, &cdev->desc.iProduct); if (iSerialNumber) cdev->serial_override = override_id(cdev, &cdev->desc.iSerialNumber); /* has userspace failed to provide a serial number? */ if (composite->needs_serial && !cdev->desc.iSerialNumber) WARNING(cdev, "userspace failed to provide iSerialNumber\n"); /* finish up */ status = device_create_file(&gadget->dev, &dev_attr_suspended); if (status) goto fail; INFO(cdev, "%s ready\n", composite->name); return 0; fail: composite_unbind(gadget); return status; } /*-------------------------------------------------------------------------*/ static void composite_suspend(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_function *f; /* REVISIT: should we have config level * suspend/resume callbacks? */ DBG(cdev, "suspend\n"); if (cdev->config) { list_for_each_entry(f, &cdev->config->functions, list) { if (f->suspend) f->suspend(f); } } if (composite->suspend) composite->suspend(cdev); cdev->suspended = 1; usb_gadget_vbus_draw(gadget, 2); } static void composite_resume(struct usb_gadget *gadget) { struct usb_composite_dev *cdev = get_gadget_data(gadget); struct usb_function *f; u8 maxpower; /* REVISIT: should we have config level * suspend/resume callbacks? */ DBG(cdev, "resume\n"); if (composite->resume) composite->resume(cdev); if (cdev->config) { list_for_each_entry(f, &cdev->config->functions, list) { if (f->resume) f->resume(f); } maxpower = cdev->config->bMaxPower; usb_gadget_vbus_draw(gadget, maxpower ? (2 * maxpower) : CONFIG_USB_GADGET_VBUS_DRAW); } cdev->suspended = 0; } /*-------------------------------------------------------------------------*/ static struct usb_gadget_driver composite_driver = { #ifdef CONFIG_USB_GADGET_SUPERSPEED .speed = USB_SPEED_SUPER, #else .speed = USB_SPEED_HIGH, #endif .unbind = composite_unbind, .setup = composite_setup, .disconnect = composite_disconnect, .suspend = composite_suspend, .resume = composite_resume, .driver = { .owner = THIS_MODULE, }, }; /** * usb_composite_probe() - register a composite driver * @driver: the driver to register * @bind: the callback used to allocate resources that are shared across the * whole device, such as string IDs, and add its configurations using * @usb_add_config(). This may fail by returning a negative errno * value; it should return zero on successful initialization. * Context: single threaded during gadget setup * * This function is used to register drivers using the composite driver * framework. The return value is zero, or a negative errno value. * Those values normally come from the driver's @bind method, which does * all the work of setting up the driver to match the hardware. * * On successful return, the gadget is ready to respond to requests from * the host, unless one of its components invokes usb_gadget_disconnect() * while it was binding. That would usually be done in order to wait for * some userspace participation. */ int usb_composite_probe(struct usb_composite_driver *driver, int (*bind)(struct usb_composite_dev *cdev)) { if (!driver || !driver->dev || !bind || composite) return -EINVAL; if (!driver->name) driver->name = "composite"; if (!driver->iProduct) driver->iProduct = driver->name; composite_driver.function = (char *) driver->name; composite_driver.driver.name = driver->name; composite_driver.speed = min((u8)composite_driver.speed, (u8)driver->max_speed); composite = driver; composite_gadget_bind = bind; return usb_gadget_probe_driver(&composite_driver, composite_bind); } /** * usb_composite_unregister() - unregister a composite driver * @driver: the driver to unregister * * This function is used to unregister drivers using the composite * driver framework. */ void usb_composite_unregister(struct usb_composite_driver *driver) { if (composite != driver) return; usb_gadget_unregister_driver(&composite_driver); } /** * usb_composite_setup_continue() - Continue with the control transfer * @cdev: the composite device who's control transfer was kept waiting * * This function must be called by the USB function driver to continue * with the control transfer's data/status stage in case it had requested to * delay the data/status stages. A USB function's setup handler (e.g. set_alt()) * can request the composite framework to delay the setup request's data/status * stages by returning USB_GADGET_DELAYED_STATUS. */ void usb_composite_setup_continue(struct usb_composite_dev *cdev) { int value; struct usb_request *req = cdev->req; unsigned long flags; DBG(cdev, "%s\n", __func__); spin_lock_irqsave(&cdev->lock, flags); if (cdev->delayed_status == 0) { WARN(cdev, "%s: Unexpected call\n", __func__); } else if (--cdev->delayed_status == 0) { DBG(cdev, "%s: Completing delayed status\n", __func__); req->length = 0; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) { DBG(cdev, "ep_queue --> %d\n", value); req->status = 0; composite_setup_complete(cdev->gadget->ep0, req); } } spin_unlock_irqrestore(&cdev->lock, flags); }